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Abstract

The dynamics of highway traffic is examined by investigating an optimal-velocity car-following

model which includes the reaction time delay of drivers. Drivers with identical characteristics

are considered and periodic boundary conditions are applied in space.

Bifurcations of the corresponding system of delay differential equations are studied ana-

lytically and by numerical continuation techniques. By investigating the linear stability of the

uniform flow solution, Hopf bifurcations are identified and it is shown that the consequent os-

cillations correspond to travelling waves, with different wave numbers, that propagate against

the flow of traffic.

After eliminating a continuous translational symmetry of the system, normal form calcu-

lations are carried out showing that the Hopf bifurcations are robustly subcritical due to the

inclusion of the delay. Consequently, the resulting oscillations are unstable in the vicinity of

the Hopf bifurcation points, revealing the possibility of bistable behaviour.

The full nonlinear dynamics of the system is investigated by numerical continuation tech-

niques. By following branches of periodic solutions, regions in parameter space are determined

where the stable uniform flow co-exists with periodic solutions corresponding to single or mul-

tiple traffic jams. Regions of stopping and collision are also computed. As the number of

cars is increased, trends are identified by monitoring how the boundaries of these domains

change.

It is shown that for large numbers of cars the periodic solutions develop stop-fronts and

go-fronts corresponding to the entry and exit points of traffic jams. Detailed investigation of

the stability of periodic solutions provides information about the low-dimensional dynamics

of the amalgamation and the dispersion of traffic jams.
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Chapter 1

Introduction

Every day the demand for travel increases and consequently roads are becoming more con-

gested. Congestion results in increased travel times and exhaust fume emissions [2, 4, 11, 12].

Politicians have thus realised that it is necessary to tackle congestion, either by suppressing

the demand for travel or by sponsoring improved methods of traffic management. For ex-

ample, in the UK the Department of Transport has developed a Ten Year Plan [13] for the

reduction of congestion. Broadly speaking, roads may be categorised as either (i) part of a

dense urban network or (ii) part of the long distance trunk road/motorway network. This

thesis is concerned with some modelling aspects of the latter.

The economical significance of motorways is enormous. In the UK motorways constitute

only one percent of the entire road network in length, but provide approximately one fifth of

the country’s overall traffic (measured in vehicle kms) [10]. Furthermore, Britain’s motorway

traffic has increased by more than one third in the last ten years.

Information technology is making available new methods for the measuring, control and

optimisation of motorway traffic. For instance, in the UK the Highways Agency [3] has

developed the MIDAS (Motorway Incident Detection and Automatic Signalling) temporary

speed limit system [7]. The agency has also created the ATM (Active Traffic Management)

system [1] where vehicles are diverted to run on hard shoulders at peak times, and the RM

1



CHAPTER 1. INTRODUCTION

(Ramp Metering) system [9] where the flow of vehicles joining the main carriageway from

entry slip roads is controlled by traffic lights. Note that ramp metering is also in use in the

USA in many urban areas [8].

Here we give a brief overview of the MIDAS system, which was first installed on London’s

M25 orbital motorway [5]. The system consists of a distributed network of traffic and weather

sensors, and in the case of the M25, variable speed limit signs which control traffic speeds

with little human supervision. Speed and flow data is collected by double inductance loops

every 500m along the carriageway and this data can be post-processed and used to visualize

the macroscopic (by which we mean over large length and long time scales) dynamics of

traffic.

In Fig. 1.1 a space time diagram is depicted showing a 17.5 km long section of the M25

during a four and half hour time interval. Each of the 36 sensors averages the velocity of

traffic at one minute intervals and a colour is applied according to the computed average

velocity. High and low velocity regions are indicated by blue and red colours, as detailed

in the colour bar on the right-hand side of the figure. One may recognize that the flow is

not homogenous, instead, low and high velocity regions alternate in space, forming patterns

which propagate upstream (opposite to the flow of vehicles). This moving pattern consists

of so-called stop-and-go waves.

It is possible to reconstruct the motion of (hypothetical) individual vehicles (shown by

black curves in Fig. 1.1), so that the slope of the x(t) curves are given by the measured average

velocities. When driving through stop-and-go waves, vehicles decelerate, stand still/drive

slowly, and then accelerate. Thus, patters are formed by vehicles’ collective motion. The

emergent stop-and-go waves are sometimes called ‘phantom’ traffic jams since drivers are

unable to observe their original cause, because they are far away (both in space and time)

from the point where the traffic jam is initiated. It is curious to note that such large-scale

structures exist given that drivers tend only to make microscopic actions in response to the

speed limit signs and to the motion of the preceding vehicles.

2



x[km]

t[min]

v[km/h]
22.5

20

17.5

15

12.5

10

7.5

5
400 450 500 550 600 650

110

100

90

80

70

60

50

40

30

20

10

0

Fig. 1.1: Spatio-temporal plot of a section of one carriageway of London’s M25 ring road. The
measurements are made with the help of the inductance loops of the MIDAS system. High velocity
regions are depicted as blue and low velocity regions as red, according to the colour bar on the
right-hand side. The black curves indicate (typical, not measured) vehicle trajectories.

In order to optimize systems like MIDAS we have to understand the fundamental macro-

scopic dynamics of highway traffic (what happens over large time and length scales). It is

possible to construct macroscopic models that describe the dynamics in terms of density and

velocity distributions in space and to compare the obtained results with measurements. How-

ever, ultimately traffic flow is a discrete phenomenon, so it is important to understand how

macroscopic dynamics results from microscopic models of driver behaviour. In the mathemat-

ics and physics literature of microscopic traffic models, the psychological reactions of drivers

are grossly simplified, but even so they may qualitatively reproduce the correct macroscopic

stop-and-go waves whose wavelengths are many times the separation of individual vehicles;

see, e.g., [15, 107].

Fig. 1.2 shows a spatio-temporal diagram produced by the microscopic model investigated
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t

x

Fig. 1.2: Spatio-temporal plot of a ring road obtained from the model analysed in this thesis when
the uniform flow is linearly unstable. Due to the periodic boundary conditions, the boundaries x ≡ 0
and x ≡ L = 100 are equivalent. The stop-and-go traffic jams are shown in red. The trajectories of
every fifth forward travelling vehicle are shown by blue curves (the trajectory of the first vehicle is
emphasized in black).

t

x

t

x
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Fig. 1.3: Spatio-temporal plots of a ring road obtained from the model analysed in this thesis when
the uniform flow is linearly stable. Due to the periodic boundary conditions, the boundaries x ≡ 0
and x ≡ L = 150 are equivalent. The stop-and-go traffic jams are shown in red. The trajectories of
every fifth forward travelling vehicle are shown by blue curves (the trajectory of the first vehicle is
emphasized in black). Panel (a) demonstrates the linear stability of the uniform flow, while panel (b)
shows that, by applying sufficiently large perturbations, stop-and-go traffic jams may occur.

in this thesis. Stop-and-go waves propagate backward along a circular road. Traffic jams (red

regions) are detected when vehicles’ velocities drops below one third of the velocity of sparse
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uniform flow. The blue and black curves show how individual drivers pass through these

waves. Note that both the macroscopic and microscopic results agree qualitatively with the

MIDAS measurements, compare Fig. 1.1 and Fig. 1.2.

The main focus of this thesis is to investigate the dynamics of microscopic models and

the emerging macroscopic features. Particularly, we focus on a so-called optimal velocity car-

following model where driver behaviour is modelled by differential equations. In this thesis,

the technical challenge from the mathematical point of view is the inclusion of delay to model

the reaction time of drivers. The principal advances are two-fold:

1. This is the first time that the nonlinear dynamics of a traffic model has been investigated

systematically by using bifurcation tools. These investigations provide a deep insight

into the dynamics ruled by stable and unstable oscillations.

2. We manage to go beyond the simplest ordinary differential equation case and deal

with technically challenging delay differential equations. Thus are we able to study the

robust effects caused by the drivers’ reaction time delay.

The mathematical tools used in this work are principally from analytical and numerical

bifurcation theory, including the application of the numerical continuation package dde-

biftool [36]. With these tools branches corresponding to uniform flow and stop-and-go

wave solutions may be determined as functions of parameters. Bifurcation points can also

be detected on these branches showing where the dynamics change qualitatively. Since both

stable and unstable solutions can be found, this approach allows us to describe even the

‘hidden’ dynamics of the system, which cannot be explored by numerical simulation. Con-

sequently, applying bifurcation analysis and numerical continuation is a much more efficient

way to explore parameter space than the repeated use of numerical simulation.

While the microscopic models without delay are described by ordinary differential equa-

tions (ODEs) presenting the dynamics in finite-dimensional phase spaces, the appearance of

the reaction time leads to delay differential equations (DDEs) and to infinite-dimensional

phase spaces. The finite-dimensional bifurcation theory that is available in basic textbooks

5



CHAPTER 1. INTRODUCTION

[47, 73] has been extended to DDEs in [31, 49, 50, 67]. The infinite-dimensional dynamics

make the bifurcation analysis more abstract and complicated: functionals and operators need

to be handled analytically and their discretised counterparts, (i.e., large matrices) are tackled

in numerical tools; see Chapter 2.

In the mathematics and physics literature, linear stability arguments have been used

before to investigate the formation of traffic jams [53, 63]. Actually, traffic jam formation

had been equated with linear instability of the uniform flow equilibrium (a kind of steady

state where equidistant vehicles flow with the same time-independent velocity); see Fig. 1.2

for demonstration of this instability. However, it is also thought among traffic engineers

that certain events, like a truck pulling out of the slow lane, can trigger traffic jams even

when the uniform flow is stable. One of the key advances here is a proper examination of

the subcriticality of bifurcations and the co-existence of the stable uniform flow with stable

stop-and-go waves. In parameter ranges of co-existence, large enough perturbations can still

lead to pattern formation even when the uniform flow is linearly stable.

An initial demonstration of this co-existence is given in Fig. 1.3. Panel (a) demonstrates

a case when the uniform flow equilibrium is (linearly) stable. However, as shown in panel

(b), by applying sufficiently large random perturbations in vehicles’ separations and velocities

one can obtain stop-and-go waves in this case as well. This co-existence effect is analysed in

Chapters 3 and 4 by applying analytical and numerical bifurcation theory. In Chapter 5 it is

shown that numerical bifurcation analysis also allows us to investigate the long-time merging

and dispersing dynamics of traffic jams; see Fig. 1.2 and Fig. 1.3(b).

1.1 Review of modelling approaches for vehicular traffic

In this section we give a brief review of the mathematics and physics literature of simpli-

fied highway traffic models. In fact, traffic engineers use much more complicated models,

for example, as implemented in the software packages AIMSUN, DRACULA, PARAMICS,

SISTM, and VISSIM [6]. However, the dynamics of these complicated systems may only be
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1.1. REVIEW OF MODELLING APPROACHES FOR VEHICULAR TRAFFIC

investigated by numerical solution of the initial value problem. In contrast, detailed inves-

tigation of the dynamics of simple models is necessary for the basic understanding of the

pattern formation mechanisms of real-world traffic. For more discussion and a much more

detailed review see Helbing [53].

A central question in all models is what scales need to be represented. There are macro-

scopic models which do not consider individual vehicles but rather deal with continuous

density and velocity distributions as functions of space and time. These so-called continuum

models describe the dynamics by partial differential equations (PDEs). There are also mi-

croscopic models which model at the level of individual vehicles. These include two types of

models, namely car-following models and cellular automata models. In car-following models

discrete entities move in continuous space and time and the vehicles’ motions are described

by ordinary differential equations (ODEs) or by delay differential equations (DDEs). In cel-

lular automata models, not only cars but also space, time, and velocities are considered to be

discrete and update rules are used to describe the time development of the system.

1.1.1 Continuum models

In continuum models, individual vehicles are neglected and traffic is modelled via a density

distribution ρ(x, t) and a velocity distribution v(x, t) which are continuous functions of posi-

tion x and time t. In all such models, we have conservation of vehicles, so that in the absence

of sources and sinks due to on- and off-ramps,

ρt + (ρv)x = 0 , (1.1)

where the subscripts t and x stand for partial derivation. (Further refinements are possible

when one considers multi-species models [16], multi-lane models [26, 27, 46, 101], or junctions

[20, 113].)

To close the model, either velocity or acceleration information must be provided. The

simplest setting, introduced by Lighthill and Whitham [76], supplements (1.1) with

v = V(ρ) , (1.2)
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where V(ρ) is a decreasing function which models that dense traffic should travel slower than

sparse traffic for safety reasons. If we initialize this model so that fast traffic is placed behind

slow traffic, the solution profile sharpens and a discontinuous shock develops in finite time,

at which vehicles’ velocities jump downwards. By investigating the so-called fundamental

diagram, which is the plot of the flow Q(ρ) = ρv against density ρ, we obtain information

about the propagation of shocks. This analysis indicates that, in a wide range of situations,

shocks propagate against the flow of traffic in accordance with the empirical data shown in

Fig. 1.1; for more details see Whitham’s book [118].

However, not all empirical features can be captured by the Lighthill-Whitham model, and

for this reason, second order models have been developed in the form

vt + vvx = α
(
V(ρ) − v

)
+N , (1.3)

where the left-hand side expresses the total derivative of the velocity. The first term on the

right-hand side corresponds to relaxation to a density dependent optimal velocity given by

V(ρ) with a relaxation time 1/α. Note that this idea also appears in microscopic modelling

as explained further below. The second term on the right-hand side is chosen as N = −µρx/ρ

by Payne [90], as N = −µρx/ρ−νvxx by Kühne [72], and as N = −µρx/ρ−νvxx/ρ by Kerner

and Konhäuser [65]. The pressure terms ∼ ρx model anticipation of drivers to events ahead of

them on the road, that is, increasing/decreasing density produces deceleration/acceleration,

while the diffusion term ∼ vxx corresponds to the averaged effects of noise. By including

these extra terms, the model (1.3) is able to reproduce uniform flow as well as stop-and-go

travelling waves (without discontinuities) in correspondence with empirical data; see Fig. 1.1.

However, it is not obvious what pressure and viscosity correspond to at the microscopic

level. Therefore, most recently, continuum models have also been developed from microscopic

models; see [18, 74].

We note that Boltzman-type gas-kinetic models, which are based on ‘collisions’ of parti-

cles, contain noise explicitly as established by Prigogine and Herman [93] and developed by

Helbing [52]. However, these models cannot be written in the form (1.3).
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The partial differential equations (PDEs) (1.1) and (1.3) can be investigated using ana-

lytical methods and numerical simulation, and the results can be compared directly to the

results of empirical measurements, e.g., through the fundamental diagram [62, 66]. However,

one has to bear in mind the limitations due to the fact that fundamentally discrete systems

are being modelled as a continuum.

As mentioned before, microscopic models dealing with individual cars can also reproduce

the macroscopic waves appearing on freeways. There are two main types of microscopic

modelling approaches considered in the literature, namely car-following models and cellular

automata models.

1.1.2 Car-following models

Car-following models are the focus of this thesis. In these models vehicles are considered

as discrete entities moving in continuous time and continuous one-dimensional space; see

Fig. 1.4. At time t positions of cars are denoted by xi(t), their velocities by

vi(t) = ẋi(t) , (1.4)

and their relative displacements, usually called the headways, by

hi(t) = xi+1(t) − xi(t) , (1.5)

as is shown in Fig. 1.4. Consequently, the relative velocities are given by the rate of headways,

i.e.,

ḣi(t) = vi+1(t) − vi(t) . (1.6)

Note that each of the above quantities is a function of the time t, and the dot denotes

derivation with respect to t.

To simplify matters, drivers with identical characteristics are usually considered and the

accelerations v̇i of vehicles are given as a function of stimuli which are usually the headway,

the relative velocity, and the velocity, that is,

v̇i(t) = f
(
hi(t− τ), ḣi(t− σ), vi(t− κ)

)
. (1.7)
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vi−1 vi vi+1 vi+2

xi−1 xi xi+1 xi+2

hi = xi+1 − xi hi+1 = xi+2 − xi+1

x

Fig. 1.4: Sequence of cars on a single-lane road in a car-following model showing vehicles’ positions,
velocities, and headways.

The reaction time delays τ, σ, κ ≥ 0 are generally different, but sometimes, for the sake of

simplicity, they are considered to be equal to each other or even to be zero. The dynamical

equation (1.7) together with any of the supplementary kinematic conditions (1.4) or (1.6)

constitute a system of delay differential equations (DDEs), which is simplified to a system of

ordinary differential equations (ODEs) for τ = σ = κ = 0. (Of course, when the constraint

(1.4) is considered the definition (1.5) is substituted into (1.7).)

The study of car-following models began in the fifties by Herman and his colleagues

[25, 40, 41], constructing models of the form

v̇i(t) = α
vi(t)

s1 ḣi(t− τ)s2

hi(t− τ)s3
, s1, s2, s3 ∈ N , (1.8)

and investigating the linear stability of the uniform flow equilibrium. However, they were

not able to investigate the nonlinear behaviour due to limitations in computing at that time.

Comparing (1.8) with the general setup (1.7), one can see that κ = 0 and τ = σ > 0

is considered here. Further models in this class were investigated later by analytical and

numerical methods [33, 77, 91].

Other models, like Newell’s [82], were also constructed where, rather than acceleration,

velocities vi are given as a function of stimuli, that is,

vi = V(hi(t− τ)) , (1.9)

which does not conform to (1.7), but rather is similar to the continuum model (1.2). Never-

theless, (1.9) still reproduces some qualitative dynamics correctly as is shown in [58]. Also

more complicated models, such as that of Gipps [42], have been investigated in detail [119].

Reviews of the above car-following models are given by Berg [17] and by Holland [57].
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Development and investigation of higher fidelity car-following models is still an ongoing

procedure. For example, one may consider the generalized force model [54] and the intelligent

driver model [113] built by Helbing et al., the model of Safonov et al. [95, 96] (with and

without delay), and the recent model of Gasser et al. [38].

There are two obvious extensions of the general car-following model (1.7). One of them

is the so-called multi-look-ahead approach [55, 75, 99, 114, 121]. Here drivers respond to the

motion of more than one vehicle ahead. For example, a double-look-ahead model is generally

described by the DDEs

v̇i(t) = f
(
hi(t− τ), ḣi(t− σ), vi(t− κ), (hi + hi+1)(t− γ), (ḣi + ḣi+1)(t− δ)

)
, (1.10)

where τ, σ, κ, γ, δ ≥ 0, and indeed the relative displacements hi(t) + hi+1(t) = xi+2(t)− xi(t)

and the relative velocities ḣi(t) + ḣi+1(t) = vi+2(t) − vi(t) appear in the right-hand side; see

Fig. 1.4. It can be shown that these next-nearest neighbourhood interactions can stabilise

the uniform flow. Furthermore, there exist multi-species models [79, 80] that consider drivers

with different characteristics and consequently the system

v̇i(t) = fi

(
hi(t− τi), ḣi(t− σi), vi(t− κi)

)
, (1.11)

with τi, σi, κi ≥ 0. However, usually only two different species are mixed corresponding to cars

and lorries. One might also construct car-following models which are capable of modelling

multilane traffic or junctions [30, 56, 78, 97].

It is also possible to include noise to model that drivers are not deterministic (they change

their behaviour from time to time) and to model external disturbances (such as the weather or

road unevenness). However, in the current mathematics and physics literature car-following

models with noise are not typical. Many of them use dicretised time (but still continuous

space and velocity), e.g., [64, 70, 110] and only a few of them consider continuous time

[111, 112].

A famous class of car-following models are the so-called optimal velocity (OV) models

where the accelerations are given by

v̇i(t) = α
(
V(hi(t− τ)) − vi(t− κ)

)
. (1.12)
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Here α > 0 is known as the sensitivity and V(h) is known as the optimal velocity (OV)

function. In this model, drivers wish to achieve the optimal velocity given by V(h) in a

characteristic relaxation time T = 1/α.

The first OV model, called the California model [25], contained a linear OV function and

set the delays τ = κ > 0. The first nonlinear OV function was introduced by Bando et al.

[15] in the mid-nineties who also chose the simple setup τ = κ = 0 and obtained the ODEs

v̇i(t) = α
(
V(hi(t)) − vi(t)

)
. (1.13)

Using numerical simulation they were able to reproduce traffic waves when the uniform flow

equilibrium was unstable. This model generated much interest and many modifications and

extensions; for example, piecewise linear OV functions were used in [107] and delays τ = κ > 0

were included in [14] while delays τ > 0, κ = 0 were applied in [28, 29]. The last of these

is considered in this thesis as detailed in Section 1.2. Most of the authors used numerical

simulation to examine the model (1.13), but in some recent articles bifurcation tools have

begun to be applied [19, 39].

1.1.3 Cellular automata models

Cellular automata models are similar to car-following models, but they involve discrete vehi-

cles moving in discrete time and space with discrete velocities. The road is divided into cells

of a certain size which can be occupied by one car only (see Fig. 1.5), and the discretised

velocity v can take only the integer values 0, 1, . . . , vmax. The time development of the system

is governed by a couple of updating rules in each time step. One of the most widely analysed

updating schemes, proposed by Nagel and Schreckenberg [81], is described in Fig. 1.5. Note

that car-following models may be obtained as natural continuum limits of cellular automata

models; see [70].

Since each quantity in cellular automata models is discrete, a quick realization of numer-

ical simulations is possible. Cellular automata models are found to be successful models of

highways [98], and they are also applicable to model city traffic since it is easy to introduce
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• if the velocity v of a vehicle is smaller than the speed vmax and the distance

to the preceding car is larger than v + 1, then the velocity is increased by 1;

• if a driver with velocity v sees the car ahead at distance j < v it reduces its

velocity to j − 1;

• the velocity of each car is decreased by 1 with probability p when v > 0;

• each vehicle is advanced by as many sites as the value of its velocity.

Fig. 1.5: Cell hopping on a single lane according to the updating rules of the Nagel-Schreckenberg
cellular automata model [81].

junctions and traffic lights [117].

1.2 Details of the model used in this thesis

In this section we describe the delayed optimal velocity car-following model that is subject

to detailed investigation within the main body of this thesis. We chose a very simple op-

timal velocity model which nevertheless describes certain features of traffic correctly at the

qualitative level.

We consider drivers with identical characteristics and the optimal velocity model given

by (1.12). Furthermore, we take the assumptions τ > 0 and κ = 0, that is, the accelerations

of vehicles are given by

v̇i(t) = α
(
V(hi(t− τ)) − vi(t)

)
. (1.14)

Recall that α is the sensitivity, τ is the reaction time delay of the drivers, and V(h) is the

optimal velocity function. Note that τ is different from the characteristic relaxation time

T = 1/α for adjustment of the vehicles’ velocities. Considering the kinematic conditions

(1.6), the corresponding equations (1.6) and (1.14) constitute a system of delay differential

equations (DDEs) for the vehicles’ motions. (Of course, one may consider the kinematic

conditions (1.4) and the corresponding DDE system (1.4),(1.14)). The model (1.14) has

recently been investigated with numerical simulation by Davis [28, 29]. The case where (the
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same) delay occurs both in the drivers’ perceptions of their headway and in their perceptions

of their own velocities (i.e., τ = κ > 0) was considered by Bando et al. [14]. In our view, it is

more realistic to suppose that drivers know their speed, i.e., they react to it instantaneously,

but they react only to their headway via the delay τ .

We consider a single-lane model without overtaking (as shown in Fig. 1.4), but to further

simplify matters we suppose that n vehicles are placed on a circular road of length L, so that

n∑

i=1

hi(t) =
n−1∑

i=1

(xi+1(t) − xi(t)) + (x1(t) − xn(t) + L) = L . (1.15)

All OV models (1.12) (including (1.14)) admit a one-parameter family of uniform flow

equilibrium solutions of the form

heq
i (t) ≡ h∗ , veq

i (t) ≡ v∗ , i = 1, . . . , n . (1.16)

When considering the system on the closed ring we obtain

h∗ = L/n > 0 , v∗ = V(h∗) . (1.17)

This yields

xeq
i (t) = v∗t+ x∗i , i = 1, . . . , n , (1.18)

where

x∗i+1 − x∗i = x∗1 − x∗n + L = h∗ , i = 1, . . . , n− 1 . (1.19)

Previous studies in both ODE and DDE settings have been concerned with the linear

stability calculation of the uniform flow solution and numerical simulation when the flow is

unstable [14, 15, 28, 29, 107]. The loss of linear stability of uniform flow solutions is widely

accepted as a cause of traffic jams. However, in this thesis we show that this is not necessary

for traffic jam formation.

The main task now is to identify desirable properties of the OV function V(h) and to

estimate physical ranges for the parameters. Since V(h) describes the uniform flow equilibria,

the following properties seem necessary from the modelling point of view:
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1. V(h) is continuous, nonnegative, and monotone increasing. (Drivers wish to travel

forward and the desired velocity should increase smoothly as headway increases. Note

that if V(h) were to attain negative values, there would exist unrealistic equilibria where

vehicles reverse.)

2. V(h) → v0 as h → ∞. (In the case of very large headway, the desired velocity should

approach an upper limit v0 called the desired speed. This limit should be related to the

legal speed limit.)

3. There exists a jam headway hstop ≥ 0 such that V(h) ≡ 0 for h ∈ [0, hstop]. (If cars

become too closely packed, then drivers want to come to a full stop.) In our view,

one should take hstop strictly positive. Firstly, this is because real vehicles have finite

length, so that small positive headways correspond to collisions, and secondly because

real traffic flows have a finite characteristic jam density at which traffic comes to a

complete stop.

Note that a further advantage of choosing hstop > 0 is that maximum principles may be

used to show that vehicles do not reverse under any (even dynamic) situations, for either

model (1.13) or (1.14). However, it is still possible for vehicles to collide if other parameters

are chosen appropriately.

In the original paper by Bando et al. [15], the OV function was given (in rescaled coor-

dinates) by

VB1(h) = tanh(h− 2) + tanh(2) . (1.20)

It may be shown that this OV function satisfies each of the properties 1.–3. above, although

with hstop = 0, which we do not regard as suitable. The later paper of Bando et al. [14] uses

a dimensional OV function of the form

VB2(h) = 16.8
(
tanh(0.086(h− 25)) + 0.913

)
, (1.21)

which was fitted to Japanese highway traffic data. Here h is measured in meters and V(h)

in meters per second. It may be shown that hstop ≃ 7.0319 m and v0 ≃ 32.1384 ms−1.
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Table 1.1: Dimensional parameters with estimates of their ranges.

Name Symbol Estimated values

Reaction time τ 0.5 − 2 s

Relaxation time T = 1/α 0.5 − 50 s

Sensitivity α 0.04 − 2 s−1

Desired speed v0 10 − 35 ms−1

Jam headway hstop 2 − 15 m

Average headway h∗ = L/n . . .

However, VB2(h) is a poor model for small headways since it is negative for h ∈ [0, hstop].

Thus properties 1.–3. are satisfied by the OV function

VB3(h) = max[0,VB2(h)] . (1.22)

The numerical continuation method used in this thesis requires the continuous differentiability

of the model’s right-hand side in terms of its dependent variables. Since V′
B3(h) is not

continuous at h = hstop, we must use a different OV function. Our goal is therefore to choose

an OV function V(h) that satisfies properties 1.–3. with hstop > 0 and for which V′(h) is

continuous. The OV function should also have the correct S shape, i.e., we require V′(h) to

have a single maximum strictly to the right of hstop.

Table 1.2: Non-dimensionalized parameters and their ranges.

Name Symbol and Definition Estimated values

Sensitivity α̃ = τα = τ/T 0.02 − 4

Desired speed ṽ0 = v0τ/hstop 0.33 − 35

Average headway h̃∗ = h∗/hstop . . .

Our approach is to first non-dimensionalize (1.14). Since we assume that τ, hstop > 0,

we may introduce the rescaled variables t̃ := t/τ and h̃ := h/hstop. All speed-like quantities

(including the OV function) have rescalings of the form ṽ = vτ/hstop. To simplify notation
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we remove tildes, so that the rescaled version of (1.14) becomes

v̇i(t) = α
(
V(hi(t− 1)) − vi(t)

)
. (1.23)

Table 1.1 suggests ranges for dimensional parameters and Table 1.2 gives the non-dimensionali-

zed counterparts. The dimensional desired speed v0 corresponds to the speed limit or to a

speed chosen according to weather and road conditions. The dimensional relaxation time

T = 1/α is approximately the time which is needed for a single vehicle to reach the desired

speed.

Note that definition (1.5) and the kinematic conditions (1.4) and (1.6) keep their form

after rescaling. Furthermore, the uniform flow equilibrium may still be written in the form

(1.16) using rescaled quantities. The rescaled OV function V(h) has the following properties:

1. V(h) is continuously differentiable, nonnegative, and monotone increasing.

2. V(h) → v0 as h→ ∞, where v0 is the rescaled desired speed.

3. V(h) ≡ 0 for h ∈ [0, 1], so that 1 is the rescaled jam headway.

The remainder of this thesis uses the rescaled OV function

V(h) =





0 , if 0 ≤ h ≤ 1 ,

v0

(
(h− 1)/s

)3

1 +
(
(h− 1)/s)

)3 , if h > 1 ,
(1.24)

which satisfies properties 1.–3. above, has the requisite shape, and is smooth at h = 1.

This OV function possesses two non-dimensional parameters, namely v0 and s. The former

is determined by the dimensional version of v0 and the applied rescaling. However, s is a

wholly new parameter that describes how the OV function is stretched to the right of h = 1.

In this thesis we choose s = 1; the parameter s may be varied to shift the value of h at which

V′(h) attains its maximum.

Figures 1.6(a) and 1.6(b) compare (1.24) and its derivative (blue solid curves) with the
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Fig. 1.6: Three different rescaled optimal velocity (OV) functions given by (1.24), (1.25), and (1.26)
are shown in panel (a) as blue solid curve, green dashed-dotted curve, and red dashed curve, respec-
tively. The corresponding derivatives with respect to the headway h are depicted in panel (b).

rescaled version of the OV function (1.22) defined by

VB4(h) =





0 , if 0 ≤ h ≤ 1 ,

v0
(
0.523 tanh(0.605h− 2.15) + 0.477

)
, if h > 1 ,

(1.25)

(green dashed-dotted curves). For comparison, we have also included a plot of the OV

function

VS(h) =





0 , if 0 ≤ h ≤ 1 ,

v0
(
1 − 1/h2

)
, if h > 1 ,

(1.26)

(red dashed curves), which does not have an S shape for h > 1.

The key point we wish to emphasize is that, although one may consider different OV

functions, we have found that the results presented in this thesis are robust in the sense that

the qualitative features do not depend on the precise analytical form of the OV function.
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1.3 Outline of thesis

In this section we briefly summarize the framework of this thesis. The modelling issues have

already been discussed earlier in this chapter. In Chapter 2 the theoretical background of

delay differential equations is described since it is necessary for understanding in detail the

technical results of the thesis. After some basic definitions related to the infinite-dimensional

dynamics of DDEs, the stability and bifurcations of equilibria and periodic solutions are

considered. Then we describe the basic tools used later in the thesis, namely, the analytical

Hopf bifurcation calculations and the numerical continuation package dde-biftool.

The detailed investigation of our traffic model is commenced in Chapter 3, where the

stability of the uniform flow equilibrium and small amplitude oscillations are investigated

analytically. First, Hopf bifurcations of equilibria are detected revealing oscillations and

corresponding waves with several different wavelengths. The investigation of the criticality

of these bifurcations via Hopf normal form calculations shows that fully-developed waves

might co-exist with stable uniform flow. In order to carry out these investigations a theory

of Hopf bifurcation calculations is developed for systems containing translational symmetry.

The main work of this chapter has been published in [86, 87].

Chapter 4 is devoted to the detailed numerical investigation of the consequent oscillations

and corresponding waves using numerical continuation techniques. First, for proof-of-concept

purposes the system is investigated for n = 3 cars. Then the number of cars is increased

towards more realistic traffic situations and the corresponding trends determined. In parame-

ter space, regions of bistability and co-existence (between stable uniform flow and waves) are

computed systematically. Furthermore, motions like collision or stopping are also investigated

in detail. The main work of this chapter has been published in [85, 89].

Traffic waves are subject to further study in Chapter 5, where the long-time dynamics of

the system is investigated. By using dde-biftool, it is shown how unstable oscillations lead

to stop-fronts and go-fronts moving relative to each other. The motions of these fronts are

then studied by numerical simulation. The main work of this chapter has been published in
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[85]. Finally, in Chapter 6 conclusions are drawn and possible future research is discussed.
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Chapter 2

Review on delay differential equations

with a single fixed delay

Equations (1.6) and (1.14) constitute a system of delay differential equations (DDEs) with a

single fixed delay. We now recall some basic facts from the bifurcation theory for DDEs as

needed in later chapters. In general form, such a system can be written as

ẋ(t) = f(x(t), x(t− τ); η) , (2.1)

where dot refers to derivation with respect to the time t, x : R → R
m is the state variable,

the function f : R
m × R

m × R
l → R

m is differentiable, τ ∈ R is the time delay, and η ∈ R
l is

a (multi-dimensional) parameter. For system (1.6),(1.14) we have m = 2n (or m = 2n− 1 if

we apply the condition (1.15)) and l = 3 corresponding to the parameters h∗, α and v0.

The bifurcation theory of ordinary differential equations (ODEs) can be generalized to de-

lay differential equations (DDEs) through the investigation of retarded functional differential

equations (RFDEs) and operator differential equations (OpDEs); see Hale & Verduyn Lunel

[50] or Diekmann et al. [31] for details. We recall the fundamental description of RFDEs and

OpDEs in Section 2.1 showing the connection with DDEs, while the stability of equilibria

and periodic orbits are discussed in Section 2.2.

The theory of normal form calculations for DDEs has been reviewed by Hale et al. in

21



CHAPTER 2. REVIEW ON DELAY DIFFERENTIAL EQUATIONS WITH A SINGLE FIXED DELAY

[49]. For Hopf bifurcations of equilibria the first closed-form normal form calculations were

executed by Hassard et al. [51] in the case of a simple scalar first order DDE, while Stépán

presented first such calculations for system of DDEs [104, 105]. The normal form calculations,

which are discussed in Section 2.3, use third order approximations to nonlinearities to find the

criticality of bifurcations and the amplitude of oscillations in the vicinity of the bifurcation

point. In Section 3.2, these calculations are extended to systems with translational symmetry.

Using this method we carry out the Hopf calculations for system (1.4),(1.23) in Section 3.3.

In Section 2.4, we discuss the capabilities of the Matlab package dde-biftool that has

recently been developed by Engelborghs et al. [35, 36]. This continuation package can

compute branches of stable and unstable equilibria and periodic solutions against a chosen

bifurcation parameter. This numerical method uses the exact form of the nonlinearities,

hence it provides reliable results even when the chosen bifurcation parameter is far away

from its critical value taken at the bifurcation point. In Chapter 4 this package is applied to

explore the global dynamics of system (1.6),(1.23).

2.1 Infinite-dimensional dynamics

In this section we explain how the dynamics of (2.1) become infinite-dimensional and con-

sequently more complicated through the functional and the operator formalism of DDEs.

Since the delay τ > 0 in (2.1) we may introduce the rescaled time t̃ := t/τ and the function

f̃ := τf . After rescaling we may drop the tildes immediately and obtain

ẋ(t) = f(x(t), x(t− 1); η) . (2.2)

Note that the rescaled model (1.4),(1.23) is written the above form. The vector η ∈ R
l

consists of the rescaled bifurcation parameters, and we assume that for a fixed η there exist

an equilibrium

x(t) = x(t− 1) ≡ c , (2.3)
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where the constant vector c = c(η) ∈ R is defined by

f(c, c; η) = 0 . (2.4)

Note that initial data must be prescribed in the form of a continuous function over the

interval [−1, 0] with values in the physical space R
m. Therefore, the phase space XRm of R →

R
m continuous functions, is infinite-dimensional. Particularly, in this section [−1, 0] → R

m

functions are considered.

Equation (2.4) can be written as a retarded functional differential equation (RFDE)

ẋ(t) = G(xt; η) , (2.5)

where dot refers to the derivative with respect to the (rescaled) time t, the state variable is

x : R → R
m, while the function xt : R → XRm is defined by the shift

xt(ϑ) = x(t+ ϑ) , −1 ≤ ϑ ≤ 0 . (2.6)

The nonlinear functional G : XRm × R
l → R

m defined as

G(xt; η) = g

(∫ 0

−1
dγ(ϑ)ρϑ

(
x(t+ ϑ)

)
; η

)
, (2.7)

where g : R
m ×R

l → R
m, ρϑ : R

m ×R → R
m, and the matrix dγ : [−1, 0] → R

m×m is defined

as

dγ(ϑ) = I
(
δ(ϑ) + δ(ϑ+ 1)

)
dϑ , (2.8)

where I ∈ R
m×m is the m×m identity matrix. Here the equilibrium (2.3) is written as

x(t) = xt ≡ c . (2.9)

The form (2.5) with general functional G is used to construct the general theory of RFDEs

as described in [50]. Furthermore, equations (2.2) and (2.5) can be rewritten as an operator

differential equation (OpDE)

ẋt = G(xt) , (2.10)

where the nonlinear operator G : XRm × R
l → XRm is defined by

G(φ)(ϑ) =





∂

∂ϑ
φ(ϑ) , if − 1 ≤ ϑ < 0 ,

f(φ(0), φ(−1); η) , if ϑ = 0 .

(2.11)
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The linearization of this operator is used when investigating the linear stability of equilibrium

(2.9) as described in Section 2.2. Note that G still depends on the parameter η as indicated

(only) on the right-hand side of definition (2.11): we adopt this abbreviated notation for

the remainder of the thesis. We note also that one may consider only the first row of G
as an operator on a domain in XRm defined by the second row of G; this gives the same

mathematical description as shown in [31, 115].

Using the initial function x0 = ϕ(ϑ) , ϑ ∈ [−1, 0], the solution of (2.10) can be written as

xt = Tt(x0) , (2.12)

where the nonlinear operator Tt : XRm → XRm , called the solution operator or the semiflow,

gives the evolution of the state variable xt ∈ XRm . The linearization of this operator is used

to investigate the stability of periodic orbits as shown in Section 2.2.

2.2 Stability and bifurcations

In this section we discuss the stability and bifurcations taking place in system (2.2). First

we define the perturbation

y(t) = x(t) − c , (2.13)

around equilibrium (2.3) and consider the linearization of (2.2) as

ẏ(t) = L̃(η) y(t) + R̃(η) y(t− 1) , (2.14)

where y : R → R
m and L̃, R̃ : R

l → R
m×m are constant matrices (depending only on the

parameter η). By inserting trial solutions in the form y(t) = Ceλt, C ∈ C
m, λ ∈ C into

(2.14), one obtains the characteristic equation

D(λ; η) = det
(
λI − L̃(η) − R̃(η) e−λ

)
= 0 . (2.15)

This equation has infinitely many characteristic exponents (also called characteristic roots)

λ ∈ C, which have no accumulation point in C (because of the fixed delay; see [50]). Further-

more, only a finite number of these characteristic roots are situated in the right-half complex
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plane [105]. The linear equation (2.14) can be rewritten as the OpDE

ẏt = Lyt , (2.16)

where yt : R → XRm is also defined by a shift so that yt(ϑ) = y(t + ϑ), ϑ ∈ [−1, 0], and the

linear operator L : XRm → XRm is defined by

Lφ(ϑ) =





∂

∂ϑ
φ(ϑ) , if − 1 ≤ ϑ < 0 ,

L̃(η)φ(0) + R̃(η)φ(−1) , if ϑ = 0 .

(2.17)

The operator L provides the same characteristic roots as the characteristic equation (2.15),

when its eigenvalues are computed from

Ker(λI − L) 6= {0} . (2.18)

Equation (2.16) is the linearization of (2.10) around equilibrium (2.9), because the operator

L (2.17) is the linearization of the operator G (2.11).

The trivial solution (2.3) of the nonlinear DDE (2.2) is asymptotically stable (that is,

stable in the Lyapunov sense as well) for a fixed value of the bifurcation parameter η if all the

infinitely many characteristic exponents are situated on the left-hand side of the imaginary

axis. Since (2.15) and (2.18) have infinitely many solutions for λ, infinite-dimensional version

of Routh-Hurwitz criteria are needed to decide on whether the steady state is stable or

unstable for a fixed value of the bifurcation parameter η. These kind of criteria can be

determined by calculating complex integrals around the characteristic exponents; see [68, 92,

105] for detailed calculations.

Although the technical details are more difficult, the bifurcation theory of ODEs [47, 73]

can be extended to DDEs and the same kind of bifurcations of equilibria occur. Now we briefly

discuss these bifurcations. We should note that system (1.4),(1.23) possesses a translational

symmetry: shifting the position of all vehicles along the ring by an arbitrary distance results

in the same system. This gives rise to a zero characteristic exponent, which requires the

analysis introduced in Section 3.2.
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When varying η, the equilibrium can lose its stability if some of the infinitely many

characteristic roots move into the right-hand side of the complex plane. The bifurcation

happens when these roots are situated at the imaginary axis for a critical parameter value

ηcr. A fold bifurcation takes place if (2.15) and (2.18) possess a zero characteristic root at

ηcr, that is,

λ0(ηcr) = 0 . (2.19)

In the parameter space η ∈ R
l the corresponding stability boundaries are (l− 1)-dimensional

hypersurfaces which are described by

ReD(0; ηcr) = 0 , ImD(0; ηcr) = 0 . (2.20)

Note that in the presence of translational symmetry the zero root may exist for any values

of η: this case is not a fold bifurcation and is discussed further in Section 3.2.

Apart from the zero characteristic root (2.19) there is another condition for the existence

of a fold bifurcation, namely the critical characteristic exponent has to cross the origin with

a non-zero speed as the bifurcation parameter η is varied, that is,

Re

(
dλ0(ηcr)

dη

)
= Re

(
−∂D(λ0; ηcr)

∂η

(
∂D(λ0; ηcr)

∂λ

)−1
)

6= 0 , (2.21)

where the first equality can be verified by implicit differentiation of the characteristic function

(2.15). Note that η is usually varied so that only one of its components is changed and its

other (l − 1) components are kept fixed.

A Hopf bifurcation may occur at the critical parameter value ηcr if there exists a complex

conjugate pair of purely imaginary characteristic exponents

λ1,2(ηcr) = ±iω , ω ∈ R
+ . (2.22)

At this bifurcation periodic oscillations appear or disappear around the equilibrium. In this

case the corresponding stability boundaries ((l− 1)-dimensional hypersurfaces) are described

by

R(ω) = ReD(iω; ηcr) = 0 , S(ω) = ImD(iω; ηcr) = 0 , (2.23)
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which are parameterised by the frequency ω ∈ R
+.

Again, apart from the purely imaginary characteristic roots (2.22) there is another condi-

tion for the existence of a Hopf bifurcation, namely the critical characteristic exponents have

to cross the imaginary axis with a non-zero speed as the bifurcation parameter η is varied,

that is,

Re

(
dλ1,2(ηcr)

dη

)
= Re

(
−∂D(λ1,2; ηcr)

∂η

(
∂D(λ1,2; ηcr)

∂λ

)−1
)

6= 0 (2.24)

has to be satisfied.

In the same way as for ODEs [47, 73], the above bifurcations can occur together in DDEs

when their hypersurfaces intersect each other in the parameter space. In the case when a zero

exponent and a pair of purely imaginary exponents co-exist at ηcr, then a fold bifurcation

occurs together with a Hopf bifurcation, as was found by Sieber & Krauskopf [102] in an

unfolding of a degenerate case of a controlled inverted pendulum. The intersection of a fold

hypersurface and a Hopf hypersurface locates this bifurcation in the parameter space. When

not only one but two pairs of purely imaginary characteristic exponents ±iω1 and ±iω2 co-

exist at ηcr (with two different frequencies ω1 ∈ R
+ and ω2 ∈ R

+), then a co-dimension

two double Hopf bifurcation occurs as was demonstrated by Stépán & Haller [106] for robot

dynamics and by Green et al. [45] in laser systems. Due to this bifurcation quasi-periodic

oscillations appear around the equilibrium. The intersection of two Hopf hypersurfaces shows

where this bifurcation takes place in the parameter space. Note that phase-locking happens

on the torus of quasi-periodic oscillations (i.e., the oscillations become periodic) when the

two frequencies ω1 and ω2 are rationally related. This can be expressed by n1ω1 = n2ω2 for

n1, n2 ∈ N
+, n1 > n2. Note also that strong resonances occur in the cases n1/n2 = 1, 2, 3, 4.

It is also possible to investigate the system around a periodic solution

x(t) = xp(t) = xp(t+ Tp) , (2.25)

with period Tp ∈ R
+. If the periodic orbit is born in a Hopf bifurcation then close to the

bifurcation point the period Tp can be approximated as Tp ≃ 2π/ω, where ω is the frequency

given by (2.22).
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By defining the perturbation

z(t) = x(t) − xp(t) , (2.26)

around the periodic solution (2.25), the linearization of (2.2) can be written as

ż(t) = Lp(t; η) z(t) + Rp(t; η) z(t− 1) , (2.27)

where the matrix functions Lp,Rp : R × R
l → R

m×m are periodic in time so that Lp(t; η) =

Lp(t+Tp; η), Rp(t; η) = Rp(t+Tp; η). Note that the period Tp = Tp(η) itself also depends on

the parameters. By using the notation zt(ϑ) = z(t + ϑ), ϑ ∈ [−1, 0] again, and considering

an initial condition z0 = ϕ(ϑ) the solution of (2.27) is given by

zt = Utz0 , (2.28)

where Ut : XRn → XRn is the semiflow. Equation (2.28) is the linearization of (2.12) around

the periodic orbit (2.25) because the operator Ut is the linearization of the operator Tt.

The operator UTp
is called the monodromy operator. Its infinitely many eigenvalues are

called the Floquet multipliers and they are defined by

Ker(µI − UTp
) 6= {0} . (2.29)

It can be shown that UTp
is a compact operator and, hence, the only accumulation point

of the infinitely many Floquet multipliers is the origin [50]. Note that there is always a

trivial Floquet multiplier at 1 which corresponds to a shift along the periodic orbit. Further

note that UTp
cannot be written in closed form, but can only be tackled numerically by

semi-discretization [59] or by full discretization [35, 60].

The periodic solution (2.25) is stable when all the infinitely many Floquet multipliers µ

(except the trivial one) are situated inside unit circle on the complex plane. In a similar way

as for ODEs [47, 73], the periodic solution can lose its stability thought different bifurcations

when the parameter takes a critical value ηcr. A fold (saddle-node) bifurcation of the periodic

solution happens when a (non-trivial) Floquet multiplier satisfies

µ0(ηcr) = 1 , (2.30)
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i.e., crosses the unit circle at 1. A torus (Neimark-Sacker) bifurcation of the periodic motion

takes place when a pair of complex conjugate multipliers

µ1,2(ηcr) = e±iχ , χ ∈ (0, π) , (2.31)

crosses the unit circle. This bifurcation yields quasi-periodic oscillations with frequencies

χ/Tp and 2π/Tp. Note that phase-locking occurs on the bifurcating torus (that is, the oscil-

lations become periodic) when these frequencies are rationally related. In this case we have

n1χ = n22π for n1, n2 ∈ N
+, n1 > 2n2. Note also that strong resonances take place in the

cases n1/n2 = 3, 4. Finally, a period doubling bifurcation occurs for a Floquet multiplier

µ3(ηcr) = −1 . (2.32)

We remark that the above bifurcations take place in (l− 1)-dimensional hypersurfaces of the

parameter space and they can coincide in co-dimension two bifurcations when these hypersur-

faces intersect each other, yielding even more complicated motions in their neighbourhood.

2.3 Hopf bifurcation calculation: weak nonlinearities

In this section we show how a Hopf bifurcation can be analysed analytically, giving the first

Fourier approximation of stable or unstable periodic solutions as a function of the bifurcation

parameters. However, this approach is only weakly nonlinear and is acceptable only for

parameters close enough to the bifurcation point, since it uses a third order Taylor series

expansion of the DDE’s nonlinearity. These analytical normal from calculations are very

complicated, particularly in systems where a centre manifold reduction is required. However,

in some cases it is possible to use computer algebra packages to simplify the matter; see, e.g.,

Campbell & Bélair [21].

This approximate analytical approach is useful in many applications, especially when

the bifurcating periodic solutions are unstable, i.e., when the Hopf bifurcation is subcritical.

Analytical studies of Hopf bifurcations in delayed systems are carried out, for example, on
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machine tool vibrations by Kalmár-Nagy et al. [61] and on voltage oscillations of neuron

systems by Shayer & Campbell [100].

The conditions (2.22) and (2.24) can be checked using the variational systems (2.14) and

(2.16). However, the super- or subcritical nature of the Hopf bifurcation, i.e., the stability and

estimated amplitudes of the periodic solutions arising about the stable or unstable equilibrium

(2.3),(2.9) can be determined only by the investigation of the third degree power series of the

original nonlinear systems (2.2) and (2.10).

Let us consider the third order approximation of the nonlinear system (2.2) around the

equilibrium (2.3) in the form

ẏ(t) = L̃(η) y(t) + R̃(η) y(t− 1) + F̃ (y(t), y(t− 1); η) , (2.33)

where L̃, R̃ : R
l → R

m×m are the matrices already shown in (2.14), and F̃ : R
m×R

m×R
l → R

m

is an analytic function with the near-zero feature F̃ (0, 0; η) = 0, which contains the second

and third order terms.

As mentioned above, we suppose that the necessary conditions (2.22) and (2.24) of Hopf

bifurcation are also fulfilled, that is, there exists a critical parameter ηcr such that

λ1,2(ηcr) = ±iω , Re

(
dλ1,2(ηcr)

dη

)
6= 0 . (2.34)

By considering (2.33) at the critical parameter ηcr, we may obtain

ẏ(t) = Ly(t) + Ry(t− 1) + F (y(t), y(t− 1)) , (2.35)

where the matrices L,R ∈ R
m×m, and the nonlinear function F : R

m × R
m → R

m are given

by

L = L̃(ηcr) , R = R̃(ηcr) , and F (y(t), y(t− 1)) = F̃ (y(t), y(t− 1); ηcr) , (2.36)

preserving the near-zero feature according to F (0, 0) = 0. The DDE (2.35) can also be

rewritten in operator differential equation (OpDE) form

ẋt = Axt + F(xt) , (2.37)
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where the linear and nonlinear operators A, F : XRm → XRm are defined as

Aφ(ϑ) =





∂

∂ϑ
φ(ϑ) , if − 1 ≤ ϑ < 0 ,

Lφ(0) + Rφ(−1) , if ϑ = 0 ,

(2.38)

F(φ)(ϑ) =





0 , if − 1 ≤ ϑ < 0 ,

F (φ(0), φ(−1)) , if ϑ = 0 .

(2.39)

Indeed (2.37) is the third order approximation of (2.10) around the equilibrium (2.9) at ηcr,

so that the operator A contains the linear and the operator F contains the nonlinear part of

the operator G (2.11). Furthermore, comparing (2.17) and (2.38) one can see that A = L(ηcr).

We now briefly discuss the algorithm of Hopf bifurcation calculation for the OpDE (2.37),

when the system does not possess any special symmetry. More technical detail can be found

in [84]. The case with an additional translational symmetry (an original result of this thesis)

is presented in Section 3.2 with all the technical details.

Due to the Hopf bifurcation the two eigendirections of the equilibrium (2.3),(2.9) belonging

to the characteristic roots (2.34) become unstable. In order to analyse the bifurcation we

need to project the system onto the plane spanned by these two directions and onto its

complementary space.

The real and imaginary parts s1, s2 ∈ XRm of the eigenvector of the linear operator A,

which belongs to the critical eigenvalue λ1 = iω, can be determined by

A(s1 + is2) = λ1(s1 + is2) ⇒ As1 = −ωs2 , As2 = ωs1 . (2.40)

In order to project the system onto the plane spanned by s1 and s2, and onto its comple-

mentary space, we also need to determine the the real and imaginary parts n1, n2 ∈ X
∗
Rm of

eigenvectors of the adjoint operator A∗ associated with λ∗1 = −iω. These are given by

A∗(n1 + in2) = λ∗1(n1 + in2) ⇒ A∗n1 = ωn2 , A∗n2 = −ωn1 . (2.41)
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where the adjoint operator is defined by

A∗ψ(σ) =





− ∂

∂σ
ψ(σ) , if 0 < σ ≤ 1 ,

L∗ψ(0) + R∗ψ(1) , if σ = 0 ,

(2.42)

where ∗ denotes either adjoint operator or transposed conjugate vector and matrix.

These vectors also have to satisfy the orthonormality conditions

〈n1, s1〉 = 1 , 〈n1, s2〉 = 0 , (2.43)

where the inner product is calculated by

〈ψ, φ〉 = ψ∗(0)φ(0) +

∫ 0

−1
ψ∗(ξ + 1)Rφ(ξ)dξ . (2.44)

With the help of the right and left eigenvectors s1, s2 and n1, n2 of operator A, we are

able to introduce the new state variables




z1 = 〈n1, yt〉 ,

z2 = 〈n2, yt〉 ,

w = yt − z1s1 − z2s2 ,

(2.45)

where z1, z2 : R → R and w : R → XRm . Using the eigenvectors given by (2.40) and (2.41),

and the inner product definition (2.44), the OpDE (2.37) can be rewritten with the new

variables (2.45) as



ż1

ż2

ẇ


 =




0 ω O
−ω 0 O
0 0 A







z1

z2

w




+




n∗1(0)F(z1s1 + z2s2 + w)(0)

n∗2(0)F(z1s1 + z2s2 + w)(0)

−∑j=1,2 n
∗
j (0)F(z1s1 + z2s2 + w)(0)sj + F(z1s1 + z2s2 + w)


 .

(2.46)

It shows the structure of OpDE (2.37) after projection onto the plane spanned by s1 and s2,

and onto its complementary space. Note that the first two equations still contain the variable

w.
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The plane spanned by the eigenvectors s1 and s2 is tangent to the centre manifold at

the origin. This means, that the centre manifold can be approximated locally as a truncated

power series of w depending on the second order of the co-ordinates z1 and z2 as

w(ϑ) =
1

2

(
h20(ϑ)z2

1 + 2h11(ϑ)z1z2 + h02(ϑ)z2
2

)
. (2.47)

The unknown coefficients h20, h11, h02 ∈ XRm can be determined by calculating the derivative

of w and substituting into the third equation of (2.46). The resulting w can be substituted

into the first two equations of (2.46), thus these two equations lead to ODEs with right-hand

sides containing only the variables z1 and z2. These equations describe the flow restricted to

the two-dimensional centre manifold.

The so-called Poincaré-Lyapunov coefficient ∆ can be determined by the Bautin formula

as shown in [47, 105], which shows the (super- or subcritical) type of the bifurcation and

approximate amplitude of the periodic solution. The Hopf bifurcation is supercritical (sub-

critical) if ∆ < 0 (∆ > 0), and the amplitude of the stable (unstable) oscillations is expressed

by

A =

√
− 1

∆
Re

(
dλ1,2(ηcr)

dη

)
(η − ηcr) . (2.48)

As mentioned above we consider the variation of η through its chosen (scalar) component.

In the cases of super- and subcritical bifurcations not only the sign of ∆ changes but also the

sign of (η − ηcr). Thus, in the case of supercritical bifurcation a branch of stable oscillations

appears ‘above’ the unstable part of the branch of equilibria, while when the bifurcation is

subcritical a branch of unstable oscillations exists ‘above’ the stable part of the branch of

equilibria. The first Fourier term of the oscillations on the centre manifold is given by


z1(t)

z2(t)


 = A


 cos(ωt)

− sin(ωt)


 . (2.49)

Since y(t) = yt(0) by definition, and close to the critical bifurcation parameter ηcr we have

yt(ϑ) ≈ z1(t)s1(ϑ) + z2(t)s2(ϑ), the formula (2.49) for periodic solutions yields

y(t) ≈ z1(t)s1(0) + z2(t)s2(0) = A
(
s1(0) cos(ωt) − s2(0) sin(ωt)

)
. (2.50)
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The nonlinear oscillations around the equilibrium (2.3),(2.9) are well approximated with these

harmonic oscillations when |η − ηcr| is sufficiently small.

2.4 Numerical continuation: strong nonlinearities

Our principal tool in Chapters 4 and 5 is the numerical continuation package dde-biftool

[35, 36] which is able to follow branches of equilibria and periodic solutions of DDEs as

parameters are changed, similarly to the package auto [32] for ODEs. Stability information

is computed along solution branches. Co-dimension one bifurcation points, where the stability

of solutions changes, are detected automatically. In particular, we may follow the branches

of periodic solutions that are born at Hopf bifurcations and detect subsequent secondary

bifurcations such as fold (saddle-node) bifurcations. Furthermore, the Floquet multipliers

and the corresponding eigendirections are available from dde-biftool. This allows us to

identify characteristic time scales of repulsion when the solutions are unstable.

To avoid the singularities caused by translational symmetry of system (1.6),(1.23) we use

(1.15) and define

hn(t) = L−
n−1∑

i=1

hi(t) , (2.51)

reducing the number of equations to 2n− 1. (Note that the problem of symmetry is handled

in a different way in Section 3.2.)

At first we fix (l−1) of the l parameters contained by η ∈ R
l and vary the remaining one.

Substituting the equilibrium (2.3) into (2.2) we obtain the algebraic equation (2.4) which

can be solved numerically for a chosen parameter η by using, e.g., the Newton-Raphson

method. Then this result can be used as an initial approximation when solving the same

algebraic equation for the slightly changed parameter η + dη. By continuing this process,

a branch of equilibria is obtained as a function of the bifurcation parameter. Problems

may occur when the branch folds back, and arclength parametrization of the curve is used

in dde-biftool to avoid this problem. In order to determine the stability of equilibria,
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the operator L (2.17), that is, the eigenvalue problem (2.18), needs to be discretised and

the eigenvalues of the resulting (large-sized) matrix have to be computed. dde-biftool

computes these eigenvalues and detects fold and Hopf bifurcations of equilibria when a real or

a pair of complex conjugated characteristic exponents crosses the imaginary axis as discussed

in Section 2.1. The corresponding eigenvectors, e.g., s1 and s2 in (2.40) for the critical

eigenvalue λ1 = iω, can also be computed numerically. They are necessary for starting data

when one continues branches bifurcating from the bifurcation points, e.g., branches of periodic

solutions as discussed below.

It is also possible to fix only l − 2 parameters and vary the remaining two. Thus the

corresponding intersection of a stability boundary ((l−1)-dimensional hypersurface) and the

plane of the two non-fixed parameters is a curve. Applying the condition of the bifurcation

taking place on the boundary (zero root (2.19) for fold bifurcation and purely imaginary roots

(2.22) for Hopf bifurcation), dde-biftool is able to follow the corresponding curves. This

two-parameter continuation gives a discretized representation of the boundaries (2.20) and

(2.23).

When the periodic solution (2.25) is considered the differential equation (2.2) has to be

solved. In order to do this, the periodic solution is represented by a number of mesh points,

with a (small) number of so-called collocation points in between them. On each mesh interval

the solution is represented by a polynomial, and the number of collocation points defines

its degree [34]. Thus, the DDE (2.2) with condition (2.25) leads to algebraic equations.

Hence, in a way similar to the continuation of equilibria, the branch of periodic solutions

can be continued using pseudo arclength continuation. Note that the oscillations computed

by continuation is well approximated by (2.50) in the vicinity a Hopf bifurcation point of

equilibria. In order to determine the stability of periodic solutions, the operator UTp
defined

by (2.28), that is, the eigenvalue problem (2.29), needs to be discretised and the eigenvalues

of the resulting (large-sized) matrix have to be computed. By computing these eigenvalues,

fold and period doubling bifurcations of the periodic solutions can be detected when real

Floquet multipliers cross the unit circle at 1 and −1, respectively. Torus bifurcations may
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also be found by detecting when a pair of complex conjugated Floquet multipliers crosses the

unit circle. These bifurcations were discussed in Section 2.1. The eigendirections belonging

to these multipliers are also available from dde-biftool, which can give an indication how

the repelling/attracting dynamics change along the periodic orbit.

We note that it is not possible at present to perform two-parameter continuation of

bifurcations of periodic orbits with dde-biftool, i.e., to determine curves where fold, torus,

or period doubling bifurcation takes place. However, the package pdde-cont has recently

been developed by Szalai [108, 109], which is able to follow the boundaries of fold and period

doubling bifurcations in autonomous systems described by (2.2) and also in periodically forced

delayed systems.

Overall, dde-biftool performs similar functions for DDE systems that the well known

package auto [32] performs for ODE systems. In general, the application of continuation

packages such as auto and dde-biftool is a much more efficient way of exploring parameter

space than performing mass ensemble simulation of the initial value problem.
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Chapter 3

Local stability analysis

The goal of this chapter is the local stability analysis of the DDE model (1.23) about the

uniform flow equilibrium (1.16),(1.18). This includes a linear stability analysis of system

(1.4),(1.23) and the detection of Hopf bifurcations in the neighbourhood of which there are

small amplitude oscillating solutions. We also present a weakly nonlinear analysis which

examines the criticality of the Hopf bifurcations, that is, the stability of the small amplitude

oscillations.

Bando et al. [14, 15] and many subsequent papers have explained traffic jam formation in

terms of the loss of linear stability of the uniform flow equilibrium (1.16),(1.18) to oscillations.

The weakly nonlinear analysis presented here shows that the Hopf bifurcations are generally

subcritical, that is, the oscillations appearing in the vicinity of the Hopf bifurcation points

are unstable. In Chapter 4 we show that the branches of unstable oscillations usually undergo

fold bifurcations which give the co-existence of stable periodic solutions with stable equilibria.

Thus, put together, our analysis shows that the linear instability of the uniform flow is not

necessary for traffic jam formation.

The linear stability analysis is presented in Section 3.1 where it is shown how the develop-

ing oscillations lead to wave formations propagating in the opposite direction to the vehicle

flow. In Section 3.2 we develop a general theory extending standard normal form calcula-
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tions [21, 51, 84, 104, 105] of DDEs with a single time delay to a situation when translational

symmetry is included in the system. Finally, in Section 3.3 we apply this general theory to

the car-following model (1.23). This is a very complicated calculation which motivates the

numerical bifurcation analysis presented in Chapter 4. The material presented in this chapter

was published in the articles [85, 86, 87].

3.1 Linear stability analysis

Here we perform a linear stability analysis of the DDE system (1.4),(1.23) following the

methodology of Section 2.2. The details of the analysis are presented in Section 3.1.1, and

are summarised in the form of two-dimensional stability diagrams in Section 3.1.2.

3.1.1 Determination of Hopf bifurcation curves

Let us define the perturbed solution of (1.4),(1.23) about the equilibrium (1.16),(1.18) as

xp
i (t) : = xi(t)−(v∗t+x∗i ) , vp

i (t) : = vi(t)−v∗ , hp
i (t) : = hi(t)−h∗ , i = 1, . . . , n , (3.1)

so that

hp
i (t) = xp

i+1(t) − xp
i (t) , i = 1, . . . , n . (3.2)

Note that v∗ = V(h∗) is defined by (1.17). Linearizing V(h) around h = h∗ (1.23) gives the

differential equations

v̇p
i (t) = −α vp

i (t) + αV′(h∗)
(
xp

i+1(t− 1) − xp
i (t− 1)

)
, i = 1, . . . , n . (3.3)

In (3.2) and (3.3) we model the circular road by identifying the (n+1)-st vehicle with the first

one, i.e., xp
n+1(t) = xp

1(t), v
p
n+1(t) = vp

1 (t), and hp
n+1(t) = hp

1(t). In addition, the kinematic

condition (1.4) can be written in the form

vp
i (t) = ẋp

i (t) , i = 1, . . . , n . (3.4)
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We now substitute the trial solution

vp
i (t) = Pie

λt , xp
i (t) = Pn+ie

λt , i = 1, . . . , n , (3.5)

into system (3.3),(3.4), where λ, Pi ∈ C. Thus we obtain the linear homogeneous equation

∆
(
λ;α,V′(h∗)

)




P1

...

P2n


 =


(λ+ α)I αV′(h∗)e−λA

−I λI







P1

...

P2n


 = 0 , (3.6)

where ∆ ∈ C
2n × C

2n, I ∈ R
n×n is the n × n identity matrix, and the matrix A ∈ R

n×n is

given by

A =




. . .
. . .

1 −1

. . .
. . .

−1
. . .




. (3.7)

The characteristic equation is given by

D
(
λ;α,V′(h∗)

)
= det∆

(
λ;α,V′(h∗)

)
=
(
λ2 + αλ+ αV′(h∗)e−λ

)n −
(
αV′(h∗)e−λ

)n
= 0 .

(3.8)

At a bifurcation point defined by h∗ = h∗cr, Hopf bifurcations may occur when there exists

a complex conjugate pair of purely imaginary characteristic exponents

λ1,2(h
∗
cr) = ±iω , ω ∈ R

+ , (3.9)

which satisfies (3.8). To find the Hopf boundaries in the parameter space we substitute the

critical eigenvalue λ1 = iω into (3.8), and after taking real and imaginary parts, and some

further calculation, we find that

V′(h∗cr) =
ω

2 cos(ω − kπ
n

) sin(kπ
n

)
,

α = −ω cot(ω − kπ
n

) , (3.10)
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where k = 1, . . . , n − 1 is introduced by taking the nth root of unity. Equation (3.10) can

also be written in the form

cosω =
ω

2V′(h∗cr)

(ω
α

+ cot(kπ
n

)
)
,

sinω =
ω

2V′(h∗cr)

(
1 − ω

α
cot(kπ

n
)
)
,

(3.11)

which yields
4V′(h∗cr)

2

ω2
sin2(kπ

n
) = 1 +

ω2

α2
. (3.12)

By substituting (3.11) into (3.6), we may find the eigenvector components

Pi = ei 2πk
n

i , Pn+i =
1

iω
ei 2πk

n
i , i = 1, . . . , n , (3.13)

where i is the imaginary unit. This shows that k is the discrete spatial wave number of

oscillations along the ring. The effects of (3.13) on the infinite dimensional dynamics are

described in Section 3.3. Note that we have omitted the discussion of the k = 0 (spatially

independent) mode, since it violates the constraint

n∑

i=1

hp
i (t) =

n∑

i=1

(
xp

i+1(t) − xp
i (t)

)
= 0 , (3.14)

implied by (1.15).

By using (3.5) and (3.13) and taking the real part, the perturbation can be written as

vp
i (t) = vamp cos

(
2πk
n
i+ ωt

)
, i = 1, . . . , n , (3.15)

where the amplitude vamp is determined by the nonlinear terms as shown in Section 3.3. This

perturbation mode corresponds to a wave travelling upstream (opposite to the car flow) with

spatial wave number k (i.e., with spatial wavelength L/k = h∗n/k), and with frequency ω.

Thus the related wave speed is

cpwave = − n
2kπ

h∗ω < 0 . (3.16)

Using (3.12) and (3.16), and assuming that k
n
≪ 1, we obtain

cpwave = −h∗V′(h∗cr)
(
1 −O

(
kπ
n

)2)
. (3.17)
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Since this motion is a perturbation relative to the equilibrium (1.16),(1.18) where vehicles

travel downstream with speed v∗ = V(h∗), the speed of the wave relative to the absolute

spatial coordinate is given by

cwave = v∗ + cpwave = V(h∗) − h∗V′(h∗cr)
(
1 −O

(
kπ
n

)2)

≃ V(h∗) − h∗V′(h∗cr) .

(3.18)

By considering the optimal velocity function (1.24), we obtain cwave < 0, that is, the resulting

wave propagates in the opposite direction to the flow of vehicles. Note that the non-delayed

model introduced in [15] exhibits the same wave speed apart from some differences in the

coefficient of the correction term O
(

kπ
n

)2
. Furthermore, this small-amplitude wave speed is

consistent with that predicted by the Lighthill-Whitham continuum theory of highway traffic;

see [76, 118].

Now, note that if (ω, k) solves (3.10), then so does (−ω, n − k). Here we chose to work

with ω > 0 and the full set of k = 1, . . . , n − 1. Alternatively, one could work with general

ω ∈ R and restrict attention to k = 1, . . . , n/2 (even n) or k = 1, . . . , (n − 1)/2 (odd n).

However, as can be seen below, even when considering ω > 0 only the wave numbers k ≤ n/2

are significant.

Equations (3.10) describe branches of curves in the (V′(h∗), α) parameter plane, which

are parametrised by the frequency ω. Since we require ω, α,V′(h∗) > 0, for each k, we find a

sequence of feasible intervals

ω ∈
(
−π

2
+
kπ

n
+ 2lπ,

kπ

n
+ 2lπ

)
∩ R

+, l = 0, 1, 2, . . . , (3.19)

each of which traces out a different stability curve. Hence, we have a two-parameter family

of stability curves described by k = 1, . . . , n− 1 and l = 0, 1, 2, . . ..

We now consider the left-most branch of curves in the (V′(h∗), α) plane which belongs

to l = 0. It turns out that this branch is responsible for the loss of stability of equilibrium

(1.16),(1.18). Each curve belongs to a particular wave number k and is parameterised by the

frequency ω ∈ (0, kπ/n). However, we are only interested in the curves for k ≤ n/2 because

those for k > n/2 correspond to conjugated waves, i.e., to the same spatial patterns. When
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n is even, the Hopf bifurcation curve for k = n/2 starts (ω = 0) from the point (1/2, 0) but

all other Hopf bifurcation curves, for n even or odd and for any k, start from the origin.

Further, all curves converge to the vertical asymptotes

V′(h∗) =
kπ/n

2 sin(kπ/n)
, (3.20)

when ω → kπ/n; see already Figs. 3.1(a) and 3.2(a). This means that the curves are ordered

from left to right as k increases. When n → ∞, the first asymptote for k = 1 converges

to V′(h∗) = 1/2, while the last asymptote for k = n/2 or k = (n − 1)/2 converges to

V′(h∗) = π/4. Further, the k > 1 curves accumulate on the k = 1 curve when n → ∞.

Using the stability criteria presented in [105], one may show that the stability boundary for

the equilibrium is the first (i.e., k = 1) Hopf bifurcation curve. This means that the uniform

flow equilibrium (1.16),(1.18) is stable to the left of the k = 1 Hopf bifurcation curve; see

Figs. 3.1(a) and 3.2(a). It may also be shown that the uniform flow equilibrium remains

unstable to the right of the k = 1 curve, and as each of the k > 1 curves is crossed from

left to right, an extra pair of complex conjugate characteristic exponents crosses into the

right-half complex plane.

3.1.2 Two-dimensional stability diagrams

We now summarise the results of Section 3.1.1 by using two-parameter diagrams, i.e., we

present the Hopf bifurcation curves (3.10) in the (h∗, α) plane for representative values of

v0 and n. We first focus on the case of n = 3 cars, where h∗ = L/3 and wave numbers

k = 1, 2 describe the same spatial pattern, i.e., one wave along the ring. It may be shown

that the k = 1 curve, which is parametrised by ω ∈ (0, π/3) and depicted in Fig. 3.1(a),

is the left-most curve in the (V′(h∗), α) plane found by the above theory. This curve has a

monotone shape with a vertical asymptote at V′(h∗) = π
√

3/9, ≃ 0.6046.

By considering large α, one may apply infinite-dimensional Routh-Hurwitz criteria (see

Stépán [105]), to show that the uniform flow equilibrium is stable to the left of this curve

(all eigenvalues are situated in the left-half complex plane); see the blue shaded region in

42



3.1. LINEAR STABILITY ANALYSIS

V′(h∗)

α

h∗

α

h∗

α

(a)

(b) (c)v0 = 0.65 v0 = 1.0

Fig. 3.1: Stability diagrams for n = 3 cars where blue shading denotes the stable region. Panel
(a) shows the sensitivity α as a function of the slope of the OV function V′(h∗), where the dashed
asymptote is situated at V′(h∗) ≃ 0.6046. Panels (b) and (c) show stability diagrams in the (h∗, α)
plane for particular values of v0 (indicated in each panel), which correspond to V′

max ≃ 0.5459 and
V′

max ≃ 0.8399, respectively.

Fig. 3.1(a). The equilibrium is linearly unstable in a neighbourhood of the right of the curve

(there exist eigenvalues in the right-half complex plane). Hence, the k = 1 curve divides the

(V′(h∗), α) plane into regions where the uniform flow state is linearly stable or unstable.

Our main interest is to convert Fig. 3.1(a) to a stability diagram in the average headway-

sensitivity (h∗, α) plane, when we choose the optimal velocity function V(h) given by (1.24)

with s = 1. In this case V′(h) has a single maximum over the interval h ∈ [1,∞) (blue solid

curve in Fig. 1.6(b)). Hence, the (h∗, α) stability diagram can be obtained from the (V′(h∗), α)

diagram by a kind of nonlinear folding about a vertical line whose abscissa corresponds to

the maximum value V′
max of V′(h); see Fig. 3.1(b) and (c), where the blue shaded regions
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are stable. For V(h) given by (1.24) with s = 1, we have V′
max = (2 3

√
2/3) v0, ≃ 0.8399 v0.

Hence, two qualitatively different cases of diagrams in the (h∗, α) plane are possible:

1. In the first case shown in Fig. 3.1(b), the maximum value V′
max is to the left of the

asymptote on the (V′(h∗), α) plane. This corresponds to v0 < π
√

3/6 3
√

2, ≃ 0.7198. In

this case, there is a critical sensitivity, α̃; such that for α > α̃, uniform flow equilibria

are stable for all values of the average headway h∗. For α < α̃, there is a bounded

interval of h∗ corresponding to unstable equilibria.

2. In the second case shown in Fig. 3.1(c), the maximum value V′
max is to the right of the

asymptote on the (V′(h∗), α) plane. This corresponds to v0 ≥ π
√

3/6 3
√

2, ≃ 0.7198. In

this case, for any value of α there is an unstable interval of the average headway h∗. It

is not possible to stabilise all uniform flows by increasing α.

In either of the two cases above, decreasing α (or increasing v0) increases the size of the

unstable h∗ interval, with the left-hand end point approaching 1, and the right-hand end

point approaching +∞, as α→ 0.

When we consider different values of the scaling parameter s the stability charts shown

in Fig. 3.1(b) and (c) do not change qualitatively. Here V′
max = (2 3

√
2/3s) v0, ≃ (0.8399/s) v0

for general s, which only yields quantitative changes.

The qualitative picture for OV functions VB4(h) (1.25) and VS(h) (1.26) (green dashed-

dotted and red dashed curves in Fig. 1.6) is similar, except for the following. For the function

VS(h), the left-hand end of the unstable h∗ interval is fixed at h∗ = 1 for all α for which there

is instability. For the function VB4(h), the left-hand end point of the unstable h∗ interval

attains h∗ = 1 for positive α. These features are due to the discontinuities in the functions

V′
B4(h) and V′

S(h) at h∗ = 1 and the fact that V′
S(h) also has its maximum at h∗ = 1+.

Now, we demonstrate how the stability diagrams change when the number of the cars is

increased. In Fig. 3.2 we present stability diagrams for n = 9 cars. There are four nested

Hopf bifurcation curves corresponding to the four admissible wave numbers k = 1, 2, 3, 4. This
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V′(h∗)

α

h∗

α

h∗

α

h∗

α

h∗

α

h∗

α

(a) (b)

(c) (d)

(e) (f)

v0 = 0.55

v0 = 0.61 v0 = 0.67

v0 = 0.77 v0 = 1.0

Fig. 3.2: Stability diagrams for n = 9 cars where blue shading denotes the stable region. Panel
(a) shows the sensitivity α as a function of the slope of the OV function V′(h∗), where the dashed
asymptotes are situated at V′(h∗) ≃ 0.5103, V′(h∗) ≃ 0.5431, V′(h∗) ≃ 0.6046, and V′(h∗) ≃ 0.7089.
Panels (b)–(f) show stability diagrams in the (h∗, α) plane for particular values of v0 (indicated in
each panel), which correspond to V′

max ≃ 0.4619, V′

max ≃ 0.5123, V′

max ≃ 0.5627, V′

max ≃ 0.6367, and
V′

max ≃ 0.8399, respectively.
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example is sufficient to give an indication of the structure for large n. The Hopf bifurcation

curves are shown in the (V′(h∗), α) plane in Fig. 3.2(a). The stability boundary, i.e., the

curve for k = 1, is the bold curve. The asymptotes are indicated by vertical dashed lines and

the blue shaded area is the stable region of the uniform flow equilibrium (1.16),(1.18).

Since the first derivative of the OV function (1.24) has a turning point (see Fig. 1.6(b)),

the (V′(h∗), α) stability diagram of Fig. 3.2(a) may be transformed again into the (h∗, α) plane

by a sort of nonlinear folding. Here, five qualitatively different configurations are possible and

shown in Figs. 3.2(b)–(f); which situation occurs depends on the value of V′
max = (2 3

√
2/3) v0,

≃ 0.8399 v0.

The blue shaded area again corresponds to the stability of the uniform flow equilibrium

(1.16),(1.18) and the Hopf bifurcation curves are nested in strict order from outside to inside

as k increases. When V′
max is to the left of a particular asymptote in the (V′(h∗), α) plane,

the corresponding curve in the (h∗, α) plane is a single curve with a maximum. On the

other hand, when V′
max is to the right of this asymptote, there are two corresponding curves

in the (h∗, α) plane and each possesses a vertical asymptote. Correspondingly, all curves

have maxima in Fig. 3.2(b) because V′
max is to the left of the first (bold) Hopf curve in

Fig. 3.2(a). When V′
max exceeds the V′(h∗) value of the asymptote of a certain Hopf curve in

the (V′(h∗), α) plane, then the corresponding curve in the (h∗, α) plane becomes unbounded.

Because there are four Hopf curves, this analysis leads to the additional four possibilities

shown in Fig. 3.2(c)–(f). The left-hand endpoints of the Hopf curves approach (1, 0), while

their right-hand endpoints approach (+∞, 0).

By considering (3.20) and taking into account the first derivative of the OV function

(1.24), it can be shown that when V′
max ≥ π/4, (that is, when v0 ≥ 3π/8 3

√
2, ≃ 0.9351), the

asymptotes converge to particular values of h∗ as n→ ∞; see Fig. 3.2(f) for which v0 = 1.0.

Moreover, the k > 1 curves accumulate on the k = 1 curves as n→ ∞.

In the absence of reaction time delay, it may be shown that the Hopf bifurcation curves are

straight lines in the (V′(h∗), α) plane given by α = 2 cos2(kπ/n)V′(h∗). As a consequence, the
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stability diagram in the (h∗, α) plane is always qualitatively the same as that in Fig. 3.2(b).

Further, for non-zero delay, the Hopf curves are always nested in strict order in the (h∗, α)

plane when V′
max ≥ π/4 (i.e., when v0 ≥ 3π/8 3

√
2, ≃ 0.9351). However, when the delay is

zero, such a nesting only occurs for sufficiently large v0. Thus even at the linear level, the

inclusion of delay leads to new types of qualitative dynamics.

In Chapter 4, numerical continuation software is used to add further curves to Figs. 3.1

and 3.2 corresponding to fold bifurcations of the periodic orbits.

3.2 General theory of weakly nonlinear analysis

We now attempt a weakly nonlinear analysis of the Hopf bifurcations which were analysed

at the linear level in Section 3.1. In particular this allows us to determine the criticality of

these bifurcations. This work is split into two parts: in this section we develop a general

theory for the Hopf bifurcation calculation in the presence of translational symmetry, and in

Section 3.3 we apply this theory to the car-following example (1.4),(1.23).

The presence of translational symmetry gives rise to a zero characteristic exponent in the

linearized system at any of the equilibrium solutions. This happens in a way similar to that

of the so-called compartment systems presented by Krisztin in [71], and causes singularities

in the standard Hopf bifurcation calculation shown in Section 2.3. Some of the corresponding

linear algebraic equations, which arise in the standard Hopf bifurcation calculation, cannot be

solved due to the presence of the zero characteristic root. This causes major difficulties when

the algorithm is implemented in symbolic manipulation (such as Maple or Mathematica).

To avoid this problem, we develop the Hopf bifurcation calculation for these systems after

subtracting the subspace related to the translational symmetry. We note that this kind of

symmetry can also be found in the dynamics of coupled cell networks near an equilibrium,

as presented by Campbell et al. [22], and in the dynamics of semiconductor lasers near a

continuous wave state, as shown by Rottschäfer & Krauskopf [94] and by Verduyn Lunel &

Krauskopf [115].
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3.2.1 Analytical framework in the presence of translational symmetry

When translational symmetry occurs in a delayed dynamical system, its motion can be shifted

by constant values, in the following sense. Let us consider the special nonlinear retarded

functional differential equation (RFDE) in the form

ẏ(t) = f(Kyt; η) , (3.21)

where the dot refers to the derivative with respect to the time t, the state variable is y : R →
R

m, and the function yt : R → XRm is defined by the shift yt(ϑ) = y(t+ϑ), ϑ ∈ [−r, 0], where

the length of the delay r ∈ R
+ is assumed to be finite. The linear functional K : XRm → R

m

acts on the function space XRm of R → R
m continuous functions. Particularly, in this

section we consider [−r, 0] → R
m functions, while in the subsequent section we deal with

[−1, 0] → R
m functions. For the sake of simplicity, let the bifurcation parameter be the

scalar η ∈ R, and then let the function f : R
m × R → R

m be analytic, and

f(0; η) = 0 , (3.22)

for any η. Thus the trivial solution y(t) ≡ 0 of the RFDE (3.21) exists for all the values of

the bifurcation parameter. Since the space XRm is infinite-dimensional, the dimension of the

phase space of RFDE (3.21) also becomes infinite.

According to the Riesz Representation Theorem, the linear functional K has the general

form defined by the Stieltjes integral

Kyt =

∫ 0

−r

dγ(ϑ)y(t+ ϑ) , (3.23)

where the matrix γ : [−r, 0] → R
m×m is a function of bounded variation.

The translational symmetry of the system (3.21) is expressed by the following property

of the linear functional K:

Ker

(∫ 0

−r

dγ(ϑ)

)
6= {0} ⇔ det

∫ 0

−r

dγ(ϑ) = 0 . (3.24)

Consequently, if there is a solution ŷ(t) of (3.21) for a certain parameter η, then ŷ(t) + c is

also a solution if the constant vector c ∈ R
m satisfies Kc = 0 or, equivalently, if the linear
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homogeneous algebraic equation ∫ 0

−r

dγ(ϑ)c = 0 , (3.25)

is satisfied. Indeed,
d

dt
(ŷ(t) + c) = ˙̂y(t) , (3.26)

and

f (K(ŷt + c); η) = f (Kŷt +Kc; η) = f(Kŷt; η) , (3.27)

which is implied by (3.24). Condition (3.24) also implies that infinitely many vectors c satisfy

(3.25).

In other words, y(t) ≡ 0 is not the only trivial solution of RFDE (3.21). Any solution

y(t) ≡ c satisfies (3.21) for all the parameter values η since

f(Kc; η) = f

(∫ 0

−r

dγ(ϑ)c; η

)
= f(0; η) = 0 (3.28)

is satisfied by infinitely many vectors c due to the property (3.24).

The class of delayed systems described above can be generalised further for systems gov-

erned by

ẏ(t) = f1(K1yt; η) + f2(K2yt; η) . (3.29)

These systems also have translational symmetry if the two linear functionals satisfy

Ker

(∫ 0

−r

dγ1(ϑ)

)
∩ Ker

(∫ 0

−r

dγ2(ϑ)

)
6= {0} , (3.30)

which implies that the corresponding determinants are zero:

det

∫ 0

−r

dγ1(ϑ) = 0 , det

∫ 0

−r

dγ2(ϑ) = 0 . (3.31)

However, it is condition (3.30) that guarantees that infinitely many constant vectors c satisfy

K1c = 0 and K2c = 0. Consequently, if there is a solution ŷ(t) of (3.29) for a certain

parameter η, then ŷ(t) + c is also a solution.

The linearization of RFDE (3.21) at any of its trivial solutions c in (3.25) results in the

variational system

ẏ(t) =

∫ 0

−r

dϑζ(ϑ; η)y(t+ ϑ) , (3.32)
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where the matrix function η : R × R → R
m×m is defined by

ζ(ϑ; η) = Dyf(0; η)γ(ϑ) , (3.33)

and the matrix Dyf ∈ R
m×m is the derivative of f . Clearly, condition (3.24) yields

det

∫ 0

−r

dϑζ(ϑ; η) = det

(
Dyf(0; η)

∫ 0

−r

dγ(ϑ)

)
= 0 , (3.34)

for all values of the bifurcation parameter η.

Similar to the case of linear ODEs, the substitution of the trial solution y(t) = Ceλt

into (3.32) with a constant vector C ∈ C
m and characteristic exponent λ ∈ C results in the

characteristic equation

D(λ; η) = det

(
λI −

∫ 0

−r

dϑζ(ϑ; η)eλϑ

)
= 0 . (3.35)

Among the infinitely many characteristic exponents, there is

λ0(η) ≡ 0 , (3.36)

for any η, since ζ satisfies (3.34). If the multiplicity of the zero characteristic exponent is

only one, the corresponding eigenvector spans the linear one-dimensional eigenspace embed-

ded in the infinite-dimensional phase space of the nonlinear RFDE (3.21). Along this the

trivial solutions y(t) ≡ c satisfying condition (3.25) are located. In the same way, possible

corresponding high-dimensional subspaces can also be identified for the more general case

(3.29).

Obviously, these trivial solutions of the nonlinear RFDE (3.21) cannot be asymptotically

stable for any bifurcation parameter η. Still, they can be stable in the Lyapunov sense if all

the other infinitely many characteristic exponents are situated in the left half of the complex

plane. Also, Hopf bifurcations may occur in the complementary part of the phase space with

respect to the eigenspace of the zero characteristic exponent if there exist purely imaginary

characteristic exponents at some critical parameter value ηcr:

λ1,2(ηcr) = ±iω , ω ∈ R
+ . (3.37)
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Similarly to the case without translational symmetry described in Section 2.2, the corre-

sponding stability boundaries are described by

R(ω) = ReD(iω; ηcr) = 0 , S(ω) = ImD(iω; ηcr) = 0 , (3.38)

and are parameterised by the frequency ω ∈ R
+ referring to the imaginary part of the critical

characteristic exponents (3.37). Since (3.35) has infinitely many solutions for λ, infinite-

dimensional version of Routh-Hurwitz criteria are needed to decide on which side of the

stability boundaries the steady state is stable or unstable [68, 92, 103, 105].

Another condition on the existence of Hopf bifurcation is the nonzero speed of the critical

characteristic exponents λ1,2 (3.37) when they cross the imaginary axis due to the variation

of the bifurcation parameter η:

Re

(
dλ1,2(ηcr)

dη

)
= Re

(
−∂D(λ1,2; ηcr)

∂η

(
∂D(λ1,2; ηcr)

∂λ

)−1
)

6= 0 . (3.39)

This can be checked by implicit differentiation of the characteristic function (3.35).

The super- or subcritical nature of the Hopf bifurcation, that is, the stability and esti-

mated amplitudes of the periodic motions arising about the stable or unstable trivial solu-

tions, can be determined via the investigation of the third-degree power series of the original

nonlinear RFDE (3.21). The above conditions (3.37) and (3.39) can be checked using the

variational system (3.32) independently from the zero characteristic exponent (3.36). In con-

trast, the lengthy calculation with the nonlinear part leads to unsolvable singular equations

if the eigenspace corresponding to the zero characteristic exponent is not removed.

In the subsequent sections, the type of the Hopf bifurcation is determined when a zero

characteristic exponent exists due to the translational symmetry in the nonlinear system

(3.21) induced by (3.24). The algorithm will be presented for the case of a single discrete

time delay.
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3.2.2 Hopf bifurcation calculations in the presence of translational sym-

metry

The following analysis is based on the work of Stépán [104, 105]. However, the calculations

here are carried out for a DDE system of arbitrary size and also for the case of a singular

Jacobian resulted by a translational symmetry as explained above. Let us consider the

following autonomous nonlinear system

ẏ(t) = L̃(η)y(t) + R̃(η)y(t− 1) + F̃ (y(t), y(t− 1); η) , (3.40)

where the delay has already been rescaled to 1. According to (3.24), the constant matrices

L̃, R̃ : R → R
m×m satisfy

det
(
L̃(η) + R̃(η)

)
= 0 . (3.41)

The near-zero analytic function F̃ : R
m × R

m × R → R
m keeps the translational symmetry,

so that

F̃ (y(t) + c, y(t− 1) + c; η) = F̃ (y(t), y(t− 1); η) , (3.42)

for all c 6= 0, such that
(
L̃(η) + R̃(η)

)
c = 0. This condition is fulfilled, for example, by

F̃ (y(t), y(t− 1); η) = F̃ ex
(
L̃(η)y(t) + R̃(η)y(t− 1)

)
, (3.43)

when system (3.40) is considered in the form of (3.21) satisfying conditions (3.24), and con-

sequently (3.25).

The characteristic equation of (3.40) assumes the form

D(λ; η) = det
(
λI − L̃(η) − R̃(η)e−λ

)
= 0 . (3.44)

Condition (3.41) implies that the zero exponent (3.36) exists, that is,

λ0(η) ≡ 0 (3.45)

is always a characteristic root.
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Furthermore, we suppose that the necessary conditions (3.37) and (3.39) are also fulfilled,

i.e., there exists a critical parameter ηcr, such that

λ1,2(ηcr) = ±iω , Re

(
dλ1,2(ηcr)

dη

)
6= 0 . (3.46)

At the critical bifurcation parameter ηcr, the delay differential equation (3.40) takes the form

ẏ(t) = Ly(t) + Ry(t− 1) + F (y(t), y(t− 1)) , (3.47)

where the matrices L,R ∈ R
m×m, and the near-zero nonlinear function F : R

m × R
m → R

m

are given by

L = L̃(ηcr) , R = R̃(ηcr) , and F (y(t), y(t− 1)) = F̃ (y(t), y(t− 1); ηcr) . (3.48)

Equation (3.47) can be rewritten in the form of an operator differential equation (OpDE):

ẏt = Ayt + F(yt) , (3.49)

where the dot still refers to differentiation with respect to the time t, and the linear and

nonlinear operators A, F : XRm → XRm are defined as

Aφ(ϑ) =





∂

∂ϑ
φ(ϑ) , if − 1 ≤ ϑ < 0 ,

Lφ(0) + Rφ(−1) , if ϑ = 0 ,

(3.50)

F(φ)(ϑ) =





0 , if − 1 ≤ ϑ < 0 ,

F (φ(0), φ(−1)) , if ϑ = 0 .

(3.51)

We note that here the [−1, 0] → R
m functions are considered in the function space XRm of

R → R
m continuous functions.

The translational symmetry is inherited by the DDE (3.47) and by the OpDE (3.49),

since (3.41) implies

det(L + R) = 0 , (3.52)

and similarly, (3.42) implies that the near-zero nonlinear function F and the near-zero non-

linear operator F satisfy

F (y(t) + c, y(t− 1) + c) = F (y(t), y(t− 1)) ⇔ F(yt + c) = F(yt) , (3.53)
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for all c 6= 0, such that (L + R)c = 0. In accordance with (3.43), condition (3.53) is fulfilled,

for example, by

F (y(t), y(t− 1)) = F ex
(
Ly(t) + Ry(t− 1)

)
. (3.54)

Clearly, the characteristic roots of the linear part of delay differential equation (3.47) are

the same as the eigenvalues of operator A:

D(λ; ηcr) = det
(
λI − L − Re−λ

)
= 0 ⇔ Ker(λI − A) 6= {0} , (3.55)

and the corresponding three critical characteristic exponents (3.45) and (3.46) are also the

same:

λ0(η) ≡ 0 , λ1,2(ηcr) = ±iω . (3.56)

If the zero characteristic root appeared only for the critical bifurcation parameter ηcr,

then it would mean that a fold bifurcation occurs together with a Hopf bifurcation, as was

found by Sieber & Krauskopf [102] in an unfolding of a degenerate case of a controlled

inverted pendulum. In contrast, we consider the case where the determinants (3.41) and (3.52)

hold, and the corresponding zero characteristic exponent (3.45),(3.56) exists for arbitrary

bifurcation parameter η. In this case, it is impossible to carry out the Hopf bifurcation

calculation by disregarding this zero characteristic root. More exactly, the centre manifold

reduction related to the purely imaginary characteristic roots cannot be carried out by the

usual algorithm: a linear non-homogeneous equation occurs with coefficient matrix (L + R)

which cannot be solved.

We can avoid the above problem in the phase space if we restrict the system to the

complementary (infinite-dimensional) space of the linear one-dimensional invariant manifold

spanned by that eigenvector of the operator A which belongs to the zero eigenvalue. After

the construction of the reduced OpDE, the usual Hopf bifurcation calculation algorithm

can be carried out including the centre manifold reduction related to the purely imaginary

eigenvalues.

Although the reduction of the OpDE (3.49) can be carried out for any value of the

bifurcation parameter η, the calculations are presented for only the critical value ηcr, since
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the subsequent Hopf bifurcation calculations use the system parameters only at the critical

values.

The eigenvector s0 ∈ XRm of A associated with the eigenvalue λ0 = 0 satisfies

As0 = λ0s0 ⇒ As0 = 0 . (3.57)

The definition (3.50) of the linear operator A in (3.57) leads to the simple boundary value

problem
∂

∂ϑ
s0(ϑ) = 0 , Ls0(0) + Rs0(−1) = 0 . (3.58)

Its constant solution is

s0(ϑ) ≡ S0 ∈ R
m , (L + R)S0 = 0 . (3.59)

In order to project the system to s0 and to its complementary space, we also need the

adjoint operator:

A∗ψ(σ) =





− ∂

∂σ
ψ(σ) , if 0 < σ ≤ 1 ,

L∗ψ(0) + R∗ψ(1) , if σ = 0 ,

(3.60)

where ∗ denotes either adjoint operator or transposed conjugate vector and matrix. The

eigenvector n0 ∈ X
∗
Rm of A∗ associated with the eigenvalue λ∗0 = 0 satisfies

A∗n0 = λ∗0n0 ⇒ A∗n0 = 0 . (3.61)

Using the definition (3.60) of the adjoint operator A∗ in (3.61) results in another boundary

value problem
∂

∂σ
n0(σ) = 0 , L∗n0(0) + R∗n0(1) = 0 . (3.62)

Its solution gives

n0(σ) ≡ N0 ∈ R
m , (L∗ + R∗)N0 = 0 . (3.63)

Note that, as the vectors s0 and n0 are the right and left eigenvectors of the operator A
belonging to the eigenvalues λ0 = 0 and λ∗0 = 0, similarly the vectors S0 and N0 are the right

and left eigenvectors of the matrix (L + Re−λ), belonging to the same eigenvalues.
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One of the two free scalar variables in S0, N0 is determined by the normality condition

〈n0, s0〉 = 1 . (3.64)

Defining the inner product

〈ψ, φ〉 = ψ∗(0)φ(0) +

∫ 0

−1
ψ∗(ξ + 1)Rφ(ξ)dξ , (3.65)

condition (3.64) gives the scalar equation

N∗
0 (I + R)S0 = 1 . (3.66)

Let us separate the phase space with the help of the new state variables z0 : R → R and

y−t : R → XRm defined as 



z0 = 〈n0, yt〉 ,

y−t = yt − z0s0 .

(3.67)

Now the OpDE (3.49) can be semi-decoupled by using the above definitions, the normalised

eigenvectors (3.59) and (3.63) satisfying (3.57) and (3.61), the inner product definition (3.65),

and the translational symmetry expressed by (3.53):

ż0 = 〈n0, ẏt〉 = 〈n0,Ayt + F(yt)〉

= 〈A∗n0, yt〉 + 〈n0,F(y−t + z0s0)〉

= n∗0(0)F(y−t + z0S0)(0) = N∗
0F(y−t )(0) ,

ẏ−t = ẏt − ż0s0 = Ayt + F(yt) − n∗0(0)F(y−t + z0S0)(0)s0

= Ay−t + z0As0 + F(y−t + z0S0) − n∗0(0)F(y−t + z0S0)(0)s0

= Ay−t + F(y−t ) −N∗
0F(y−t )(0)S0 .

(3.68)

In the first part, the scalar differential equation of (3.68) becomes fully separated, if the

equation is restricted to the corresponding manifold spanned by the eigenvector s0. Assuming

y−t = 0 implies ż0 = 0; hence, all the trivial solutions y(t) ≡ c = z0S0 are situated along a

straight line (the corresponding invariant manifold) at any constant z0.
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In the second part, the operator differential equation of (3.68) is already fully decoupled,

and can be re-defined as

ẏ−t = Ay−t + F−(y−t ) , (3.69)

where the new nonlinear operator F− assumes the form

F−(φ)(ϑ) =





−N∗
0F(φ)(0)S0 , if − 1 ≤ ϑ < 0 ,

F(φ)(0) −N∗
0F(φ)(0)S0 , if ϑ = 0 ,

(3.70)

and after the substitution of definition (3.51) of the near-zero nonlinear operator F we obtain

F−(φ)(ϑ) =





−N∗
0F (φ(0), φ(−1))S0 , if − 1 ≤ ϑ < 0 ,

F (φ(0), φ(−1)) −N∗
0F (φ(0), φ(−1))S0 , if ϑ = 0 .

(3.71)

While the linear operator remains the same, the reduction of the system related to the

translational symmetry changes the nonlinear operator. This change will have an essential

role in the centre manifold reduction of the Hopf analysis given below.

The algorithm of the usual Hopf bifurcation analysis, reviewed in Section 2.3, is well

known and presented in several books [51, 105]. Here, we apply this for the reduced OpDE

(3.69). First, let us determine the real and imaginary parts s1, s2 ∈ XRm of the eigenvector

of the linear operator A associated with the critical eigenvalue λ1 = iω. These vectors satisfy

A(s1 + is2) = λ1(s1 + is2) ⇒ As1 = −ωs2 , As2 = ωs1 . (3.72)

After the substitution of definition (3.50) of operator A, these equations form a 2m-dimensional

linear first-order boundary value problem:

∂

∂ϑ


s1(ϑ)

s2(ϑ)


 = ω


0 −I

I 0




s1(ϑ)

s2(ϑ)


 ,


 L ωI

−ωI L




s1(0)

s2(0)


+


R 0

0 R




s1(−1)

s2(−1)


 =


0

0


 .

(3.73)

Its solution is 
s1(ϑ)

s2(ϑ)


 =


S1

S2


 cos(ωϑ) +


−S2

S1


 sin(ωϑ) , (3.74)
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with constant vectors S1, S2 ∈ R
m having two freely eligible scalar variables while satisfying

the homogeneous equations


 L + Rcosω ωI + R sinω

−(ωI + R sinω) L + Rcosω




S1

S2


 =


0

0


 . (3.75)

The real and imaginary parts n1, n2 ∈ X
∗
Rm of the eigenvector of the adjoint operator A∗

associated with the eigenvalue λ∗1 = −iω are determined by

A∗(n1 + in2) = λ∗1(n1 + in2) ⇒ A∗n1 = ωn2 , A∗n2 = −ωn1 . (3.76)

It results in the 2m-dimensional boundary value problem

∂

∂σ


n1(σ)

n2(σ)


 = ω


0 −I

I 0




n1(σ)

n2(σ)


 ,


L∗ −ωI

ωI L∗




n1(0)

n2(0)


+


R∗ 0

0 R∗




n1(1)

n2(1)


 =


0

0


 ,

(3.77)

when one uses definition (3.60) of operator A∗. It has the solution


n1(σ)

n2(σ)


 =


N1

N2


 cos(ωσ) +


−N2

N1


 sin(ωσ) , (3.78)

where the constant vectors N1, N2 ∈ R
m also possess two free scalar variables while satisfying


L∗ + R∗ cosω −(ωI + R∗ sinω)

ωI + R∗ sinω L∗ + R∗ cosω




N1

N2


 =


0

0


 . (3.79)

As s1 + is2 and n1 + in2 are the right and left eigenvectors of the operator A belonging

to the eigenvalues λ1 = iω and λ∗1 = −iω, the vectors S1 + iS2 and N1 + iN2 are similarly the

right and left eigenvectors of the matrix (L + Re−λ) belonging to the same eigenvalues.

The orthonormality conditions

〈n1, s1〉 = 1 , 〈n1, s2〉 = 0 (3.80)

determine two of the four free scalar values in vectors S1, S2, N1, N2. The application of the

inner product definition (3.65) results in two linear equations, which are arranged for the two
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free parameters in N1 and N2 in the following way:

1

2


 S∗

1

(
2I + R∗

(
cosω + sin ω

ω

))
+ S∗

2R∗ sinω −S∗
1R∗ sinω + S∗

2R∗
(
cosω − sin ω

ω

)

−S∗
1R∗ sinω + S∗

2

(
2I + R∗

(
cosω + sin ω

ω

))
−S∗

1R∗
(
cosω − sin ω

ω

)
− S∗

2R∗ sinω




×


N1

N2


 =


1

0


 .

(3.81)

Note that taking 1 and 0 as first (or last) components of the vectors S1 and S2, respectively,

is a reasonable choice for the two remaining scalar parameters; see Section 3.3 and also [21].

With the help of the right and left eigenvectors s1, s2 and n1, n2 of operator A, we intro-

duce the new state variables





z1 = 〈n1, y
−
t 〉 ,

z2 = 〈n2, y
−
t 〉 ,

w = y−t − z1s1 − z2s2 ,

(3.82)

where z1, z2 : R → R and w : R → XRm . Using the above definitions, the eigenvectors (3.74)

and (3.78) satisfying (3.72) and (3.76), the inner product definition (3.65), and the definition

of operator F− (3.70), the reduced OpDE (3.69) can be rewritten in the form

ż1 = 〈n1, ẏ
−
t 〉 = 〈n1,Ay−t + F−(y−t )〉 = 〈A∗n1, y

−
t 〉 + 〈n1,F−(y−t )〉

= ω〈n2, y
−
t 〉 + n∗1(0)F−(y−t )(0) +

∫ 0

−1
n∗1(ξ + 1)RF−(y−t )(ξ)dξ

= ωz2 + n∗1(0)F(y−t )(0) −
(
n∗1(0)I +

∫ 0

−1
n∗1(ξ + 1)dξR

)
(N∗

0F(y−t )(0)S0)

= ωz2 +

(
N∗

1 −
((
N∗

1 (I + sin ω
ω

R) −N∗
2

1−cos ω
ω

R
)
S0

)
N∗

0

)
F(y−t )(0) ,

ż2 = −ωz1 +

(
N∗

2 −
((
N∗

1
1−cos ω

ω
R +N∗

2 (I + sin ω
ω

R)
)
S0

)
N∗

0

)
F(y−t )(0) ,

ẇ = ẏ−t − ż1s1 − ż2s2 = Ay−t + F−(y−t ) − ωz2s1 + ωz1s2

−
(
N∗

1 −
((
N∗

1 (I + sin ω
ω

R) −N∗
2

1−cos ω
ω

R
)
S0

)
N∗

0

)
F(y−t )(0)s1

−
(
N∗

2 −
((
N∗

1
1−cos ω

ω
R +N∗

2 (I + sin ω
ω

R)
)
S0

)
N∗

0

)
F(y−t )(0)s2 .

(3.83)
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The introduction of the new scalar parameters

q1 =
(
N∗

1 (I + sin ω
ω

R) −N∗
2

1−cos ω
ω

R
)
S0 ,

q2 =
(
N∗

1
1−cos ω

ω
R +N∗

2 (I + sin ω
ω

R)
)
S0

(3.84)

is related to the translational symmetry, that is, q1 and q2 would be zero if there were no

zero characteristic root in the system (3.49), because in that case S0 = 0. But even if the

translational symmetry is there, it is often possible to find N∗
1 RS0 = N∗

2 RS0 = N∗
1S0 =

N∗
2S0 = 0 resulting in q1 = q2 = 0, for example, when RS0 = 0 also holds in addition to

(L + R)S0 = 0 in (3.59).

The structure of the new form of the reduced OpDE (3.69) is as follows:




ż1

ż2

ẇ


 =




0 ω O
−ω 0 O
0 0 A







z1

z2

w




+




(N∗
1 − q1N

∗
0 )F(z1s1 + z2s2 + w)(0)

(N∗
2 − q2N

∗
0 )F(z1s1 + z2s2 + w)(0)

−∑j=1,2(N
∗
j − qjN

∗
0 )F(z1s1 + z2s2 + w)(0)sj + F−(z1s1 + z2s2 + w)


 ,

(3.85)

where F(z1s1 + z2s2 + w)(0) = F (z1s1(0) + z2s2(0) + w(0), z1s1(−1) + z2s2(−1) + w(−1))

according to (3.51), and this expression also appears in F−(z1s1 + z2s2 + w) as defined by

(3.70) and (3.71).

We need to expand the nonlinearities in power series form, and to keep only those which

result in terms up to third order after the reduction to the centre manifold. In order to do this,

we calculate only the terms having second and third order in z1, z2 and the terms wz1, wz2

for ż1, ż2, while only the second-order terms in z1, z2 are needed for ẇ; see already (3.87)

and (3.88). This calculation is possible via the Taylor expansion of the analytic function

F : R
m × R

m → R
m of (3.48) in the definitions (3.51) and (3.71) of the near-zero operators
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F and F−. The resulting truncated OpDE assumes the form




ż1

ż2

ẇ


 =




0 ω O
−ω 0 O
0 0 A







z1

z2

w


+




∑j+k=2,3
j,k≥0 f

(1)
jk z

j
1z

k
2

∑j+k=2,3
j,k≥0 f

(2)
jk z

j
1z

k
2

1
2

∑j+k=2
j,k≥0

(
F

(3c)
jk cos(ωϑ) + F

(3s)
jk sin(ωϑ)

)
zj
1z

k
2




+




(
F

(1l)∗
10 w(0) + F

(1r)∗
10 w(−1)

)
z1 +

(
F

(1l)∗
01 w(0) + F

(1r)∗
01 w(−1)

)
z2

(
F

(2l)∗
10 w(0) + F

(2r)∗
10 w(−1)

)
z1 +

(
F

(2l)∗
01 w(0) + F

(2r)∗
01 w(−1)

)
z2

1
2





∑j+k=2
j,k≥0 F

(3−)
jk zj

1z
k
2 , if − 1 ≤ ϑ < 0 ,

∑j+k=2
j,k≥0

(
F

(3)
jk + F

(3−)
jk

)
zj
1z

k
2 , if ϑ = 0




.

(3.86)

The subscripts of the constant coefficients f
(1)
jk , f

(2)
jk ∈ R and the vector ones F

(1l)
jk , F

(1r)
jk , F

(2l)
jk ,

F
(2r)
jk , F

(3c)
jk , F

(3s)
jk , F

(3)
jk , F

(3−)
jk ∈ R

m refer to the corresponding jth and kth orders of z1 and

z2, respectively. The terms with the coefficients F
(3c)
jk and F

(3s)
jk come from the linear combi-

nations of s1(ϑ) and s2(ϑ). Note that all coefficients of the nonlinear terms are influenced by

the scalar parameters q1 and q2 (see (3.84)) related to the translational symmetry, except for

F
(3)
jk and F

(3−)
jk (see (3.85)). The terms with coefficients F

(3)
jk and F

(3−)
jk refer to the structure

of the modified nonlinear operator F− (see (3.70), (3.71)), that is, the vectors F
(3−)
jk appear

due to the translational symmetry only, while the vectors F
(3)
jk would appear anyway.

The plane spanned by the eigenvectors s1 and s2 is tangent to the centre manifold at

the origin. This means that the centre manifold can be approximated locally as a truncated

power series of w depending on the second order of the coordinates z1 and z2:

w(ϑ) =
1

2

(
h20(ϑ)z2

1 + 2h11(ϑ)z1z2 + h02(ϑ)z2
2

)
. (3.87)

The unknown coefficients h20, h11, h02 ∈ XRm can be determined by calculating the derivative

of w in (3.87). On the one hand, it is expressed to second order by the substitution of the

linear part of the first two equations of (3.86):

ẇ(ϑ) = −ωh11(ϑ)z2
1 + ω(h20(ϑ) − h02(ϑ))z1z2 + ωh11(ϑ)z2

2 . (3.88)

On the other hand, this derivative can also be expressed by the third equation of (3.86). The

comparison of the coefficients of z2
1 , z1z2, and z2

2 gives a linear boundary value problem with

61



CHAPTER 3. LOCAL STABILITY ANALYSIS

differential equation

∂

∂ϑ




h20(ϑ)

h11(ϑ)

h02(ϑ)


 =




0 −2ωI 0

ωI 0 −ωI

0 2ωI 0







h20(ϑ)

h11(ϑ)

h02(ϑ)




−




F
(3c)
20

1
2F

(3c)
11

F
(3c)
02


 cos(ωϑ) −




F
(3s)
20

1
2F

(3s)
11

F
(3s)
02


 sin(ωϑ) −




F
(3−)
20

1
2F

(3−)
11

F
(3−)
02


 ,

(3.89)

and boundary condition




L 2ωI 0

−ωI L ωI

0 −2ωI L







h20(0)

h11(0)

h02(0)


+




R 0 0

0 R 0

0 0 R







h20(−1)

h11(−1)

h02(−1)


 = −




F
(3c)
20 + F

(3)
20 + F

(3−)
20

1
2

(
F

(3c)
11 + F

(3)
11 + F

(3−)
11

)

F
(3c)
02 + F

(3)
02 + F

(3−)
02


 .

(3.90)

Note that the constant vector in the non-homogeneous term of (3.89), formed by the vectors

F
(3−)
jk , does not show up if there is no translational symmetry, that is, if there is no zero

characteristic exponent in the system. The general solution of (3.89) also contains extra

terms that are related to the translational symmetry through the vectors F
(3−)
jk :




h20(ϑ)

h11(ϑ)

h02(ϑ)


 =




H1

H2

−H1


 cos(2ωϑ) +




−H2

H1

H2


 sin(2ωϑ) +




H0

0

H0




+
1

3ω







F
(3c)
11 + F

(3s)
20 + 2F

(3s)
02

−1
2F

(3s)
11 − F

(3c)
20 + F

(3c)
02

−F (3c)
11 + 2F

(3s)
20 + F

(3s)
02


 cos(ωϑ) +




F
(3s)
11 − F

(3c)
20 − 2F

(3c)
02

1
2F

(3c)
11 − F

(3s)
20 + F

(3s)
02

−F (3s)
11 − 2F

(3c)
20 − F

(3c)
02


 sin(ωϑ)




− 1

4ω




0

F
(3−)
20 − F

(3−)
02

2F
(3−)
11


− 1

2




F
(3−)
20 + F

(3−)
02

0

F
(3−)
20 + F

(3−)
02


ϑ . (3.91)

The unknown constant vectors H0, H1, H2 ∈ R
m are determined by the boundary condition
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(3.90), which result in the linear non-homogeneous equation




L + R 0 0

0 L + Rcos(2ω) 2ωI + R sin(2ω)

0 −
(
2ωI + R sin(2ω)

)
L + Rcos(2ω)







H0

H1

H2




=
1

6ω




(L + Rcosω)
(
−3F

(3s)
20 − 3F

(3s)
02

)
+ (ωI + R sinω)

(
−3F

(3c)
20 − 3F

(3c)
02

)

(L + Rcosω)
(
−2F

(3c)
11 + F

(3s)
20 − F

(3s)
02

)
+ (ωI + R sinω)

(
2F

(3s)
11 + F

(3c)
20 − F

(3c)
02

)

(L + Rcosω)
(
F

(3s)
11 + 2F

(3c)
20 − 2F

(3c)
02

)
+ (ωI + R sinω)

(
F

(3c)
11 − 2F

(3s)
20 + 2F

(3s)
02

)




− 1

4ω




2ω
(
F

(3)
20 + F

(3)
02

)
+ 2ω(I + R)

(
F

(3−)
20 + F

(3−)
02

)
− (L + R)F

(3−)
11

2ω
(
F

(3)
20 − F

(3)
02

)
+ (L + R)F

(3−)
11

2ωF
(3)
11 − (L + R)

(
F

(3−)
20 − F

(3−)
02

)


 .

(3.92)

Since (L + R) is singular for systems with translational symmetry, the first (decoupled)

group of non-homogeneous equations for H0 may look as thought they are not solvable.

However, the non-homogeneous term on the right-hand side belongs to the image space of

the coefficient matrix (L + R), and this will result in a solution that is satisfactory for the

centre manifold calculation; see Section 3.3. Again, this issue is related to the translational

symmetry in the system. If the reduction of the OpDE (3.49) were not carried out to the

reduced OpDE (3.69) with respect to the relevant zero characteristic root, then the first

(decoupled) group of (3.92) would lead to contradiction, and the centre manifold calculation

could not be continued.

By having the solution of (3.92), we can reconstruct the approximate equation of the

centre manifold via (3.87) and (3.91). Then calculating only the components w(0) and w(−1),

and substituting them into the first two scalar equations of (3.86), we obtain the following

equations that describe the flow restricted onto the two-dimensional centre manifold:


ż1
ż2


 =


 0 ω

−ω 0




z1
z2


+



∑j+k=2,3

j,k≥0 f
(1)
jk z

j
1z

k
2

∑j+k=2,3
j,k≥0 f

(2)
jk z

j
1z

k
2


+



∑j+k=3

j,k≥0 g
(1)
jk z

j
1z

k
2

∑j+k=3
j,k≥0 g

(2)
jk z

j
1z

k
2


 . (3.93)

We note that the coefficients f
(1)
jk and f

(2)
jk of the second-order terms are not changed by the
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centre manifold reduction. The so-called Poincaré-Lyapunov constant in the Poincaré normal

form of (3.93) can be determined by the Bautin formula

∆ =
1

8

(
1

ω

(
(f

(1)
20 + f

(1)
02 )(−f (1)

11 + f
(2)
20 − f

(2)
02 ) + (f

(2)
20 + f

(2)
02 )(f

(1)
20 − f

(1)
02 + f

(2)
11 )
)

+
(
3f

(1)
30 + f

(1)
12 + f

(2)
21 + 3f

(2)
03

)
+
(
3g

(1)
30 + g

(1)
12 + g

(2)
21 + 3g

(2)
03

))
,

(3.94)

see [47, 105]. It shows the type of bifurcation and approximate amplitude of the limit-cycle

oscillations. The bifurcation is supercritical (subcritical) if ∆ < 0 (∆ > 0), and the amplitude

of the stable (unstable) oscillations is expressed by

A =

√

− 1

∆
Re

dλ1(ηcr)

dη
(η − ηcr) . (3.95)

Thus the first Fourier term of the oscillation on the centre manifold is

z1(t)

z2(t)


 = A


 cos(ωt)

− sin(ωt)


 . (3.96)

Since close to the critical bifurcation parameter ηcr we have yt(ϑ) ≈ z1(t)s1(ϑ) + z2(t)s2(ϑ),

equation (3.96) yields

y(t) = yt(0) ≈ z1(t)s1(0) + z2(t)s2(0)

= A
(
s1(0) cos(ωt) − s2(0) sin(ωt)

)

= A
(
S1 cos(ωt) − S2 sin(ωt)

)
.

(3.97)

We reduced the infinite-dimensional problem into the solution of the closed-form linear

algebraic equations (3.59),(3.63),(3.66),(3.75),(3.79),(3.81), and (3.92). Thus, we are able to

determine the quantities ∆ (3.94) and A (3.95) in any dynamical system with a single delay

and translational symmetry.

3.3 Application to the car-following model

Having developed a general theory of Hopf calculation in the presence of translational sym-

metry, we now turn our attention to applying this theory to the car-following model (1.23).
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First, we write these equations in the operator differential equation (OpDE) form (3.49).

Then the normal form calculations are carried out using the results of Section 3.2.2. Finally,

an interpretation of the obtained results is given.

3.3.1 Car-following model in OpDE form

By considering the kinematic conditions (1.4) and substituting (1.5) into (1.23), we obtain

ẍi(t) = α
(
V (xi+1(t− 1) − xi(t− 1)) − ẋi(t)

)
, i = 1, . . . , n− 1 ,

ẍn(t) = α
(
V (x1(t− 1) − xn(t− 1) + L) − ẋn(t)

)
.

(3.98)

Let us recall the definition (1.16)–(1.19) for the uniform flow equilibrium, that is,

xeq
i (t) = v∗ t+ x∗i , ⇒ ẋeq

i (t) ≡ v∗ , i = 1, . . . , n , (3.99)

where

x∗i+1 − x∗i = x∗1 − x∗n + L = L/n := h∗, i = 1, . . . , n− 1 , (3.100)

and

v∗ = V(h∗) < v0 . (3.101)

Note that one of the constants x∗i can be chosen arbitrarily due to the translational symmetry

along the ring. Henceforth, we consider the average headway h∗ as a bifurcation parameter,

that is, according to the notation of Section 3.2, η = h∗.

Using definition (3.1) for the perturbation of the uniform flow equilibrium, i.e.,

xp
i (t) : = xi(t) − (v∗t+ x∗i ) , i = 1, . . . , n , (3.102)

and the Taylor series expansion of the optimal velocity function V(h) about h = h∗ up to

third order, we can eliminate the zero-order terms and obtain

ẍp
i (t) = −αẋp

i (t) + α
3∑

k=1

bk(h
∗)
(
xp

i+1(t− 1) − xp
i (t− 1)

)k
, i = 1, . . . , n− 1 ,

ẍp
n(t) = −αẋp

n(t) + α
3∑

k=1

bk(h
∗)
(
xp

1(t− 1) − xp
n(t− 1)

)k
,

(3.103)
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Fig. 3.3: The optimal velocity function (1.24) is shown in panel (a) and its derivatives are displayed
in panels (b)–(d).

where

b1(h
∗) = V′(h∗) , b2(h

∗) =
1

2
V′′(h∗) , and b3(h

∗) =
1

6
V′′′(h∗) . (3.104)

At a critical bifurcation parameter h∗cr the derivatives take the values b1cr = V′(h∗cr), b2cr =

1
2V′′(h∗cr), and b3cr = 1

6V′′′(h∗cr).

The optimal velocity function (1.24) for s = 1 is shown together with its first, second, and

third derivatives in Fig. 3.3. Note that the analytical calculations presented in this section
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are valid for any OV function V(h): it is not necessary to restrict ourselves to a concrete

function in contrast to numerical simulation and numerical continuation approaches.

Introducing the notation

yi(t) := ẋp
i (t) , yi+n(t) := xp

i (t) , i = 1, . . . , n , (3.105)

equation (3.103) can be written as

ẏ(t) = L̃(h∗)y(t) + R̃(h∗)y(t− 1) + F̃
(
y(t− 1);h∗

)
, (3.106)

where y : R → R
2n. The matrices L̃, R̃ : R → R

2n×2n and the near-zero analytic function

F̃ : R
2n × R → R

2n are defined by

L̃(h∗) ≡


−αI 0

I 0


 , R̃(h∗) =


0 −αb1(h∗)A

0 0


 ,

F̃
(
y(t− 1);h∗

)
=


αb2(h

∗)F2

(
y(t− 1)

)
+ αb3(h

∗)F3

(
y(t− 1)

)

0


 .

(3.107)

Here I ∈ R
n×n stands for the n × n identity matrix, while the matrix A ∈ R

n×n and the

functions F2, F3 : R
2n → R

n are defined by

A =




. . .
. . .

1 −1

. . .
. . .

−1
. . .




, Fk

(
y(t− 1)

)
=




(
yn+2(t− 1) − yn+1(t− 1)

)k
(
yn+3(t− 1) − yn+2(t− 1)

)k
...

(
yn+1(t− 1) − y2n(t− 1)

)k



, k = 2, 3 .

(3.108)

Equation (3.106) is in the from of (3.40), that is, here m = 2n. Although the function

F̃ does not depend on y(t), the general theory of Section 3.2 can be applied by leaving out

the first argument of F̃ as shown below. Indeed, the trivial solution y(t) ≡ 0 of (3.106)

corresponds to the uniform flow equilibrium (3.99) of the original system (3.98).

Since system (3.106) possesses a translational symmetry, the matrices L̃(h∗), R̃(h∗) satisfy

det
(
L̃(h∗) + R̃(h∗)

)
= 0 , (3.109)
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that is, the Jacobian
(
L̃(h∗) + R̃(h∗)

)
has a zero eigenvalue

λ0(h
∗) = 0 , (3.110)

for any value of parameter h∗. Furthermore, the near-zero analytic function F̃ preserves this

translational symmetry, that is,

F̃
(
y(t− 1) + c;h∗

)
= F̃

(
y(t− 1);h∗

)
, (3.111)

for all c 6= 0 satisfying
(
L̃(h∗) + R̃(h∗)

)
c = 0.

Now we recall formulae (3.8)–(3.12) determined in Section 3.1 but write them according

to the notation and formalism of this section. Considering the linear part of (3.106), the

general formula (3.44) leads to the characteristic equation

D
(
λ; b1(h

∗)
)

=
(
λ2 + αλ+ αb1(h

∗)e−λ
)n −

(
αb1(h

∗)e−λ
)n

= 0 . (3.112)

According to (3.109), the relevant zero eigenvalue (3.110) is one of the infinitely many char-

acteristic exponents that satisfy (3.112). This exponent exists for any value of the parameter

b1, that is, for any value of the bifurcation parameter h∗.

At a bifurcation point defined by b1 = b1cr, i.e., by h∗ = h∗cr, Hopf bifurcations may occur

in the complementary part of the phase space spanned by the eigenspace of the zero expo-

nent (3.110). Then there exists a complex conjugate pair of purely imaginary characteristic

exponents

λ1,2(h
∗
cr) = ±iω , ω ∈ R

+ , (3.113)

which satisfies (3.112) and the corresponding Hopf boundaries are described by

b1cr =
ω

2 cos(ω − kπ
n

) sin(kπ
n

)
,

α = −ω cot(ω − kπ
n

) ,

(3.114)

which can be transformed into

cosω =
ω

2b1cr

(ω
α

+ cot(kπ
n

)
)
,

sinω =
ω

2b1cr

(
1 − ω

α
cot(kπ

n
)
)
,

(3.115)
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yielding

4b21cr
ω2

sin2(kπ
n

) = 1 +
ω2

α2
. (3.116)

The wave numbers are k = 1, . . . , n/2 (for even n) and k = 1, . . . (n − 1)/2 (for odd n).

Furthermore, for each k the resulting frequency is bounded so that ω ∈ (0, kπ
n

).

With the help of the identity

(
1 + i cot(kπ

n
)
)n−1

(
1 − i cot(kπ

n
)
)n−1 =

1 − i cot(kπ
n

)

1 + i cot(kπ
n

)
, (3.117)

we can calculate the necessary condition for Hopf bifurcation as the parameter b1 is varied:

Re

(
dλ1(b1cr)

db1

)
= Re

(
−∂D(λ1; b1cr)

∂b1

(
∂D(λ1; b1cr)

∂λ

)−1
)

= E 1

b1cr

(
ω2 + α2 + α

)
> 0 ,

(3.118)

where

E =
((

α
ω
− ω

)2
+
(
2 + α

)2)−1
. (3.119)

Since (3.118) is always positive this Hopf condition is always satisfied. Now, using the chain

rule and definition (3.104), condition (3.118) can be calculated further as the average headway

h∗ is varied to give

Re
(
λ′1(h

∗
cr)
)

= Re

(
dλ1(b1cr)

db1
b′1(h

∗
cr)

)
= E 2b2cr

b1cr

(
ω2 + α2 + α

)
6= 0 . (3.120)

This condition is fulfilled if and only if b2cr 6= 0, which is usually satisfied except at some

special points. For example, the function V′′(h) shown in Fig. 3.3(c) becomes zero at a single

point over the interval h ∈ (1,∞). Notice that V′′(h) is zero for h ∈ [0, 1] and for h → ∞,

but the critical headway hcr never takes these values for α > 0.

For the critical bifurcation parameter h∗cr, the delay differential equation (3.106) takes

the form of (3.47) so that the matrices L,R ∈ R
2n×2n, and the near-zero nonlinear function

F : R
2n → R

2n are given by

L = L̃(h∗cr) , R = R̃(h∗cr) , and F
(
y(t− 1)

)
= F̃

(
y(t− 1);h∗cr

)
. (3.121)
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This can be rewritten in the operator differential equation (OpDE) form (3.49) so that the

state variable is yt : R → XR2n , and the linear and nonlinear operators A,F : XR2n → XR2n

(3.50),(3.51) contain (3.121).

The translational symmetry conditions (3.109) and (3.111) are inherited, that is,

det(L + R) = 0 , (3.122)

and

F
(
y(t− 1) + c

)
= F

(
y(t− 1)

)
⇔ F(yt + c) = F(yt) , (3.123)

for all c 6= 0 satisfying (L + R)c = 0.

3.3.2 Normal form calculations of the car-following model

Following the steps of the normal form calculation in Section 3.2.2 the criticality of the Hopf

bifurcations can be determined in our car-following model. In order to do this we only have

to solve the algebraic equations (3.59),(3.63),(3.66),(3.75),(3.79),(3.81), and (3.92).

By solving equation (3.59) one finds that

S0 = p


0

E


 , (3.124)

where each component of the vector E ∈ R
n is equal to 1. Here p ∈ R is a scalar that can be

chosen freely, in particular, we choose

p = 1 . (3.125)

The solution of (3.63) is written as

N0 = p̂


 E

αE


 . (3.126)

However, p̂ ∈ R is not free, but is determined by the normality condition (3.66) which gives

p̂ =
1

nα
. (3.127)

70



3.3. APPLICATION TO THE CAR-FOLLOWING MODEL

By considering F(φ)(0) = F (φ(−1)) given by (3.51), and using the expressions (3.107),

(3.108) and (3.121), and the eigenvectors (3.124) and (3.126), we obtain

N∗
0F(y−t )(0)S0 = N∗

0F
(
y(t− 1)

)
S0 =

1

n

∑

k=2,3

(
bkcr

n∑

i=1

(
yn+i+1(t− 1) − yn+i(t− 1)

)k
)
0

E


 ,

(3.128)

which appears in the nonlinear operator F− (3.70),(3.71) of the reduced OpDE (3.69). Note

that in (3.128) the definition y2n+1 := yn+1 is applied.

Using (3.115) for the Hopf boundary, the 4n-dimensional equation (3.75) leads to

S2,i = ωS1,n+i

S2,n+i = − 1

ω
S1,i





for i = 1, . . . , n , (3.129)

and to the 2n-dimensional equation

−

1
ω

cot(kπ
n

)A B

B 1
ω

cot(kπ
n

)A


S1 = 0 , (3.130)

where A ∈ R
n×n is defined by (3.108) and B ∈ R

n×n is given by

B =




. . .
. . .

1 1

. . .
. . .

1
. . .




. (3.131)

Solving (3.130) one may obtain

S1 = u


 C

1
ω

S


+ v


 S

− 1
ω

C


 , S2 = u


 S

− 1
ω

C


− v


 C

1
ω

S


 , (3.132)

where the scalar parameters u and v can be chosen arbitrarily and the vectors C , S ∈ R
n are

C =




cos(2kπ
n

1)

cos(2kπ
n

2)
...

cos(2kπ
n
n)



, S =




sin(2kπ
n

1)

sin(2kπ
n

2)
...

sin(2kπ
n
n)



, (3.133)
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with the wave number k used in (3.114)–(3.116). The cyclic permutation of the components

in C and S results in further vectors S1 and S2 that still satisfy (3.75). This result corresponds

to the Z
n symmetry of the system, that is, all the cars have the same dynamic characteristics.

Choosing u = 1 and v = 0 yields

S1 =


 C

1
ω

S


 , S2 =


 S

− 1
ω

C


 . (3.134)

Notice that S1 + iS2 = P , given by (3.13).

The application of (3.115) simplifies the 4n-dimensional equation (3.79) and leads to

N1,n+i = αN1,i + ωN2,i

N2,n+i = −ωN1,i + αN2,i





for i = 1, . . . , n , (3.135)

and to the 2n-dimensional equation

− cot(kπ

n
)A B

B cot(kπ
n

)A


N∪ = 0 , (3.136)

where N∪ ∈ R
2n is defined by

N∪,i = N1,i

N∪,n+i = N2,i





for i = 1, . . . , n . (3.137)

The solution of (3.136) can be written as

N∪ = û


C

S


+ v̂


 S

−C


 , (3.138)

which results in

N1 = û


 C

αC + ωS


+ v̂


 S

αS − ωC


 , N2 = û


 S

αS − ωC


− v̂


 C

αC + ωS


 . (3.139)

The scalar parameters û and v̂ are determined by the orthonormality condition (3.81). Sub-

stituting (3.115),(3.134), and (3.139) into this condition and using the second-order trigono-

metric identities (A.4)–(A.6) of the Appendix, we obtain

n

2


 2 + α α

ω
− ω

−
(

α
ω
− ω

)
2 + α




û

v̂


 =


1

0


 , (3.140)
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with the solution 
û

v̂


 = E 2

n


2 + α

α
ω
− ω


 , (3.141)

where E is defined by (3.119). The substitution of (3.141) into (3.139) gives

N1 = E 2

n


 (2 + α)C +

(
α
ω
− ω

)
S

(α2 + α+ ω2)C +
(

α2

ω
+ 2ω

)
S


 , N2 = E 2

n


 (2 + α)S −

(
α
ω
− ω

)
C

(α2 + α+ ω2)S −
(

α2

ω
+ 2ω

)
C


 .

(3.142)

In our case RS0 = N∗
1S0 = N∗

2S0 = 0, therefore (3.84) provides

q1 = q2 = 0 . (3.143)

Thus, considering (3.85) and (3.86) the translational symmetry only enters through the terms

with coefficients F
(3−)
jk , so that the terms with coefficients F

(3)
jk and F

(3−)
jk refer to the struc-

ture of the modified nonlinear operator F− (3.70),(3.71). Using the third- and fourth-order

trigonometric identities (A.7)–(A.15) of the Appendix, we can calculate the coefficients in

(3.86) for wave numbers k 6= n/2, k 6= n/3, and k 6= n/4 in the form

f
(1)
jk = f

(2)
jk = 0 , for j + k = 2 ,

f
(1)
30 = f

(1)
12 = f

(2)
21 = f

(2)
03 = E 3αb3cr

4(b1cr)3
α
ω

(
1 + ω2

α2

)(
ω + ω

α
+ ω3

α2

)
,

f
(1)
21 = f

(1)
03 = −f (2)

30 = −f (2)
12 = E 3αb3cr

4(b1cr)3
α
ω

(
1 + ω2

α2

)(
1 + 2ω2

α2

)
,

F
(1l)
jk = F

(2l)
jk = 0 ,

F
(1r)
10 = E 2b2cr

n(b1cr)2
R∗



(
3 + α− ω2

α

)
C̃ +

(
α
ω
− 2ω − 2ω

α

)
S̃ +

(
1 + α+ ω2

α

)
E

0


 ,

F
(1r)
01 = E 2b2cr

n(b1cr)2
R∗


−
(

α
ω
− 2ω − 2ω

α

)
C̃ +

(
3 + α− ω2

α

)
S̃ +

(
α
ω

+ 2ω
α

)
E

0


 ,

F
(2r)
10 = E 2b2cr

n(b1cr)2
R∗


−
(

α
ω
− 2ω − 2ω

α

)
C̃ +

(
3 + α− ω2

α

)
S̃ −

(
α
ω

+ 2ω
α

)
E

0


 ,

F
(2r)
01 = E 2b2cr

n(b1cr)2
R∗


−
(
3 + α− ω2

α

)
C̃ −

(
α
ω
− 2ω − 2ω

α

)
S̃ +

(
1 + α+ ω2

α

)
E

0


 ,

F
(3c)
jk = F

(3s)
jk = 0 ,

(3.144)
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F
(3−)
20 = F

(3−)
02 = − b2cr

(b1cr)2

(
1 + ω2

α2

)

0

E


 ,

F
(3−)
11 = 0 ,

F
(3)
20 = b2cr

(b1cr)2



(
1 − ω2

α2

)
C̃ − 2ω

α
S̃ +

(
1 + ω2

α2

)
E

0


 ,

F
(3)
11 = 2b2cr

(b1cr)2


2ω

α
C̃ +

(
1 − ω2

α2

)
S̃

0


 ,

F
(3)
02 = b2cr

(b1cr)2


−
(
1 − ω2

α2

)
C̃ + 2ω

α
S̃ +

(
1 + ω2

α2

)
E

0


 ,

where we use the vectors C̃ , S̃ ∈ R
n defined by

C̃ =




cos(4kπ
n

1)

cos(4kπ
n

2)
...

cos(4kπ
n
n)



, S̃ =




sin(4kπ
n

1)

sin(4kπ
n

2)
...

sin(4kπ
n
n)



. (3.145)

Note that the cases k = n/2, k = n/3, and k = n/4 result in different formulae for the

above coefficients, but the final Poincaré-Lyapunov constant will have the same formula as

in the case of general wave number k. The detailed calculation of these ‘resonant’ cases is

not presented here.

According to (3.144) F
(3c)
jk = F

(3s)
jk = 0 and one can show that

R
(
F

(3−)
20 + F

(3−)
02

)
= 0 , (L + R)F

(3−)
11 = 0 , (L + R)

(
F

(3−)
20 − F

(3−)
02

)
= 0 . (3.146)

Substituting these expressions into (3.92) the vectors H0, H1, H2 ∈ R
2n satisfy




L + R 0 0

0 L + Rcos(2ω) 2ωI + R sin(2ω)

0 −
(
2ωI + R sin(2ω)

)
L + Rcos(2ω)







H0

H1

H2


 = −1

2




F
(3)
20 + F

(3)
02 + F

(3−)
20 + F

(3−)
02

F
(3)
20 − F

(3)
02

F
(3)
11


 .

(3.147)

The 2n-dimensional equation for H0 is decoupled from the 4n-dimensional equation for

H1, H2 in (3.147). Note that since (L + R) is singular due to the translational symmetry
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(3.122), the non-homogeneous equation for H0 in (3.147) may seem not to be solvable. How-

ever, its right-hand side belongs to the image space of the coefficient matrix (L + R) due to

the translational symmetry induced terms F
(3−)
jk . Without these extra terms, that is, without

the elimination of the translational symmetry, the equation for H0 would be unsolvable. Here

we obtain the solution

H0 = b2cr
(b1cr)2

(
1 + ω2

α2

)

 E

κE


 , (3.148)

with the undetermined parameter κ. Note that even κ is unknown this solution is sufficient

since only the quantities H0,n+i+1 −H0,n+i = 0 are used in the calculations below.

At the same time, the non-homogeneous equation for H1, H2 in (3.147) is not effected by

the vectors F
(3−)
jk . Using (3.115) this 4n-dimensional equation leads to

H1,i = −2ωH2,n+i

H2,i = 2ωH1,n+i





for i = 1, . . . , n , (3.149)

and to the 2n-dimensional equation


 µ sin2(kπ

n
) I − cos(2kπ

n
)A ν sin2(kπ

n
) I − sin(2kπ

n
)A

−
(
ν sin2(kπ

n
) I − sin(2kπ

n
)A
)

µ sin2(kπ
n

) I − cos(2kπ
n

)A


H∪ = − 4b2cr

ω2b1cr
sin2(kπ

n
)


C̃

S̃


 ,

(3.150)

where the vector H∪ ∈ R
2n is defined by

H∪,i = H1,n+i

H∪,n+i = H2,n+i





for i = 1, . . . , n , (3.151)

and

µ =
−16b1cr

α
ω2

α2(
1 + ω2

α2

)2 , ν =
8b1cr

ω

(
1 + 3ω2

α2

)
(
1 + ω2

α2

)2 . (3.152)

The solution of (3.150) is given by

H∪ =
− 4b2cr

ω2b1cr(
ν − 4 cot(kπ

n
)
)2

+ µ2


µ


C̃

S̃


+

(
ν − 4 cot(kπ

n
)
)

−S̃

C̃




 , (3.153)
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which provides

H1 =

4b2cr
ω2b1cr(

ν − 4 cot(kπ
n

)
)2

+ µ2


(ν − 4 cot(kπ

n
)
)

2ωC̃

S̃


+ µ


2ωS̃

−C̃




 ,

H2 =

4b2cr
ω2b1cr(

ν − 4 cot(kπ
n

)
)2

+ µ2


(ν − 4 cot(kπ

n
)
)

2ωS̃

−C̃


− µ


2ωC̃

S̃




 .

(3.154)

Now, using these in (3.87) and (3.91) we can calculate w(−1). Substituting w(−1) into the

first two equations of (3.86), we obtain the form (3.93) where the coefficients f
(1)
jk and f

(2)
jk

have already been determined by (3.144), while the coefficients

g
(1)
30 = g

(1)
12 = g

(2)
21 = g

(2)
03

=
E 2α(b2cr)2

(b1cr)4
cot(kπ

n
)

(
ν − 4 cot(kπ

n
)
)2

+ µ2

α
ω

(
1 + ω2

α2

) ((
ν − 4 cot(kπ

n
)
)(
ω + ω

α
+ ω3

α2

)
+ µ

(
1 + 2ω2

α2

))
,

g
(1)
21 = g

(1)
03 = −g(2)

30 = −g(2)
12

=
E 2α(b2cr)2

(b1cr)4
cot(kπ

n
)

(
ν − 4 cot(kπ

n
)
)2

+ µ2

α
ω

(
1 + ω2

α2

) ((
ν − 4 cot(kπ

n
)
)(

1 + 2ω2

α2

)
− µ

(
ω + ω

α
+ ω3

α2

))
,

(3.155)

originate in the terms involving w(−1). The trigonometric identities (A.4)–(A.15) of the

Appendix has been used to determine (3.155). Note that w(0) also appears in the first two

equations of (3.86) but in our case its coefficients are all zeros, i.e., F
(1l)
jk = F

(2l)
jk = 0 (see

(3.144)). The Poincaré-Lyapunov constant is determined by the Bautin formula (3.94), which

provides

∆ = E α
4(b1cr)3

α
ω

(
1 + ω2

α2

)(
ω + ω

α
+ ω3

α2

)

× 1

2

(
6b3cr +

(2b2cr)
2

b1cr

4 cot(kπ
n

)
(
ν − 4 cot(kπ

n
)
)2

+ µ2

(
ν − 4 cot(kπ

n
) + µ

1 + 2ω2

α2

ω + ω
α

+ ω3

α2

))
.

(3.156)

The bifurcation is supercritical for negative and subcritical for positive values of ∆. However

in order to decide its sign further analysis is required.
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3.3.3 Analysis and interpretation of results

We now investigate (3.156) in order to determine its sign. We found that ∆ > 0 is always

true when k
n
≪ 1 which is the case for real traffic situations (many vehicles n with a few

waves k). This can be proven as is detailed below.

The first part of the expression (3.156) of ∆ in front of the parenthesis is always positive

since E , b1cr, α, ω > 0. Within the parenthesis in (3.156), the first term is positive since

(3.114) implies b1cr = V′(h∗cr) < 1/2, which yields critical average headway values h∗cr such

that 6b3cr = V′′′(h∗cr) > 0; see Fig. 3.3(b) and (d). The second term in the parenthesis in

(3.156) contains the ratio of two complicated expressions, which, by using (3.114) and (3.152),

can be rearranged in the form

4 cot(kπ
n

)

(
ν − 4 cot(kπ

n
) + µ

1 + 2ω2

α2

ω + ω
α

+ ω3

α2

)

=
(
4 cot(kπ

n
)
)2
( (

1 + ω2

α2

)(
ω + ω

α
+ 3ω3

α2

)
− 4ω5

α5(
cosω − ω

α
sinω

)(
1 + ω2

α2

)(
ω + ω

α
+ ω3

α2

) − 1

)

:=
(
4 cot(kπ

n
)
)2N (ω, α) ,

(3.157)

and

(
ν − 4 cot(kπ

n
)
)2

+ µ2

=
(
4 cot(kπ

n
)
)2
((

1 + ω2

α2

)(
1 + 4ω2

α2

)
− 2
(
cosω − ω

α
sinω

)(
1 + 3ω2

α2

)
(
cosω − ω

α
sinω

)2(
1 + ω2

α2

) + 1

)

:=
(
4 cot(kπ

n
)
)2D(ω, α) > 0 .

(3.158)

Since (3.158) is always positive, the sign of (3.157) is crucial for deciding the overall sign of

∆. According to (3.114) we have ω ∈ (0, kπ
n

), that is, the realistic case k
n
≪ 1 implies the

oscillation frequency ω ≪ 1.

Fig. 3.4(a) shows the numerator N (ω, α) for some values of α. One can observe that

N (ω, α) > 0 for ω ≪ 1. Note that if α → 0 then N (ω, α) may become negative (see

Fig. 3.4(a) for α = 0.5), but this is a physically unrealistic case where drivers intend to reach

their desired speed v0 extremely slowly.
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Fig. 3.4: Quantities defined by (3.157) and (3.158) as a function of the frequency ω, for representative
values of the parameter α. In panel (a) the numerator N (ω, α) is depicted, while panel (b) shows the
ratio N (ω, α)/D(ω, α).

Moreover, the ratio of (3.157) and (3.158), N (ω, α)/D(ω, α), is not only positive for ω ≪ 1

but also N (ω, α)/D(ω, α) → ∞ when ω → 0 (i.e., when n → ∞) as shown in Fig. 3.4(b).

This feature provides robustness for subcriticality. Note that subcriticality also occurs for

optimal velocity functions different from (1.24), e.g., for (1.25) and (1.26).

According to the general expression (3.95), by using definition (3.104), formulae (3.116)

and (3.120), and expressions (3.156)–(3.158), the amplitude vamp of the unstable oscillations

is obtained in the form

vamp =

√

−Re
(
λ′1(h

∗
cr)
)

∆
(h∗ − h∗cr)

=
ω

sin(kπ
n

)

√√√√√√
− 2V′′(h∗cr)

V′′′(h∗cr) +

(
V′′(h∗cr)

)2

V′(h∗cr)

N (ω, α)

D(ω, α)

(h∗ − h∗cr) .
(3.159)

Note that zero reaction time delay results in N (ω, α)/D(ω, α) ≡ −1 as shown in [39]. In

that case subcriticality appears only for extremely high values of the desired speed v0 when the

term 6b3cr becomes greater than (2b2cr)
2/b1cr at the critical points (of the non-delayed model).

Consequently, the presence of the drivers’ reaction time delay has an essential role in the

robustness of the subcritical nature of the Hopf bifurcation. This subcriticalty explains how

traffic waves can be formed when the uniform flow equilibrium is stable. Large perturbations

78



3.3. APPLICATION TO THE CAR-FOLLOWING MODEL

may not decay but rather push the system ‘outside’ the unstable periodic solution.

In correspondence with (3.97) the unstable periodic motion can be written as

y(t) = vamp

(
S1 cos(ωt) − S2 sin(ωt)

)
, (3.160)

where the vectors S1 and S2 are given in (3.134). Substituting these vectors into (3.160) and

using definitions (3.102) and (3.105), one can determine the velocity

ẋi(t) = v∗ + ẋp
i (t) = v∗ + vamp cos

(
2πk
n
i+ ωt

)
, i = 1, . . . , n . (3.161)

(Compare (3.161) with (3.15) but note that the linear analysis in Section 3.1 did not provide

vamp.) Formula (3.161) describes a wave travelling opposite to the vehicle flow with spatial

wave number k (i.e., with spatial wavelength L/k = h∗n/k), and the corresponding wave

speed is given by (3.18).

In order to check the reliability of the Poincaré-Lyapunov constant (3.156) and the ampli-

tude estimation (3.159), we compare these analytical results with those obtained by numerical

continuation techniques with the package dde-biftool [36]. (More detailed continuation re-

sults can be found in Chapter 4).

Fig. 3.5 demonstrates the subcriticality for n = 9 cars. The horizontal axis corresponds

to the uniform flow equilibrium, that is, stable for small and large values of h∗ (shown by

green solid line) but unstable for intermediate values of h∗ (shown by red dashed line). This

corresponds to (3.10),(3.114) and to the horizontal cross section of Fig. 3.2(f) at α = 1.0. The

Hopf bifurcations are marked by blue stars (∗). The branches of the analytically calculated

unstable periodic motions with amplitudo (3.159) are shown by red dashed curves. The

gray curves show the numerical continuation results obtained by dde-biftool. Gray solid

curves represent stable oscillations while gray dashed curves represent unstable ones. The

fold bifurcation points are marked by gray crosses (x).

The comparison of the analytical and numerical results shows that the analytical ap-

proximation of the unstable oscillations is quantitatively reliable in the vicinity of the Hopf

bifurcation points. However, the size of this neighbourhood is not provided by the analytical
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Fig. 3.5: The amplitude vamp of velocity oscillations as a function of the average headway parameter
h∗ in case of n = 9 cars, for wave numbers k = 1 (a), k = 2 (b), k = 3 (c), and k = 4 (d); the
desired speed is v0 = 1.0 and the sensitivity is α = 1.0. The horizontal axis (vamp ≡ 0) represents
the uniform flow equilibrium. The analytical results are coloured: green solid and red dashed curves
represent stable and unstable branches, respectively, and blue stars (∗) stand for Hopf bifurcations.
Gray curves correspond to numerical continuation results: solid and dashed curves refer to stable and
unstable states and gray crosses (x) represent fold bifurcations.

approach. Qualitatively we obtain the correct behaviour up to the fold bifurcation points,

but those bifurcations cannot be detected by the method above. To explore the full nonlinear

behaviour of the system we use continuation techniques in Chapter 4.

We found that the Hopf bifurcations are all robustly subcritical for any wave number k

(except for large k
n
≃ 1/2; see Fig. 3.5(d)). Note that analytical and numerical results agree

better as the wave number k is increased because the oscillations become more harmonic.

For wave number k = 1 the oscillation branch becomes stable between the two fold bifur-
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cation points; see Fig. 3.5(a). The corresponding stop-and-go oscillations include travelling

with low velocity (practically zero) and travelling with high velocity (close to the desired

speed v0). Wide regions of bistability can be observed between the Hopf and the fold bifur-

cation points on both sides of the unstable equilibrium. In such domains, for a perturbation

‘smaller’ than the unstable oscillation, the system approaches the uniform flow equilibrium.

If a larger perturbation is applied then the system develops a spatial stop-and-go wave which

propagates against the traffic flow. In reality these large perturbations might be caused, for

example, by a slower vehicle (such us a lorry) changing lanes.

As was mentioned in Section 3.1, the wave numbers k > 1 are related to Hopf bifurca-

tions in the parameter region where the uniform flow equilibrium is already unstable. This

also means that the corresponding oscillations for k > 1 are unstable independently of the

criticality of these Hopf bifurcations; see Fig. 3.5(b)–(d). Also the oscillation branch remains

unstable between the fold bifurcation points. Thus, the only stable oscillating state is the

stop-and-go motion for k = 1, but several unstable solutions co-exist.

In the analytical calculation we used a third degree approximation of the nonlinearities

which gives the correct subcritical behaviour and consequently the possibility of bistability.

However, this approximation is not able to find fold bifurcations of periodic solutions and the

consequent stable oscillations. To find this global behaviour, one needs to investigate the full

nonlinear dynamics by using numerical continuation techniques.
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Chapter 4

Numerical bifurcation analysis

In the previous chapter we examined how the uniform flow equilibrium (1.16),(1.18) can lose

its stability through Hopf bifurcations when parameters are changed. A detailed study of

the Hopf curves was given in Section 3.1. In Section 3.3, the stability and amplitude of the

resulting periodic solutions were also determined close to the Hopf bifurcation points. We

are now interested in what happens to the branches of periodic solutions far from the Hopf

bifurcation points, i.e., in the global dynamics of the system (1.6),(1.23).

The global dynamics of the optimal velocity model (1.23) was probed by numerical simu-

lation in [29]. In contrast, we use numerical continuation techniques to perform a bifurcation

analysis of this model. This methodology enables us to calculate efficiently branches of peri-

odic solutions (corresponding to traffic jams) far from the uniform flow equilibrium, and to

classify regions of parameter space where the equilibrium is stable yet co-exists with other

non-trivial stable solutions. In such bistable regions of parameter space, the choice of initial

conditions determines which traffic behaviour is selected as time t→ ∞.

The basic idea is to find a bifurcation (in our case the Hopf bifurcation of the uniform flow

equilibrium) and then follow or continue the bifurcating solution (in our case the periodic

solution) as a parameter is changed (in our case the average headway). While it is not as

straightforward as numerical simulation, numerical continuation is a powerful tool in that
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it allows one to map out the dynamics of a system in a systematic and efficient way. This

approach is well established for systems modelled by ODEs and has been applied successfully

in many application areas; see, e.g., [47, 73] as entry points to the extensive literature. The

non-delayed model (1.13) has recently been investigated by Berg and Wilson [19], and by

Gasser et al. [39] with the help of the continuation the package auto [32].

In this work, dealing with a system with delay results in additional technical difficulties,

due to the fact that the phase space of a DDE is infinite dimensional. For example, as

described in Sections 2.2 and 3.2.2 the linearizations around steady states and oscillating

solutions are infinite-dimensional operators (rather than matrices for the finite-dimensional

ODE-case). This means that standard continuation software for ODEs, such as auto [32],

cannot be used. However, recently, the package dde-biftool, which works under Matlab,

was developed by Engelborghs et al. [35, 36]; see Section 2.4 for details. This software uses

truncated matrices of appropriate sizes instead of infinite-dimensional operators, and is able

to find and follow equilibria and oscillating solutions of DDEs, even when they are unstable.

Further, it allows one to detect local bifurcations, where a solution changes its stability.

For example, in our model we are able to find the Hopf bifurcation (where small amplitude

oscillations are born) and the fold bifurcation of oscillating solutions (when two oscillating

solutions of different stabilities merge and disappear). Note that in contrast to auto, dde-

biftool has not yet been used extensively in applications; its principal use so far has been

in the study of semiconductor laser systems; see Green & Krauskopf [43] and Haegeman et

al. [48].

The structure of this chapter is as follows. In Section 4.1 we display the branches of

periodic solutions as a function of the average headway parameter h∗ for several fixed values

of the other parameters, namely the sensitivity α, the desired speed v0, and the number

of cars n. In Section 4.2 we examine the structure of periodic orbits at particular points

on the computed branches. Finally, in Section 4.3 we present two-dimensional bifurcation

diagrams in the headway-sensitivity (h∗, α) plane, for different fixed values of v0 and n, thus

representing the dynamics in a concise way. In such diagrams regions of phenomena such as
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co-existence, collision and stopping are indicated. The material presented in this chapter is

contained in the articles [85, 88, 89].

4.1 One-parameter continuation of periodic solutions

In this section we follow branches of oscillating solutions and detect bifurcations when using

the average headway h∗ as the bifurcation parameter. During this branch-following, the

values of the parameters α, v0, and n are fixed. We indicate the dependence of the dynamics

on α, v0, and n by performing the continuation analysis for a small collection of representative

values. We investigate the dynamics using the smooth optimal velocity function (1.24) with

fixed scaling parameter s = 1 (blue solid curve in Fig. 1.6). Note that only quantitative, not

qualitative changes are caused by changing s. Furthermore, to avoid the singularities due to

the translational symmetry we use the constraint (1.15) to define the headway hn of the nth

car with the headways hi, i = 1, . . . , n− 1 of the other vehicles according to

hn(t) = L−
n−1∑

i=1

hi(t) . (4.1)

Thus we reduce the number of equations to 2n−1 in the studied delayed system (1.6),(1.23).

Throughout, the bifurcating branches of oscillating solutions are represented by the am-

plitude of oscillation of the vehicles’ velocities

vamp =
(
max

t
v(t) − min

t
v(t)

)
/2 . (4.2)

In such pictures the horizontal axis is the average headway h∗ and the vertical axis displays

the solution norm defined by (4.2). For the uniform flow equilibria we have vamp = 0, since

v(t) ≡ max
t
v(t) ≡ min

t
v(t) according to (1.16). Note that for the periodic solutions vamp is

the same for each car. This is a direct consequence of the Zn symmetry of the system (i.e.,

each driver has the same characteristics), which implies that

vi(t) = vi+1

(
t− k

n
Tp

)
, hi(t) = hi+1

(
t− k

n
Tp

)
, i = 1, . . . , n− 1

vn(t) = v1
(
t− k

n
Tp

)
, hn(t) = h1

(
t− k

n
Tp

)
,

(4.3)
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Fig. 4.1: The amplitude vamp of velocity oscillations as a function of the average headway parameter
h∗ for v0 = 0.35 in the case of n = 3 cars. The horizontal axis represents the equilibrium state. Green
solid curves denote stable, and red dashed curves denote unstable states; the dotted curve represents
the collision region. Hopf bifurcations are depicted as blue stars (∗) and fold bifurcations as blue
crosses (x). The value of α is given in each panel (a)–(d).

for the periodic solutions, where Tp is the period. In other words, it is sufficient to plot the

profile of, say, the first car; the profiles for all other cars are simply time-shifted copies as it

was expressed by (3.15) and (3.161) for the weakly nonlinear oscillations. Note that in the

case of k waves on the ring the time k Tp is smaller than the time needed for driving around

the circular road, since the waves move in the upstream direction (against the flow of traffic).

The continuation results are shown in Figs. 4.1–4.5, where green solid curves denote

stable solutions whereas red dashed curves denote unstable solutions. (Dotted sections of

the green curves correspond to collision of vehicles as explained in detail in Section 4.2.)

Hopf bifurcations of the uniform flow equilibrium are denoted by blue stars (∗), and fold
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bifurcations of the periodic solution are denoted by blue crosses (x). The branch of equilibria

is unstable between the two outermost Hopf bifurcation points, in accordance with the results

of Section 3.1.

As mentioned above, we use h∗ as the bifurcation parameter and continue the branches

of periodic orbits for different fixed values of the other parameters α, v0, and n. Firstly, the

investigation is restricted to the unrealistic setting of n = 3 cars for proof-of-concept purposes

and qualitative changes to the branches are studied as α and v0 are changed. Then we fix α

and v0 and study the trends for increasing numbers of cars n.

Let us consider the case n = 3 and first concentrate on the continuation results when

the parameter α is changed and we fix v0 = 0.35. This value gives qualitatively the stability

behaviour shown in Fig. 3.1(b). For large values of α the two Hopf bifurcations are super-

critical, as shown in Fig. 4.1(a). The computation of the bifurcating periodic solution shows

a stable oscillation branch above the unstable part of the equilibrium. We remark that the

unstable regime of the equilibrium disappears for very large α (see Fig. 3.1(b)): the two Hopf

bifurcation points coalesce and disappear, leaving the equilibrium stable for all h∗.

As we decrease α, the right Hopf point becomes subcritical, i.e., the right-hand side of the

branch of oscillating solutions becomes unstable. Where the stable and unstable parts meet,

a fold bifurcation takes place (marked by blue cross (x)), as depicted in Fig. 4.1(b). Hence,

a bistable regime appears to the right of the right-most Hopf point, which means that in

the initial value problem, solutions tend either to the equilibrium or to the oscillatory state,

depending on the initial condition. When decreasing α further, the branch of oscillating

solutions grows, as is visualised in Fig. 4.1(c), and the bistable regime becomes wider.

As we reduce α further, an unstable section appears on the left-hand side of the branch of

oscillating solutions (new dashed section) bounded by two fold bifurcations. This results in

a second bistable regime in the parameter h∗, where two different stable oscillations co-exist,

one with a smaller and one with a larger amplitude. As α is decreased further, the lower fold

point tends to the left Hopf point, but does not reach it even when α is close to zero.
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h∗ for α = 0.1 in the case of n = 3 cars. The horizontal axis represents the equilibrium state.
Green solid curves denote stable, and red dashed curves denote unstable states. Hopf bifurcations are
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The height of the branch of oscillating solutions changes roughly proportionally with v0,

because drivers want to reach the desired speed even during oscillations. Fixing α = 0.1 and

changing v0, we obtain a series of bifurcation diagrams shown in Fig. 4.2. When increasing v0,

we observe the same qualitative changes as in Fig. 4.1. In fact, a high desired speed, (possibly

corresponding to a high speed limit), can cause the onset of oscillations, independently of

changes in other parameters.

Now we present the results for increased values of the desired speed v0 = 1.0 to discover

a different type of bifurcation behaviour. This value of v0 gives qualitatively the stability

behaviour as shown in Fig. 3.1(c), i.e., linear instability cannot be avoided by increasing α.
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solid curves denote stable, and red dashed curves denote unstable states; the dotted curve represents
the collision region. Hopf bifurcations are depicted as blue stars (∗) and fold bifurcations as blue
crosses (x). The value of α is given in each panel (a)–(d).

If we change α for this value of v0, then the plots shown in Fig. 4.3 are obtained. On both

sides of the branch of oscillating solutions, the same type of bistability appears, namely an

unstable section of the branch of oscillating solutions between a fold and a subcritical Hopf

bifurcation. This behaviour is robust, that is, it does not change qualitatively when α is

tuned, but the size of the bistability region increases by decreasing α.

Our aim is now to extend the results to larger n, and in particular to draw out the trends

which may emerge as n is increased towards numbers that are more representative of real

traffic situations. For simplicity we fix α = 1.0 and v0 = 1.0 throughout.
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Fig. 4.4: The amplitude vamp of velocity oscillations as a function of the average headway parameter
h∗ for n = 3 (a), n = 5 (b), n = 9 (c), and n = 17 cars (d); the desired speed is v0 = 1.0 and the
sensitivity is α = 1.0. Stable states are represented by green solid curves, while unstable states by red
dashed curves. Hopf bifurcations are depicted as blue stars (∗) and fold bifurcations as blue crosses
(x).

The one-parameter continuation results are presented in Fig. 4.4 for n = 3, n = 5, n = 9,

and n = 17 cars. Note that for simplicity we consider only odd numbers of cars. For even

numbers of cars the situation is rather similar although there are some differences even at the

level of linear stability, as is described in Section 3.1.2. Indeed the uniform flow equilibrium is

stable for large and small values of h∗ in accordance with Fig. 3.2(f). The branches of periodic

solutions connect the subcritical Hopf bifurcation points and they are strictly ordered so that

the branch for k = 1 is the outermost and the branch for k = (n − 1)/2 is the innermost.

The only non-trivial stable solutions are those ‘at the top’ of the k = 1 branch, between the

fold bifurcation points.
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Fig. 4.5: The k = 1 branches from Fig. 4.4 of periodic solutions for n = 3, n = 5, n = 9, and n = 17
cars. Stable states are represented by green solid curves, while unstable states by red dashed curves.
Hopf bifurcations are depicted as blue stars (∗) and fold bifurcations as blue crosses (x).

Images similar to Fig. 4.4 can be found in [39] for the OV model [15] without delay.

However, in our case, the Hopf bifurcations are robustly subcritical due to the delay, which

was proven using normal form calculations in Section 3.3.3. Consequently, the branches for

different k are much more pronounced and there are wide regions of bistability (for k = 1)

and co-existence (for k > 1). This bistable behavior for k = 1 was also found in a first-order

delayed model [58].

Note that there appear to be two types of convergence on the level of the one-parameter

bifurcation diagrams. Firstly, Fig. 4.4 is partial evidence that, as n gets larger and larger,

the branch for any fixed k > 1 converges, in the pseudonorm defined by (4.2), to the k = 1

branch. Consequently, one might conclude that for k = k∗ > 1 and n/k∗ sufficiently large,

the k = k∗ and k = 1 branches have significant structural features in common. Secondly,

as is illustrated in Fig. 4.5, it appears that, as n is increased (through n = 3, 5, 9, 17), the

k = 1 branch tends to a limit curve. This limiting behaviour is indicative of travelling wave

dynamics, since the system, in the large n limit, does not ‘feel’ (over intermediate time scales)

that it is subject to periodic boundary conditions.
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Fig. 4.6: Oscillations of the velocity v1 of the first car over one period are shown in dark blue to the
scale on the left; oscillations of the headway h1 of the first car over one period are shown in green to
the scale on the right. Cases A–F correspond to the marks in Fig. 4.1.

4.2 Time plots and structure of periodic solutions

We now consider how the features of the one-parameter bifurcation diagrams manifest them-

selves in the profiles of the associated oscillations. We examine the effects of changes in

parameters first in the case study of n = 3 vehicles, and we introduce of the phenomena of

collision and stopping. Then we study how the structure of the oscillations changes as the

number of cars n is increased and stop-fronts and go-fronts are formed.
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Fig. 4.7: Oscillations of the velocity v1 of the first car over one period are shown in dark blue to the
scale on the left; oscillations of the headway h1 of the first car over one period are shown in green to
the scale on the right. Cases G–L correspond to the marks in Fig. 4.3.

We marked some points A–C on the branch in Fig. 4.1(c), D–F on the branch in Fig. 4.1(d),

G–I on the branch in Fig. 4.3(c), and J–L on the branch in Fig. 4.3(d), and we now display

the associated time profiles in Fig. 4.6(a)–(c), in Fig. 4.6(d)–(f), in Fig. 4.7(a)–(c), and in

Fig. 4.7(d)–(f), respectively. We show the velocity v1 (dark blue curve) and the headway h1

(green curve) of the first car over one oscillation period so that the velocity takes its maxi-

mum at t = 0. (The plots are the same for all cars by symmetry, except for a time shift as

given by (4.3).)
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First we consider the time profiles shown in Fig. 4.6(a)–(c) which correspond to the

marked points A–C on the oscillation branch in Fig. 4.1(c). In case A vehicles nearly stop,

and in case C the maximum speed is close to the desired speed v0 = 0.35. Otherwise, there

is no qualitative change between cases A–C. In addition, one can see that the oscillations

of the headway are more harmonic than those of the velocity, that is, they are quite well

approximated by the first term of the Fourier expansion.

An important qualitative difference for larger v0 is that vehicles come very close to a stop

(vi ≃ 0) in one section of there period, see time profiles Fig. 4.7(a)–(c), corresponding to

the marked points G–I on the oscillation branch in Fig. 4.3(c). In fact, model (1.23) is such

that zero velocity cannot be attained in finite time (the decay of the velocity is exponential).

However, loosely speaking, the ‘stopping section’ is the largest in case G, is smaller in case

H, and disappears in case I. Furthermore, in case H the maximum speed nearly reaches the

desired speed v0 = 1.0. The collective motion of the system is a stop-and-go traffic jam: the

congestion consisting of standing vehicles propagates upstream along the ring, because cars

leave the jammed region at the front and enter at the back. Note that in the case of n = 3

cars, this jam is not pronounced, but the qualitative features of the oscillations are exactly

the same as in the many-car case. As can be seen below for larger numbers of cars, this

near-stopping motion is a typical system behaviour.

A noticeable phenomenon in Fig. 4.1(d) and in Fig. 4.3(d) is that the headway crosses

zero during its oscillation along the dotted section of the oscillating branch, i.e., cars ‘move

through one another’, which may be interpreted as collision. When the headway becomes

negative the model is clearly unphysical. However, to investigate this unphysical behaviour,

we simply extend the definition (1.24) of the OV function for negative headways by setting

V(h) :≡ 0 for h < 0. As mentioned above, we marked some points D–F on the branch of

oscillating solutions in Fig. 4.3(d) and we display the respective oscillations of the velocity

and the headway in Fig. 4.6(d)–(f). One can see in case D that the vehicles nearly stop and in

case F that they nearly reach the maximum speed v0 = 0.35. Furthermore, in cases D and E

cars ‘touch each other’, because these points are on the edge of the collision region as shown
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in Fig. 4.1(d). Reducing α further, this collision section becomes larger and finally covers the

entire stable part of the branch. Similar behaviour can be examined in Fig. 4.7(d)–(f) which

belong to the points marked J–L on the oscillation branch in Fig. 4.3(d). In particular, in

case J stopping and collision take place together.

Our main interest is now how the structure of the above oscillations changes for larger

numbers of cars. In Fig. 4.8 we present the oscillation profile of the k = 1 periodic solution

for n = 3, n = 5, n = 9, and n = 17 cars. This figure is for h∗ = 2.1; c.f., Fig. 4.5. Plotted

are the velocity v1 and the headway h1 of the first car, where we chose the maximum of v1

to be at t = 0 again. In Fig. 4.8 all panels are drawn to the same scale so that the panel

width is that of the period of the oscillation Tp for n = 17. The red dashed lines indicate one

period for n = 9, n = 5, and n = 3 in panels (b), (c), and (d), respectively. The profile for

k = 1 corresponds to a situation where the cars have (practically) zero velocity for part of

the oscillation. Fig. 4.8 indicates that there is a convergence of the profiles with increasing

n: the oscillation develops fronts that connect the region with (practically) zero velocity to

a plateau with an (almost) constant maximal velocity. Similarly, the headway develops two

regions with almost constant (small or large) headways. We distinguish between stop-fronts

that connect a high velocity to an almost zero velocity, and go-fronts that connect an almost

zero velocity to a high velocity. Both types of fronts appear to tend to a limit shape as n is

increased; this is why we plotted all profiles in Fig. 4.8 on the same time-scale.

In Fig. 4.9 we consider how the structure of the oscillations depends on the wave number

k. We now fix n = 17 and consider h∗ = 2.1 again; c.f., Fig. 4.4(d). The time-scale of all

plots is similar to that of Fig. 4.8, in this case all panels have a width corresponding to the

period Tp of the k = 1 oscillation. As k decreases one notices again that the fronts between

different plateaux appear to converge in profile: the main difference between the cases is the

length of the plateaux. Note the contrast between Fig. 4.8 and Fig. 4.9: in Fig. 4.8 we fix

k = 1 and increase n, whereas in Fig. 4.9 we fix a quite large value of n = 17 and increase k.

The period of oscillations satisfies

Tp ≃ C
n

k
, (4.4)
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Fig. 4.8: Oscillation profiles for wave number k = 1 and for n = 17 (a), n = 9 (b), n = 5 (c), and
n = 3 cars (d); the desired speed is v0 = 1.0, the sensitivity is α = 1.0, and the average headway is
h∗ = 2.1. The velocity v1 of the first car is shown in dark blue to the scale on the left; the headway
h1 of the first car is shown in green to the scale on the right. All panels are shown on the scale of
one period of Tp ≃ 65.8171 for n = 17; the other periods of Tp ≃ 34.8447 for n = 9, Tp ≃ 19.3540 for
n = 5, and Tp ≃ 11.5445 for n = 3 are indicated by red dashed vertical lines. Notice the convergence
of the stop-fronts and go-fronts, that is, the sections of the orbits that connect the plateaux approach
a fixed profile as n is increased.

for a constant C that depends on the parameters h∗, α, and v0; and which is represented in

Fig. 4.8 and in Fig. 4.9 with the help of the red vertical dashed lines. This means that the
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Fig. 4.9: Oscillation profiles for n = 17 and for wave numbers k = 1 (a), k = 2 (b), k = 3 (c),
and k = 4 (d); the desired speed is v0 = 1.0, the sensitivity is α = 1.0, and the average headway is
h∗ = 2.1. The velocity v1 of the first car is shown in dark blue to the scale on the left; the headway
h1 of the first car is shown in green to the scale on the right. All panels are shown on the scale of
one period of Tp ≃ 65.8171 for k = 1; the other periods of Tp ≃ 32.908 for k = 2, Tp ≃ 21.9379 for
k = 3, and Tp ≃ 16.4403 for k = 4 are indicated by red dashed vertical lines. Notice the convergence
of the stop-fronts and go-fronts, that is, the sections of the orbits that connect the plateaux have
approximately the same structure for small k.

strongly nonlinear oscillations preserve the spatial wave motion described by (3.161). It can

also be checked that the period of oscillation does not change significantly along the oscillation
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branches, so the wave speed (3.18) computed at the linear level is a good approximation even

at the nonlinear level.

For large n/k, we have shown that the stop-fronts and go-fronts have a limiting structure.

This result indicates that we have recovered fronts that are close to travelling wave solutions

in the case of open boundaries, and that only feel each other weakly since the number of

vehicles (∼ n/k) between structures is large. The dynamics of these fronts are investigated

in detail in Chapter 5.

4.3 Two-dimensional bifurcation diagrams

In this section we use two-dimensional bifurcation diagrams to summarise how the qualitative

behaviour depends on the problem parameters, namely the average headway h∗, the sensitiv-

ity α, the desired speed v0, and the number of cars n. In Section 3.1.2 we presented similar

diagrams (Figs. 3.1 and 3.2) which were concerned only about the linear dynamics of the

system around equilibrium (1.16),(1.18). The information concerning the global dynamics

was presented in Section 4.1 by plotting the amplitude of the oscillations as a function of the

control parameter h∗ for different fixed values of α, v0, and n; and in Section 4.2 by showing

the the structure of oscillations at different points along these branches.

We now present the global dynamics in a more concise way as two-dimensional bifurcation

diagrams in the (h∗, α) plane for fixed v0 and n. Specifically, we show solid curves of Hopf

bifurcations, red dashed curves of fold bifurcations of oscillating solutions, gray curves of

first collision, and dotted curves of first stopping. These curves divide the (h∗, α) plane into

regions of qualitatively different behaviour. In this representation, the diagrams we showed

earlier in Section 4.1 correspond to horizontal cross sections with fixed values of α.

The Hopf bifurcation curves are the only curves that can be computed directly with

dde-biftool, but in our case these are given analytically by (3.10). Fold bifurcations can

only be detected by this software, and the fold curves found here were found by a script
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that detects a suitable number of individual fold points for (about 50) different values of the

parameter α. In a similar approach, the collision curve was found by detecting points where

the headway h1 of the oscillating solution first crosses zero. Similarly, the stopping curve was

found by detecting when the velocity v1 first becomes (approximately) zero; in practice we

used the criterion that v1 < 0.01 because the velocity never actually attains zero (it decays

exponentially). As before, we first concentrate on the proof-of-concept case of n = 3 cars

where by investigating the dynamics in the (h∗, α) plane for different values of v0 allows us

to describe the dynamics of the system in the complete parameter space. Then we fix the

desired speed as v0 = 1.0 and investigate the changes in the (h∗, α) plane by increasing the

numbers of cars n.

In Fig. 4.10 the (h∗, α) bifurcation diagram is shown for n = 3 cars for three representative

values of v0, namely for 0.35, 0.65, and 1.0. We now discuss the results of this figure in some

detail. For v0 = 0.35, shown in Fig. 4.10(a), the Hopf bifurcation curve is one single curve

as in Fig. 3.1(b) (the top of the curve is not visible in the chosen window of α). The

outer blue shaded area corresponds to the stable uniform flow solution as before. The fold

bifurcation curves of the periodic solution are situated on the right-hand side of the right

Hopf curve and on both sides of the left Hopf curve. The fold curve on the right starts at

a degenerate Hopf point DHr and approaches the h∗ axis as shown. Above DHr the Hopf

bifurcation is supercritical and below DHr it is subcritical. The region between the Hopf and

the fold curve is thus identified as a region of bistability, where the equilibrium and a stable

periodic solution co-exist. On the left-hand side, the Hopf bifurcation is always supercritical

and the bistability appears via a cusp bifurcation where two fold curves are born; see the

inset of Fig. 4.10(a). The two fold curves end approximately at the points (0, 0.0167) and

(1, 0). The region between the two fold curves is a region of bistability. The Hopf curve

divides this region into two subregions, in which the one on the left corresponds to the co-

existence of an equilibrium and a stable oscillating solution, while the very small region on

the right corresponds to the co-existence of two stable oscillating solutions; c.f. Fig. 4.1(d).

For v0 = 0.35 there is no stopping motion, but we find the gray curve of the first collision

cutting across the bifurcation diagram. In the gray shaded domain below this curve collisions
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Fig. 4.10: Two-dimensional bifurcation diagrams in the (h∗, α) plane for n = 3 cars for different
values of v0 as indicated. At points denoted by red crosses (x) the Hopf bifurcation is degenerate. The
horizontal dashed-dotted lines in panels (a) and (c) correspond to the values of α used in Figs. 4.1
and 4.3, respectively.
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occur, which means that there are no collisions for α & 0.0805. The individual panels of

Fig. 4.1 correspond to horizontal cross sections through Fig. 4.10(a) at the indicated values

of α. In particular, Fig. 4.1(d) features collisions for values of h∗ from the section between the

two intersection points with the collision curve. This section becomes larger as α is decreased

further. Where the collision manifold reaches the fold curve, collisions occur over the entire

branch of stable oscillating solutions.

For v0 = 0.65, shown in Fig. 4.10(b), the bifurcation diagram is qualitatively the same as

for v0 = 0.35 except for two differences. Firstly, the cusp point is gone and two degenerate

Hopf points DHl1 and DHl2 are now the end points of the two fold curves on the left. (This

change happens for a specific value of v0 when the cusp point reaches the Hopf curve at

α ≃ 0.4.) The Hopf bifurcation is subcritical between these two degenerate Hopf points and

supercritical otherwise. Co-existing stable oscillating solutions exist only in the tiny region

between the Hopf curve and the fold curve below DHl1 (on the right side of the Hopf curve).

In the much larger region between the other fold curve and the Hopf curve below DHl2 (on

the left side of the Hopf curve), there is co-existence between the stable equilibrium and

stable oscillations. The collision domain is qualitatively the same but it is now a bit larger;

its top is at α ≃ 0.227. The other new feature is the existence of near-stopping motion on

the domain bounded by the left fold curve and the dotted stopping curve. The curve of

near-stopping, defined as v1 = 0.01, appears to start at the point DHl2 and connect to a

point on the left-most fold curve.

For v0 = 1.0, shown in Fig. 4.10(c), there are now two vertical asymptotes for the two Hopf

curves, as in Fig. 3.1(c), meaning that the unstable area is now unbounded in α. Compared

with the situation for v0 = 0.65, the points DHl2 and DHr move up in α and out of our

window, ‘dragging’ the associated curves with them. In fact, these points have disappeared

so that the fold curves and the stopping curve also now have vertical asymptotes. (We

found that all vertical asymptotes develop for v0 ≃ 0.7198.) In other words, Fig. 4.10(c) is

qualitatively the same as Fig. 4.10(b) for, say, α . 0.7. Notice how the stopping region is now

much larger. Furthermore, the collision domain is also much larger; its top is at α ≃ 0.61.
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The indicated horizontal cross sections correspond to the panels of Fig. 4.3.

When considering different values of the scaling parameter s, the only qualitative change

is that the cusp point may be below the collision curve. For the OV functions VB4(h) (1.25)

or VS(h) (1.26), one can obtain similar branches of oscillating solutions as above, although

the dynamics may be non-smooth and thus dde-biftool may run into difficulties.

Our aim is now to show the general trends in the qualitative dynamics in the (h∗, α) plane

as n is increased towards numbers that are more representative of real traffic situations. To

simplify matters, we fix v0 = 1.0. Note that choosing larger values of v0 does not change

the linear stability diagram qualitatively; see Section 3.1.2. In particular, we find regions

of parameter space where a stable periodic solution with k = 1 traffic jam co-exists with

unstable periodic solutions corresponding to k > 1 evenly spaced traffic jams.

Since continuation studies with dde-biftool are quite intensive in terms of CPU time

and memory, the bifurcation analysis for very large numbers of cars is unfeasible. We found

that the case of n = 9 cars is a good compromise: it is sufficiently general to showcase

all phenomena in the bifurcation diagram while still being small enough to allow for a full

bifurcation analysis.

In Fig. 4.11 we present three bifurcation diagrams in the (h∗, α) plane for n = 3, n = 5,

and n = 9 cars. We now describe the common qualitative features of these two-parameter

bifurcation diagrams and then give particular details for each of the cases.

Firstly, the linear theory of Section 3.1 gives explicit curves in the (h∗, α) plane where the

uniform flow equilibrium loses stability via a Hopf bifurcation that gives rise to oscillations

with wave number k = 1. These Hopf bifurcation curves are shown in Fig. 4.11 as bold solid

curves and the blue shaded areas indicate where the uniform flow equilibrium is stable. For

n > 3 cars there is a further set of admissible wave numbers k = 2, . . . , (n− 1)/2. (To reduce

the number of special cases, we consider only the n odd case.) The linear theory gives explicit

curves on which further Hopf bifurcations of the (already unstable) uniform flow equilibrium

occur (i.e., other complex conjugate pairs of characteristic exponents, corresponding to a
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Fig. 4.11: Two-dimensional bifurcation diagrams in the (h∗, α) plane for n = 3 (a), n = 5 (b), and
n = 9 cars (c) for desired speed v0 = 1.0. At points denoted by red crosses (x) the Hopf bifurcation is
degenerate. In panel (c) the region of two traffic jams is defined by the condition max |µ| ≤ 1.01 for
the largest Floquet multiplier of periodic solutions for k = 2.

103



CHAPTER 4. NUMERICAL BIFURCATION ANALYSIS

mode with wave number k, cross into the right-half complex plane). These curves are shown

in Fig. 4.11(b) and (c) as thin solid curves.

The Hopf curves are nested in strict order so that the k = 1 curves are the outermost and

the k = (n− 1)/2 curves are the innermost. Further, for the chosen value v0 = 1.0, the Hopf

bifurcation curves all possess vertical asymptotes in the (h∗, α) plane as in Fig. 3.2(f), that

is, the unstable domains are unbounded in α.

If one examines the Floquet multipliers of the unstable bifurcating branches in the vicinity

of the Hopf bifurcation point, one finds 2k − 1 multipliers outside the unit circle (one real

multiplier and k − 1 complex conjugate pairs); see Section 5.2. Furthermore, each branch of

unstable periodic solutions usually undergoes a fold bifurcation as shown in Fig. 4.4, where

the real unstable Floquet multiplier crosses the unit circle inwards at 1. Consequently the

k = 1 branch becomes stable at this bifurcation, but the k > 1 branches remain unstable as

they still have 2(k − 1) Floquet multipliers outside the unit circle.

The fold bifurcation curves are shown in Fig. 4.11 as red dashed curves and the curves

for k = 1 are emphasized in bold. The Hopf curve for a particular k is nested inside the fold

curve for the same k, and the fold curves themselves are nested in strict order so that the

outermost curves belong to k = 1 while the innermost curves belong to k = (n−1)/2. Further,

most of the fold curves have vertical asymptotes meaning that the Hopf bifurcation remains

subcritical even as α→ ∞. However, in some cases the fold curve ends at a degenerate Hopf

point, i.e., at a point where the Hopf bifurcation changes from subcritical to supercritical as

α is increased: these points are marked by red crosses (x) in Fig. 4.11(b) and (c). For any

given n, degenerate Hopf points have only been observed to occur for the largest possible

wave number, which corresponds to the analytical results obtained in Section 3.3.3. Note

that in the vicinity of the point (1, 0) one might examine similar bistability as presented in

Fig. 4.10(c) even for n > 3. Nevertheless, the corresponding domains of parameter space

are so tiny that it seems sensible to neglect this effect. That is why these domains are not

depicted in Fig. 4.11.
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Inside the fold curve for k = 1, there exists a stable periodic solution, as detailed for

n = 3. Therefore, in the parameter domain sandwiched between the fold and Hopf curves

for k = 1, the stable periodic solution co-exists with the stable uniform flow equilibrium and

an unstable periodic solution. In other words, there is bistability in this region. When one

carries out an initial value simulation, the precise choice of initial data will select which of

the two stable solutions is observed as t→ ∞.

If we enter the parameter domain sandwiched between the fold and Hopf curves for k > 1,

then the only change is in the number of co-existing unstable solutions, and it is not yet clear

what this implies for the dynamics. For k1 < k2, there is no general principle as to whether

the Hopf curve for k1 is inside/outside the fold curve for k2, so there is a wide range of

possibilities for the combinations of co-existing unstable solutions.

We now describe tendencies of the three extra features that we have added in the two-

parameter diagrams of Fig. 4.11. We illustrated the stopping behaviour by adding a dotted

curve which, when crossed from right to left results in the minimum velocity of the stable

k = 1 branch falling below 0.01. When n increases, the dotted curve appears to converge to

the right-hand k = 1 fold curve. Thus it seems that cars always come close to stopping if n

is chosen sufficiently large.

The gray curve in Fig. 4.11 indicates where the the headway first becomes zero on the

k = 1 stable solution branch. Consequently, we can say that the model is definitely unphysical

in the gray shaded domain below this curve. The section of the gray curve, which connects

the k = 1 fold curves, appears to converge to a horizontal line as n increases. Consequently,

it appears that, in the large n limit, there is a critical α below which the model is unphysical.

However, this conclusion is only partial: above the gray curve there are most likely solutions

with plausible initial data which involve collisions as part of their transient behaviour, even

though their long-term dynamics is well behaved.

The most important extra feature, which is discussed in detail in Section 5.2, is the green

shaded domain in the middle of Fig. 4.11(c). This shading indicates that the largest Floquet
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multiplier of the (unstable) k = 2 branch has modulus less than 1.01. Consequently, in

this region, solutions with initial data chosen sufficiently close to the k = 2 unstable periodic

solution remain close to that solution for a long time. Therefore, although simulations indicate

that the generic t→ ∞ behaviour is convergent either to the uniform flow equilibrium or to

the stable k = 1 branch, richer possibilities may be observed over intermediately long time

scales.

While the continuation approach taken here limits n to relatively small values, Figs. 4.8

and 4.9 still clearly suggest a convergence of the k = 1 solution to some limiting shape as

n→ ∞, as well as a convergence of the oscillations for other wave numbers to that for k = 1

as n/k → ∞. As we will see in the next section, this has important consequences in terms

of the structure of transient traffic jams. Note that identifying the mathematical limit and,

in particular, the exact scaling of the fronts, remains an interesting challenge beyond the

bifurcation study presented here.
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Chapter 5

Transient behavior of traffic waves

In Chapter 4 the periodic solutions of system (1.6),(1.23) were investigated and it was shown

that for large numbers of cars, there are stop-fronts and go-fronts that connect plateaux

of high and low velocities. These fronts correspond to the entry and exit points of traffic

jams. However, the periodic solutions that we found are unstable for wave numbers k > 1.

Nevertheless, these unstable solutions influence the long time dynamics of the system and

this chapter is concerned with an analysis of the consequent transient effects.

Firstly, in Section 5.1 we give an overview of the long-time macroscopic dynamics of

stop-and-go waves under ring-road boundary conditions. Then in Section 5.2 the Floquet

multipliers of periodic orbits are investigated in order to determine the ‘degree’ of stability

of these orbits and to suggest time scales over which motions are repelled from them. This

analysis is used to give a linearized explanation of the relative motion of traffic jams, and

these motions are investigated further by numerical simulation in Section 5.3. The material

presented in this chapter was published in [85].
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Fig. 5.1: Long time evolution of stop-and-go waves detected when vehicles’ velocities are less than
v0/3. Panel (a) shows a spatio-temporal plot of the ring-road, where, due to the periodic boundary
conditions, the boundaries x ≡ 0 and x ≡ L = 100 are equivalent. Red curves show backward
travelling waves. The trajectories of every fifth forward travelling vehicle are shown by blue curves
(the trajectory of the first vehicle is emphasized in black). In the spatio-temporal plot of panel (b),
the relative positions of waves are shown for long time scales, so that the constant speed motion ct is
eliminated. The corresponding parameters are n = 50, v0 = 1.0, α = 1.0, h∗ = 2.0, and c = −0.0579.

5.1 Overview of traffic dynamics over long time scales

Traffic jams correspond to regions in space in which vehicles’ velocities (i.e., the gradient of

their space-time trajectories) is small; see Fig. 5.1(a). As observed by many other authors

(see, e.g., [53]), for appropriate parameters and initial data, traffic organizes into regions of

free flowing traffic divided by traffic jams which propagate at about the same speed to each

other in the opposite direction to the traffic flow. The question is how such traffic patterns

evolve.

For large numbers of cars, of particular interest is the interplay between propagating

traffic jams (Fig. 5.1(a)) and perfectly periodic solutions (Fig. 4.9). To understand these

traffic patterns one needs to consider the dynamics of a single vehicle as it drives repeatedly

around the circuit; see, e.g., the black trajectories in Fig. 5.1(a). The velocity plateaus at a

high value, meets a stop-front in which the vehicle decelerates into a traffic jam, plateaus at

a low value, and then passes through a go-front as it returns to free flow conditions. Since
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the stop-fronts and go-fronts propagate at about the same speed upstream, the motion of

the vehicle is approximately periodic in time because it encounters the same traffic pattern

for each circuit, albeit shifted according to the wave speed. The solutions shown in Fig. 4.9

are perfectly periodic and also possess stop-fronts and go-fronts that connect the high and

low velocity plateaux. Our belief is that the approximately periodic solutions lie on slow

manifolds that connect the various periodic solutions. Although, these manifolds are fully

nonlinear objects, a first step is to understand their structure at the linear level, in the

neighbourhood of perfectly periodic solutions.

The traffic jams in Fig. 5.1(a) are called stop-and-go waves, although we should emphasize

that each traffic jam is strictly speaking a pair of fronts with similar speeds, separated by a

low-velocity plateau. By eliminating the approximately constant speed of propagation ct of

the fronts, their relative dynamics can be explored as shown in Fig. 5.1(b). To bring out the

relevant features, a logarithmic scale is used along the horizontal axis. For intermediately long

time scales the relative motion of traffic jams is slow, however rapid merges and dispersions

can be observed from time to time. The key point to note is that different traffic jams have

similar speeds (that is, their relative speed is close to zero) and therefore they may co-exist

over intermediately long time scales. However, as t → ∞ traffic jams have a tendency to

merge or to disperse. For generic choices of initial data, numerical simulation indicates that

only a single traffic jam persists as t→ ∞.

5.2 Floquet multipliers and eigendirections

In this section we investigate the periodic solutions of Chapter 4 in further detail. Firstly,

Floquet multipliers are computed to investigate stability. Then with the help of the corre-

sponding eigenvectors, possible front motions are revealed. As explained in Section 2.2, the

periodic solutions are unstable when there exists a Floquet multiplier outside the unit circle.

However, when the largest ‘unstable’ Floquet multiplier is close to the unit circle, the system

is only weakly unstable in that it can stay in the vicinity of the periodic solution for a long
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time. More precisely, using the Floquet multiplier µ one can define the Floquet exponent ν

by

µ = eνTp , (5.1)

the real part of which given by

Reν =
ln |µ|
Tp

. (5.2)

Indeed,

Reν ≃ |µ| − 1

Tp
, for |µ| ≃ 1 . (5.3)

Assuming that there is a Floquet multiplier |µ| >≃ 1, the ‘distance’ from the periodic orbit

grows like eReν t, and thus, the time spent in the vicinity of the weakly unstable periodic

solution scales like 1/Reν ≃ Tp/(|µ| − 1).

By computing Floquet multipliers of periodic orbits we thus show that the periodic so-

lutions with wave numbers k > 1 are only weakly unstable. Furthermore, the corresponding

unstable eigendirections show that the mechanism of destabilization is via front dynamics.

Both the Floquet multiplier and mode shape calculations that we perform are achieved with

the numerical continuation software dde-biftool [36, 44]. We find that the largest Floquet

multiplier µ has a scaling of |µ| − 1 ∼ exp(−q n/k), q > 0. This analysis indicates that our

periodic solutions’ fronts correspond to travelling wave solutions when the boundaries are

open, but on the loop interact weakly via their exponential decaying tails (in a similar man-

ner to meta-stable front dynamics for the Allen-Cahn equation; see [23, 24]). We show that

the eigendirections correspond to relative front motion: either one stop-and-go pair catching

up another stop-and-go pair (merging of traffic jams), or the stop-and-go fronts of a single

jam colliding so as to disperse it.

We now look more closely at the stability properties of the different periodic solutions.

In Fig. 5.2 the modulus |µ| of the corresponding leading Floquet multipliers are depicted as

a function of the headway h∗ in the representative case of n = 9 cars for the wave numbers

k = 1, 2, 3, 4. Recall from Section 2.2 that for periodic solutions of DDEs the infinitely many

Floquet multipliers have the origin in the complex plane as their only accumulation point;

all Floquet multipliers that are not shown in Fig. 5.2 have modulus less than one for all
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Fig. 5.2: Modulus |µ| of the leading Floquet multipliers as a function of the average headway h∗ in
the case of n = 9 cars for wave numbers k = 1 (a), k = 2 (b), k = 3 (c), and k = 4 (d). This figure
corresponds to the branches of periodic solutions shown in Fig. 4.4(c); we have v0 = 1.0 and α = 1.0.
Hopf and fold bifurcation points are denoted by blue stars (∗) and blue crosses (x), respectively.

values of h∗. The leading Floquet multipliers were computed with dde-biftool as part of

the stability analysis along the branches shown in Fig. 4.4(c). To bring out the features, we

use a logarithmic scale along the vertical axis. For any k, at the Hopf bifurcation points
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Fig. 5.3: Eigendirections in the form of a direction fields plotted over twice the period of the periodic
solution as projections onto the velocity v1 of the first car. The red curves show the corresponding
modulated solutions. Panel (a) for µ ≃ −1.00844 corresponds to merging of traffic jams as shown
in Fig. 5.5, while panel (b) for µ ≃ −1.00753 corresponds to dispersion of one of the traffic jams as
depicted in Fig. 5.6. The parameters are n = 9, k = 2, v0 = 1.0, α = 1.0, and h∗ = 2.1.

there are two Floquet multipliers at 1 and another (k−1) complex conjugate pairs of Floquet

multipliers outside the unit circle. One multiplier (green curve) moves outside the unit circle

at the subcritical Hopf bifurcations (blue stars (∗)) and then crosses into the unit circle at the

fold bifurcations (blue crosses (x)). Similarly, the other leading multipliers for k > 1 appear

outside the unit circle at their subcritical Hopf bifurcations, but then stay outside the unit

circle over the entire range of h∗. Thus in particular, Fig. 5.2 shows that all periodic orbits

are unstable for k > 1. For even k we observe that one of the complex conjugate pairs of

Floquet multipliers may come together and produce two real Floquet multipliers. For n/k

large enough this happens close to the Hopf bifurcation point.
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However, Fig. 5.2(b) also shows that the oscillation for k = 2 is almost stable around

the point h∗ = 2.1; at this point the two unstable eigenvalues are real and negative, namely

µ ≃ −1.00844 and µ ≃ −1.00753. By setting a threshold for max |µ| one can quantify the

‘almost-stability’ of the periodic orbit for k = 2: inside the green shaded region in Fig. 4.11(c)

we have that max |µ| ≤ 1.01. While this bound is somewhat arbitrary, we found by numerical

simulation that traffic jams corresponding to k = 2 periodic orbits exist in this parameter

region for long periods of time; see Section 5.3 for more details on the connection between

periodic solutions and traffic jams. More generally, there is a region around h∗ = 2.1 where

the unstable waves for any k are in the same sense ‘least unstable’. Our numerical results

indicate that this effect is more pronounced the larger the number of cars n.

The instability of a weakly periodic orbit is very small, but it is not ‘spread evenly’ around

the periodic orbit. To show this we present in Fig. 5.3 the eigendirection associated with the

two unstable Floquet multipliers µ ≃ −1.00844 and µ ≃ −1.00753 of the weakly unstable

periodic orbit for n = 9 and k = 2. It is computed and represented by dde-biftool in

the form of a direction field that shows how a vector changes along the periodic orbit under

the action of the variational equation [44]. We show the unstable direction with respect to

the velocity profile of the first car. The Floquet multiplier measures the expansion (which is

practically nonexistent in our case of Floquet multipliers that are almost 1 in magnitude) of

a vector as the flow is followed along the periodic orbit. The data in Fig. 5.3 is plotted over

two periods, because the most unstable Floquet multipliers are negative: thus the vectors

forming the eigendirections only close up after two periods. In Fig. 5.3 only the vectors at

the mesh points are shown and the red curve is the envelope of all vectors.

For both unstable Floquet multipliers the periodic orbit is most unstable near the fronts

between the plateaux. This indicates that any eventual instability is due to the motion of

the fronts. Notice the difference between the two cases in Fig. 5.3(a) and (b) in terms of the

direction of motion of the stop-fronts. As we will see in the next section, front dynamics is

responsible for merging or dispersing traffic jams.

We now show that we can extract from the bifurcation analysis the asymptotics of the
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Fig. 5.4: The logarithm of the difference of the modulus of the largest Floquet multiplier from 1 as
a function of n/k for the periodic solutions for v0 = 1.0, α = 1.0, and h∗ = 2.1. Panel (a) shows a
plot for fixed k = 2 and varying n, and panel (b) for fixed n = 17 and varying k. The blue curve is a
least square fit (omitting the first data point); see also Table 5.1.

modulus |µ(n,k)| of the largest Floquet multiplier, as a function of n and k. Different fronts

interact via an overlap of their exponentially decaying tails. Consequently, we make the

ansatz that there is an exponential relationship of the form

max |µ(n,k)| − 1 = Re−q n
k , (5.4)

when n is large and k is small enough; c.f. [23, 24]. Clearly, in general the constants q,R > 0

depend on the parameters h∗, α, and v0.

We test this ansatz in Fig. 5.4 where we plot max |µ(n,k)| − 1 on a logarithmic scale as

a function of n/k, where n varies for k = 2 in panel (a) and k varies for n = 17 in panel

(b). In each panel the blue line is the least-square fit through all but the first data point,

which we disregarded as exceptional in terms of the convergence effect for n/k → ∞ that

Table 5.1: Least-square fitted constants appearing in (5.4) for the periodic solutions for v0 = 1.0,
α = 1.0, and h∗ = 2.1.

k = 2 (n = 5, . . . , 17) n = 17 (k = 2, . . . , 7)

q 1.5816 ± 0.0053 1.5901 ± 0.0121

ln R 2.3522 ± 0.0308 2.3616 ± 0.0601
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we are interested in. The resulting values of q and lnR for both cases are shown in Table

5.1. Together with the good fit of the blue lines in Fig. 5.4, this is numerical evidence that

the largest Floquet multiplier scales (for fixed parameters) as given by (5.4). Note that the

data presented in Fig. 5.4 constitutes the state of the art of what can be achieved with the

standard dde-biftool implementation on a single workstation.

5.3 Traffic jams as long transients

In this section we use numerical simulation to investigate the far from equilibrium front

motions suggested by the analysis that linearizes about periodic orbits. The trajectory of

each individual vehicle and the low-dimensional long-time dynamics of fronts (formed by the

collective motions of vehicles) can be visualised in Fig. 5.5(a) and Fig. 5.6(a).

In our model, traffic jams are regions of the ring where cars travel with low velocity (e.g.,

regions for less than v0/3 are shown in red in Fig. 5.5(a) and Fig. 5.6(a)). A traffic pattern

consists of a finite number of traffic jams that all move with their own different (but typically

similar) speeds upstream. Over long time scales, a traffic jam can disperse, or merge with

another traffic jam. Hence, there is an evolution of the traffic pattern until a stable pattern

has been reached.

Of importance is the relationship between a traffic pattern and the trajectory of an indi-

vidual car. A stable traffic pattern corresponds to a stable periodic orbit for the motion of the

cars. Hence, the only stable traffic pattern in our model is that corresponding to the stable

oscillations for k = 1 when one traffic jam travels along the circular road. Similarly, if the

pattern is nearly stable, a car almost has the same velocity and headway profile from round

to round. In particular, unstable periodic orbits are related to unstable traffic patterns. As

we will see now, weakly unstable periodic orbits give rise to traffic jams that can persist as

long transients. The motion of the traffic jams is closely related to the motion of the fronts

of the almost periodic dynamics of the cars.
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Fig. 5.5: Plot of the positions xi of all n = 9 cars (a), and velocity v1 of the first car (b), when
two traffic jams merge. In panel (a), the trajectory of the first car is emphasized in black and traffic
jams are indicated in red when the velocity drops below v0/3. The motion of fronts corresponds to
the modulated solution in Fig. 5.3(a). In panel (b), the red curve envelopes the maxima of velocities
between the traffic jams. The other parameters are v0 = 1.0, α = 1.0, and h∗ = 2.1.

When one starts an initial value simulation of the system from suitably random initial

data, unstable waves form and will eventually die out. (Specifically, we start from equidistant

cars with velocities chosen randomly and uniformly from [0, v0], and integrate the system with

an explicit Euler method with time step 0.01.) As was mentioned in Section 5.2, already for

n = 9 cars we find that waves for k = 2, corresponding to two traffic jams along the ring,

may survive for considerable amounts of time. In other words, weakly unstable traffic jams

appear as long transients. When they eventually disappear this can happen in one of two

competing ways, which are shown in Figs. 5.5 and 5.6 respectively.

In the case shown in Fig. 5.5 a traffic jam catches up with another traffic jam and the two
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Fig. 5.6: Plot of the positions xi of all n = 9 cars (a), and the velocity v1 of the first car (b), when
a traffic jam disperses. In panel (a), the trajectory of the first car is emphasized in black and traffic
jams are indicated in red when the velocity drops below v0/3. The motion of fronts corresponds to
the modulated solution in Fig. 5.3(b). In panel (b), the red curve envelopes the minima of velocities
in the dispersing traffic jam. The other parameters are v0 = 1.0, α = 1.0, and h∗ = 2.1.

then merge. The positions of all vehicles are displayed in Fig. 5.5(a), which shows that the go-

front of the first and the stop-front of the second traffic jam ‘move towards one another’ and

are then annihilated. This behavior is indicative of an unstable eigendirection of the periodic

orbit for k = 2 as shown in Fig. 5.3(a), where the stop-front and the go-front of a low-

velocity plateau move in the same direction (along the periodic orbit). As a consequence of

merging, the region between the two traffic jams of flowing traffic (large velocity) disappears.

Fig. 5.5(b) shows the velocity profile of the first car. As the two traffic jams move closer

together the maximum velocity between them decreases: the envelope of these maxima (red

curve) diverges more and more from the maximum velocity elsewhere along the ring. Thus,

the time until complete merging can be defined as the moment that this envelope reaches
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zero velocity. The envelope actually describes the local maxima of the velocity for all cars;

note that the velocity profiles of the other cars are very similar, but are not shifted copies,

since the dynamics is not perfectly periodic.

In contrast, Fig. 5.6 shows a situation where a traffic jam fails to merge with another traffic

jam, but rather disperses. As can be seen from the positions of cars plotted in Fig. 5.6(a), in

this case, the stop-front and the go-front of one and the same traffic jam slowly ‘move closer

together’. Thus this traffic jam eventually disappears which has only a slight influence on

the ‘neighboring’ traffic jam. This behaviour is associated with an unstable eigendirection

of the k = 2 periodic orbit as shown in Fig. 5.3(b), where the stop-front and the go-front of

a low-velocity plateau move in opposite directions (along the periodic orbit). The velocity

profile of the first car is displayed in Fig. 5.6(b), showing that the minimum velocity in the

dispersing traffic jam increases. This is again indicated by the envelope of these minima

(red curve), which also describes the minima for all cars. This envelope diverges from being

practically zero and complete dispersion is reached when it reaches the maximum velocity on

the ring.

Note that the above investigation only explains the behaviour of the system close to the

periodic solution, i.e., in the case when the fronts are close to parallel. The actual merging

dynamics, however, is nonlinear and requires the full investigation of the nonlinear slow

manifolds on which front dynamics occur. Nevertheless, as the wave number k is decreased,

the distance of Floquet multipliers from the unit circle shows exponential decaying (according

to formula (5.4) and Fig. 5.4) and the merging time shows exponential increasing (according

to simulations like Fig. 5.1(b)). Our tentative hypothesis is that these exponential behaviours

correspond to each other.
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Conclusion

Now we present a summary of the key results of the thesis, discuss some possible extensions,

and present some open questions.

6.1 Summary of thesis

In this thesis we investigated the fundamental dynamics of highway traffic paying special

attention to the effects due to the reaction time delay of drivers. We considered an optimal-

velocity car-following model, posed on a ring (circular road), in which delay was included

explicitly. The resulting system of autonomous delay differential equations was investigated

by using the elements of analytical and numerical bifurcation theory. Thus we were able to

study the qualitative changes of the nonlinear dynamics of the system as the parameters (the

average headway, the sensitivity and the desired speed of drivers) were varied.

First, the linear stability of the uniform flow equilibrium was investigated. We showed

that the system undergoes a sequence of Hopf bifurcations as the average headway is varied,

and consequently oscillations with different frequencies can appear. These periodic solutions

manifest themselves as upstream travelling waves with different wave numbers. The inclusion

of delay results in qualitative changes in the stability diagrams: for large enough desired speed
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the uniform flow equilibrium cannot be stabilised by increasing the sensitivity (in contrast to

what happens in the non-delayed system, in which the reaction time of drivers is set to zero).

After eliminating the continuous translational symmetry along the ring road, normal form

calculations were used to investigate the stability of the consequent oscillations in the vicinity

of the Hopf bifurcation points. It was proved that these bifurcations are robustly subcritical

due to the reaction time delay, that is, the oscillations and the corresponding travelling waves

are unstable in the neighbourhood of the Hopf bifurcation points. This revealed the possibility

that, if a subsequent fold bifurcation were to occur, then the stable uniform flow equilibrium

might co-exist with stable oscillations giving a bistability in the system. Consequently, large

enough perturbations, such as a truck pulling out of its lane, may trigger traffic jams even

when the uniform flow is stable.

In order to investigate the oscillations and travelling waves at the fully nonlinear level (far

from the Hopf bifurcation points), numerical continuation techniques were used. We followed

branches of periodic solutions born at the Hopf bifurcation points by varying the average

headway and we detected fold bifurcations and other qualitative changes (such us collision

and stopping) along the branches. By performing these continuations for several different

values of the sensitivity parameter, two-dimensional bifurcation diagrams were developed

in which domains of bistability, co-existence, stopping, and collision were identified. As

the number of cars was increased, we identified trends in the two-dimensional bifurcation

diagrams as well as in the branches of periodic solutions.

Furthermore, detailed examination of the oscillation profiles revealed that for larger num-

bers of cars, stop-fronts and go-fronts develop that correspond to the entry and exit points

of traffic jams. By studying the linear stability of periodic solutions and by applying nu-

merical simulation, we also gained information about the relative motion of these fronts. A

low-dimensional slow dynamics of fronts was discovered: they travel with approximately the

same speed (hence with small relative speed) over long time scales until they annihilate or

disperse.
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6.2 Possibilities for future work

We were able to carry out the linear and the weakly nonlinear analysis for arbitrarily many

vehicles. However, due to limitations in memory and CPU time, we were only able to perform

numerical continuation up to about twenty cars. In order to extend this number up to at

least hundreds of vehicles, new numerical methods must be brought to bear: e.g., by using

the recent package [116].

Furthermore, the fully nonlinear analysis of the slow manifolds connecting the periodic

solutions, discussed in Chapter 5, is another challenging area where manifold-continuation

techniques may prove useful [44, 69]. Alternatively, the slow front dynamics might be explored

via asymptotic analysis of PDE limits [120].

Note that the bifurcation methods used in this thesis could be applied to any car-following

model. It would be interesting to investigate how higher fidelity car-following models behave

with and without delay. For example, as a first step, one might include the effects of relative

velocity as in [38] where the model

v̇i(t) = α
(
hi(t)

)(
V
(
hi(t)

)
− vi(t) + ḣi(t)W

(
hi(t)

))
(6.1)

is considered with positive monotone increasing optimal velocity function V(h) and with

positive monotone decreasing sensitivity functions α(h) and W(h). In the parenthesis on the

right-hand side, the optimal velocity term is kept in its original form (see (1.13)), while the

last term expresses that drivers try to match the velocity of the preceding vehicle more, the

closer they are. Indeed, the reaction time delay may be included in this model too.

It is possible that the strict order of periodic branches is not satisfied for some parameter

ranges so that they may intersect each other, providing more complicated dynamics. It

is also an issue to change the boundary conditions since the interaction of fronts may be

stronger/weaker for open boundary conditions, which is a more realistic setup for real-world

traffic situations.

Nevertheless, it is in question whether the dynamics explored by the above methods is
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Fig. 6.1: Random walk of sensitivity α1 of the first car (a), positions xi of all n = 9 cars (b),
distribution of sensitivity α1 of the first car (c), and distribution of the merging time Tm (d), when
two traffic jams merge in the presence of noise. In panel (b), the trajectory of the first car is emphasized
in black and traffic jams are indicated in red when the velocity drops below v0/3. In panel (c), the
red curve is the analytical solution for the equilibrium distribution of the sensitivity. In panel (d),
the red vertical line at Tm = 1011.96 shows the merging time in the deterministic case. The other
parameters are v0 = 1.0, α = 1.0, h∗ = 2.0, γ = 0.1, and κ = 0.0316.

robust. The inconsistent psychological behaviour of drivers and external disturbances such as

weather and road unevenness indicate that one should include stochastic effects. To conclude

this thesis we give brief details of some initial work in this area. Stochasticity might be

modelled, for example, by assuming that the sensitivity parameter of each driver is subjected

122



6.2. POSSIBILITIES FOR FUTURE WORK

to a random walk according to

α̇i(t) = γ
(
α− αi(t)

)
+ κζi(t) , i = 1, . . . , n , (6.2)

where ζi is assumed to be white (uncorrelated) Gaussian noise, that is,

ζi(t) = 0 , ζj(t)ζk(s) = δjk δ(t− s) . (6.3)

Here the overbar stands for averaging, 1/γ is a relaxation time while κ gives the noise strength.

One realization of this random walk of the sensitivity for a single vehicle is shown in Fig. 6.1(a)

and the resulting distribution is represented by the histogram in Fig. 6.1(c). Note that here

drivers are still considered to be identical in the sense that their αi parameters fluctuate

around the same mean value with the same variance according to the same distribution. An

alternative (perhaps more realistic) approach might be for αi to be sampled from different

distributions so as to model different driver/vehicle classes. However, multi-class models must

include interactions due to lane changes, and in that sense all of this analysis is limited.

Equation (6.2) is sometimes called Ornstein-Uhlenbeck process and the solution for the

distribution of αi can be obtained from the related Fokker-Planck equation; see [37]. In

particular, the (stable) equilibrium distribution of αi is given by

peq(αi) =

√
γ

κ2π
e−

γ

κ2 (αi−α) , i = 1, . . . , n , (6.4)

which is shown by the red curve in Fig. 6.1(c). By using this as an initial distribution for αi

the stochastic transients are eliminated.

Initial simulations show that the above noise effects do not destroy the qualitative dynam-

ics of the merging and dispersing of traffic jams, but the front motions become noisy; compare

Fig. 5.5(a) and Fig. 5.6(a) with Fig. 6.1(b). The preliminary results, displayed in Fig. 6.1(d),

suggest that the most probable merging time Tm is smaller than in the deterministic case

(red vertical line) but the merging time distribution has an exponential-like tail. According

to the literature of passage-time distributions [83], this distribution suggests that on the top

of the macroscopic nonlinear dynamics of the fronts there is a ‘macroscopic’ random walk,

which originated from the ‘microscopic’ random walk of the sensitivity. We leave the further

analysis of this effect and the search for more interesting features for the future.
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Trigonometric identities

Let us consider the wave numbers k = 1, . . . , n/2 (even n) or k = 1, . . . , (n − 1)/2 (odd n).

We have

n∑

i=1

exp(i̺2kπ
n
i) =





0 , if k 6= n/̺ ,

n , if k = n/̺ ,

(A.1)

where i is the imaginary unit, i = 1, . . . , n, and ρ = 1, . . . , 4. Therefore, the following

identities can be proven.

In first order
n∑

i=1

cos(2kπ
n
i) = 0 , (A.2)

n∑

i=1

sin(2kπ
n
i) = 0 . (A.3)

In second order

n∑

i=1

cos2(2kπ
n
i) =





n/2 , if k 6= n/2 ,

n , if k = n/2 ,

(A.4)

n∑

i=1

sin2(2kπ
n
i) =





n/2 , if k 6= n/2 ,

0 , if k = n/2 ,

(A.5)
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n∑

i=1

cos(2kπ
n
i) sin(2kπ

n
i) = 0 . (A.6)

In third order

n∑

i=1

cos3(2kπ
n
i) =





0 , if k 6= n/3 ,

n/4 , if k = n/3 ,

(A.7)

n∑

i=1

sin3(2kπ
n
i) = 0 , (A.8)

n∑

i=1

cos2(2kπ
n
i) sin(2kπ

n
i) = 0 , (A.9)

n∑

i=1

cos(2kπ
n
i) sin2(2kπ

n
i) =





0 , if k 6= n/3 ,

−n/4 , if k = n/3 .

(A.10)

In fourth order

n∑

i=1

cos4(2kπ
n
i) =





3n/8 , if k 6= n/2 and k 6= n/4 ,

n , if k = n/2 ,

n/2 , if k = n/4 ,

(A.11)

n∑

i=1

sin4(2kπ
n
i) =





3n/8 , if k 6= n/2 and k 6= n/4 ,

0 , if k = n/2 ,

n/2 , if k = n/4 ,

(A.12)

n∑

i=1

cos3(2kπ
n
i) sin(2kπ

n
i) = 0 , (A.13)

n∑

i=1

cos(2kπ
n
i) sin3(2kπ

n
i) = 0 , (A.14)

n∑

i=1

cos2(2kπ
n
i) sin2(2kπ

n
i) =





n/8 , if k 6= n/2 and k 6= n/4 ,

0 , if k = n/2 ,

0 , if k = n/4 .

(A.15)
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