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A method for designing cluster states with prescribed stability is presented for coupled
phase oscillator systems with all-to-all coupling. We determine criteria for the coupling
function that ensure the existence and stability of a large variety of clustered configurations.
We show that such criteria can be satisfied by choosing Fourier coefficients of the coupling
function. We demonstrate that using simple trigonometric and localized coupling functions
one can realize arbitrary patterns of stable clusters and that the designed systems are ca-
pable of performing finite state computation. The design principles may be relevant when
engineering complex dynamical behavior of coupled systems, e.g. the emergent dynamics of
artificial neural networks, coupled chemical oscillators and robotic swarms.

Subject Index: 034, 044, 054, 055

§1. Introduction

Systems of coupled nonlinear oscillators can exhibit complex behavior that can-
not be deduced by analyzing the dynamics of their elements but emerges from the
interactions between the oscillators. Many different spatial, temporal, and spa-
tiotemporal rhythmic patterns can arise including synchronization,37) stable clus-
tering6) and sequential switching between cluster states.21) Such dynamics appear in
many different biological and physical systems including neural systems,33),34) cou-
pled chemical oscillators,18) lasers12) and Josephson junctions.1) In many cases the
corresponding biological or physical models are difficult to analyze due to the high
number of variables and parameters. An effective way to describe these complex
rhythms is by reducing the models to phase models7) when the couplings between
the oscillators are sufficiently weak. In these models the state of an oscillator is de-
scribed by a scalar phase variable. When the oscillators are uncoupled their phases
advance at constant ‘velocities’ (the oscillators’ natural frequency) while different
patterns can arise due to the coupling. In particular, a very rich variety of partially
synchronized cluster states can be obtained by tuning the coupling functions.

Previous studies have mostly concentrated on understanding which cluster states
(or what kind of sequences of cluster states) arise for a particular coupling func-
tion.4)–6),37) This approach is particularly relevant when studying the behavior of
neural ensembles where the coupling is prescribed by nature and the huge variety of
emerging rhythmic patterns can be used to represent large amounts of information
in a variety of ways.33) In engineering problems one may instead want to design
the dynamics such that particular cluster states emerge. This requires the investi-
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gation of a converse mathematical problem: Given a certain cluster configuration,
what constraints have to be imposed on the coupling function to ensure the exis-
tence and stability of this cluster state? The methodology presented here can be
applicable for designing the emergent dynamics of neural networks14),15),25),26) and
chemical oscillator systems18),19),22) as well as the collective motion of autonomous
vehicles.17),32),36)

We consider N identical phase oscillators that are coupled identically to each
other

θ̇i = ω +
1
N

N∑
j=1

g(θi − θj) , (1.1)

where the dot denotes differentiation with respect to time t and θi ∈ T = [0, 2π),
i = 1, . . . , N , i.e. the state space is the N -torus T

N . We will use the vector no-
tation θ = col[ θ1, . . . , θN ]. The coupling function g : [0, 2π) → R is a 2π-periodic
function having smoothness of at least C2. For simplicity we absorb any ‘coupling
strength’ parameter into g. (We remark that the form (1.1) arises from the theory of
weakly connected networks13) and that many authors use h(ϕ) = g(−ϕ) as coupling
function.)

Observe that (1.1) has a continuous rotational S1 symmetry, that is, the dynam-
ics are invariant under the transformation

θ �→ θ + ϕ col[ 1, . . . , 1 ] (1.2)

for any ϕ ∈ T. The model also has a full permutation SN symmetry, i.e. solutions
are preserved under the transformation

col[ θ1, . . . , θN ] �→ col[ θσ(1), . . . , θσ(N) ] (1.3)

for any σ ∈ SN ; see Ref. 5).
We show that, by suitable choice of g, any arbitrarily complex clustering pattern

can appear as an attractor of the system (1.1). More precisely, in §2 we give condi-
tions on g and its derivatives for a cluster state to be present with given configuration
and given stability. We use these results to design coupling functions that lead to sta-
ble clustering with prescribed phase relationships between clusters by representing g
as a Fourier series9),29) and properly choosing the coefficients. Section 3 concentrates
on simple harmonic and localized coupling functions that lead to clusters separated
equally in phase. In this case, exploiting the coexistence of a large number of stable
cluster states allows finite state computations to be performed.3),14),15) In particu-
lar, one may steer the system between different cluster configurations by applying
sufficiently large perturbations to individual oscillators. Finally, in §4 we conclude
and discuss some open problems.

We emphasize that the clustering behavior discussed in this paper is purely
a dynamical phenomenon, driven by interactions between the oscillators through
the coupling function g, and that there is no external inhomogeneity forced on the
system. Such behavior cannot be obtained by using simple sinusoidal coupling (as in
the Kuramoto model23)). One may impose additional inhomogeneity to the system
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by replacing ω with ωi in (1.1) but as long as the detuning is weak enough, analogous
clustering behavior will be observed.

§2. Design of cluster states

Consider a cluster state with M clusters where 1 ≤ M ≤ N . We define a
corresponding M -cluster partition A = {A1, . . . , AM} of {1, . . . , N} such that

{1, . . . , N} =
M⋃

p=1

Ap , (2.1)

where the Ap are pairwise disjoint sets (Ap ∩ Aq = ∅ if p �= q). Note that summing
up the cluster sizes ap = |Ap| gives

M∑
p=1

ap = N . (2.2)

For a partition A we associate a subspace in the state space T
N that is defined by

T
N
A = {θ ∈ T

N : θi = θj ⇔ there is a p such that i, j ⊂ Ap} , (2.3)

and we say a given θ ∈ T
N
A realizes the partition A. It is a simple consequence of

SN symmetry (1.3) that all such subspaces are invariant for the dynamics of (1.1),
so the corresponding partitions may be called invariant partitions. We remark that
invariant partitions play an important role in the operator theoretical approach of
dynamical systems.27)

In order to analyze the dynamics in the subspace T
N
A we restrict the model

(1.1) onto that subspace. Denoting the phase of the p-th cluster by ψp, i.e. defining
ψp := θi = θj = θk = . . . such that {i, j, k, . . .} ⊂ Ap we obtain

ψ̇p = ω +
1
N

M∑
q=1

aq g(ψp − ψq) (2.4)

for p = 1, . . . ,M . The dynamics in such a subspace can be very complex, but initially
we investigate simple clustering behavior

ψp = Ω t+ φp (2.5)

for p = 1, . . . ,M , where Ω ∈ R
+ and φp ∈ T. Since θ describes the phases of

oscillators, (2.5) describes a periodic orbit in the state space of those oscillators. On
this periodic orbit the oscillators are frequency-synchronized with frequency Ω and
the clustering is due to the phases φp. We say that θ ∈ T

N
A realizes the partition A

as a periodic orbit if (2.5) holds and all φp (mod 2π) are different.
Substituting (2.5) into (2.4) gives

Ω = ω +
1
N

M∑
q=1

aq g(φp − φq) (2.6)
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for p = 1, . . . ,M . By subtracting the first equation (p = 1) from each of the following
equations (p = 2, . . . ,M) we obtain

0 =
M∑

q=1

aq (g(φp − φq)− g(φ1 − φq)) (2.7)

for p = 2, . . . ,M . For a given function g one may determine M − 1 phases out of
φp, p = 1, . . . ,M while one phase can be chosen arbitrarily. Then formula (2.6)
determines the frequency Ω.

On the other hand, assuming that cluster phases are given

0 ≤ φ1 < φ2 < . . . < φM < 2π (2.8)

formula (2.7) provides us with M − 1 conditions for the function g. (Without loss of
generality one may choose φ1 = 0.) We introduce the notation

gp,q := g(φp − φq) (2.9)

to give M(M − 1) different subscripts for p, q = 1, . . . ,M , p �= q and note that

gp,p = g(0) =: g0 (2.10)

for any p = 1, . . . ,M .
We can state that θ ∈ T

N
A realizes the partition A as a periodic orbit if

0 =
M∑

q=1

aq (gp,q − g1,q) , p = 2, . . . ,M , (2.11)

as long as the corresponding frequency is non-zero, that is,

Ω = ω +
1
N

M∑
q=1

aq gp,q �= 0 . (2.12)

For typical ω note that Ω �= 0. Formula (2.11) is a system of M − 1 linear equations
with M(M − 1) + 1 unknowns, namely the values of gp,q for p, q = 1, . . . ,M , p �= q
and gp,p = g0 for p = 1, . . . ,M .

We say that [φ1, . . . , φM ] has independent differences if p �= q and r �= s imply
φp − φq �= mod(φr − φs, 2π) unless p = r and q = s. In this case all gp,q, p �= q can
be considered as independent variables. Not having independent differences clearly
decreases the number of independent variables gp,q. Note that generic choices of
[φ1, . . . , φM ] have independent differences, i.e. there are M(M − 1) + 1 independent
variables.

The linear stability of cluster states was characterized in Refs. 7) and 29) for
the special case of equally sized clusters that are equally separated in phase (called
rotating blocks). Here we generalize these calculations for arbitrary partitions. Sup-
pose that θ realizes a partition A as a periodic orbit, i.e. (2.11) is satisfied. In order
to determine the stability of this periodic orbit we need to study:
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• Tangential stability ; stability to changes in the phases that preserve the cluster
structure. This is given by the linearization within the cluster subspace T

N
A .

• Transverse stability ; stability to changes in the phases that split at least one of
the clusters into smaller groups. This is given by the linearization transverse
to the cluster subspace.

To determine tangential stability we define χp = ψp − (Ω t + φp) and linearize
(2.4) about the periodic orbit (2.5). Thus, we obtain the variational equation

χ̇p =
1
N

M∑
q=1

aq g
′(φp − φq)(χp − χq) =

M∑
q=1

Tp,q χq , (2.13)

with the matrix

Tp,q =
1
N

(
δp,q

( M∑
r=1,r �=p

ar g
′
p,r

)
− (1− δp,q) aq g

′
p,q

)
. (2.14)

Here δp,q denotes the Kronecker delta and, as before, we introduce

g′p,q := g′(φp − φq) . (2.15)

In the case of independent differences between the φp’s, this gives M(M−1) different
variables for p, q = 1, . . . ,M , p �= q, while

g′p,p = g′(0) =: g′0 (2.16)

for any p = 1, . . . ,M . The matrix T has a trivial zero eigenvalue since the sum of
the elements in each row is zero, that is,

M∑
q=1

Tp,q = 0 ⇒ λtriv
1 = 0 . (2.17)

This eigenvalue corresponds to the continuous rotational symmetry (1.2). The other
M − 1 non-trivial eigenvalues

λtang
2 , . . . , λtang

M (2.18)

of T are complicated nonlinear functions of g′p,q where p, q = 1, . . . ,M , p �= q, and
these determine the tangential stability. One may show that (2.17) and (2.18) are
eigenvalues for the linearization of (1.1) and calculate the corresponding eigenvectors
whose form is given in (A.2) in Appendix A.

To determine transverse stability of the p-th cluster when ap > 1 we define
ηi = θi−(Ω t+φp) if i ∈ Ap and ηi = 0 otherwise, for i = 1, . . . N . Such perturbations
do not break up the other clusters of the invariant partition A in (2.1). Linearizing
(1.1) and relabelling the subscripts such that ηk, k = 1, . . . , ap are the non-zero
coordinates one obtains

η̇k =
ap∑

�=1

S
(p)
k,� η� , (2.19)
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with the matrix

S
(p)
k,� =

1
N

(
δk,�

( M∑
r=1

ar g
′
p,r − g′0

)
− (1− δk,�) g′0

)
. (2.20)

The real eigenvalue

λtran
M+p =

1
N

M∑
r=1

ar g
′
p,r (2.21)

of S(p) has multiplicity ap − 1 and it corresponds to splitting the p-th cluster. The
corresponding (ap− 1)-dimensional eigenspace is spanned by the eigenvectors shown
in (A.3) in Appendix A. (We remark that S(p) has an extra eigenvalue of multiplicity
1 but that is not an eigenvalue of the linearization of (1.1) and hence can be ignored).
Only clusters containing more than one oscillator give transverse eigenvalues and we
denote the number of these clusters by W where 0 ≤ W ≤ M . Indeed, the total
number of transverse eigenvalues is

∑M
p=1(ap − 1) = N −M . We emphasize that it

is essential to analytically decompose the state space into tangential and transverse
subspaces to handle eigenvalues with multiplicity. In particular, many numerical
software packages fail when analyzing systems with symmetry for this reason.

For stable cluster states both the tangential eigenvalues and the transverse eigen-
values have to be on the left-half complex plane, that is

Reλtang
p < 0 , p = 2, . . . ,M , (2.22)

and
λtran

M+p < 0 , p = 1, . . . ,W . (2.23)

For example, choosing

g′p,q < 0 , p, q = 1, . . . ,M , p �= q ,

g′0 < N min
p

{
Rp

ap

}
, (2.24)

with

Rp =
1
N

M∑
r=1,r �=p

(−ar g
′
p,r) > 0 (2.25)

satisfies (2.22) and (2.23). This can be seen as follows. According to the Geršgorin
Circle Theorem38) the eigenvalues of T (2.14) are contained by the union of M discs
each centered at −Rp < 0 and with radius Rp for p = 1, . . . ,M . This means that
the disc ∣∣∣z + max

p
{Rp}

∣∣∣ ≤ max
p
{Rp} , z ∈ C , (2.26)

(centered at −maxp{Rp} < 0 with radius maxp{Rp}) contains all eigenvalues of T .
This disc is located on the left-half complex plane and is tangent to the imaginary axis
at the origin. Since for any general choice of g′p,q we have rank(T ) = M −1, the only
zero eigenvalue is the trivial one λtriv

1 = 0. Consequently, all nontrivial eigenvalues
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of T have negative real part, implying tangential stability (2.22). Furthermore,
using (2.24) in (2.21) gives transverse stability (2.23). Note that similar arguments
may be used when considering networks with nonidentical couplings11) and different
topologies.30)

In general, if there are independent differences between the φp’s, then there are
M(M −1)+1 independent variables that can be varied to satisfy the above stability
conditions, namely the values of g′p,q for p, q = 1, . . . ,M , p �= q and g′p,p = g′0 for
p = 1, . . . ,M . We note that the condition (2.23) is linear in g′p,q (see (2.21)), while
the condition (2.22) is nonlinear in g′p,q (for M ≥ 3).

We say that θ ∈ T
N
A realizes the partition A as a stable periodic orbit if the

conditions (2.11), (2.22), and (2.23) are satisfied. Note that the equality (2.11)
contains only the variables gp,q while the inequalities (2.22) and (2.23) contain only
the variables g′p,q, that is, the conditions for existence and conditions for stability are
independent. Also notice that the total number of constraints given by (2.11), (2.22),
and (2.23) is 2M − 2 +W where 0 ≤W ≤M and, if [φ1, . . . , φM ] has independent
differences, one may vary the 2M(M − 1) + 2 variables gp,q, g

′
p,q, p �= q and g0, g′0 to

satisfy these constraints.

2.1. Example: designing stable 3-cluster states

To illustrate the calculation above we consider a partition with three clusters.
We present the following calculation for a general 3-cluster partition of N oscillators.
Assume that ap > 1, p = 1, 2, 3 and recall that a1 + a2 + a3 = N ; see (2.2). When θ
realizes a 3-cluster partition as a periodic orbit, formula (2.11) gives

a1(g2,1 − g0) + a2(g0 − g1,2) + a3(g2,3 − g1,3) = 0 ,
a1(g3,1 − g0) + a2(g3,2 − g1,2) + a3(g0 − g1,3) = 0 . (2.27)

The 7 variables g0, g1,2, g2,1, g2,3, g3,2, g1,3, g3,1 can be varied to satisfy these 2 equa-
tions.

The matrix T of tangential stability (2.14) becomes

T =
1
N

⎡
⎣a2 g

′
1,2 + a3 g

′
1,3 −a2 g

′
1,2 −a3 g

′
1,3

−a1 g
′
2,1 a1 g

′
2,1 + a3 g

′
2,3 −a3 g

′
2,3

−a1 g
′
3,1 −a2 g

′
3,2 a1 g

′
3,1 + a2 g

′
3,2

⎤
⎦ , (2.28)

which possesses the trivial eigenvalue λtriv
1 = 0 and two tangential eigenvalues

λtang
2 = 1

2

(
μ+ i

√
ν − μ2

)
,

λtang
3 = 1

2

(
μ− i

√
ν − μ2

)
, (2.29)

where

μ =
1
N

(
a2 g

′
1,2 + a3 g

′
1,3 + a1 g

′
2,1 + a3 g

′
2,3 + a1 g

′
3,1 + a2 g

′
3,2

)
= trace(T ) ,

ν =
4
N2

(
(a1 g

′
2,1 + a3 g

′
2,3)(a1 g

′
3,1 + a2 g

′
3,2)− a2 g

′
3,2a3 g

′
2,3

+(a2 g
′
1,2 + a3 g

′
1,3)(a1 g

′
3,1 + a2 g

′
3,2)− a1 g

′
3,1a3 g

′
1,3
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+(a2 g
′
1,2 + a3 g

′
1,3)(a1 g

′
2,1 + a3 g

′
2,3)− a1 g

′
2,1a2 g

′
1,2

)
= 4(T11 + T22 + T33) .

(2.30)

Here Tpp is the determinant of the 2× 2 matrix that is obtained by deleting the p-th
row and p-th column of T . Note that ν−μ2 is not necessarily positive, meaning that
λ2 and λ3 can be real. One may show that

Reλtang
2 < 0, Reλtang

3 < 0 ⇔ μ < 0, ν > 0 . (2.31)

The eigenvalues for transverse stability are given by (2.21):

λtran
4 =

1
N

(
a1 g

′
0 + a2 g

′
1,2 + a3 g

′
1,3

)
,

λtran
5 =

1
N

(
a1 g

′
2,1 + a2 g

′
0 + a3 g

′
2,3

)
,

λtran
6 =

1
N

(
a1 g

′
3,1 + a2 g

′
3,2 + a3 g

′
0

)
. (2.32)

The 7 variables g′0, g′1,2, g
′
2,1, g

′
2,3, g

′
3,2, g

′
1,3, g

′
3,1 can be varied to satisfy the 5 inequal-

ities μ < 0, ν > 0, λtran
4 < 0, λtran

5 < 0, λtran
6 < 0 obtained from (2.22), (2.23), and

(2.31). For example, setting

g′1,2, g
′
2,1, g

′
2,3, g

′
3,2, g

′
1,3, g

′
3,1 < 0 ,

g′0 < min
{
−
a2 g

′
1,2 + a3 g

′
1,3

a1
, −

a1 g
′
2,1 + a3 g

′
2,3

a2
, −

a1 g
′
3,1 + a2 g

′
3,2

a3

}
, (2.33)

according to (2.24), ensures stability for 3-cluster states.
In this example the number of variables (14) was much larger than the number

of constraints (7). One may impose further restrictions on g and still be able to
satisfy these constraints. Appendix B shows how to design 3-cluster states when g
is restricted to the class of odd functions.

2.2. Realizing stable clustering by choosing harmonics

The design principles presented above support a wide range of coupling functions
since the values and derivatives of g(ϕ) are only fixed at some special points. Since g
is 2π-periodic one may use truncated Fourier series to approximate g. This approach
has proved to be useful when analyzing the dynamics of globally coupled phase
oscillator systems.9),29) Here we choose the coefficients to satisfy (2.11), (2.22), and
(2.23). Recall that the total number of constraints is 2M−2+W where 0 ≤W ≤M
(such that the M −1 conditions (2.11) are equalities while the M −1+W conditions
(2.22) and (2.23) are inequalities).

The truncated Fourier expansion of g up to the L-th harmonic is given by

g(ϕ) =
L∑

�=1

(
u� cos(�ϕ) + v� sin(�ϕ)

)
, (2.34)

when g has zero mean. This contains 2L constants, namely u�, v�, � = 1, . . . , L.
Thus, to satisfy the 2M − 2 +W conditions one needs to choose

L ≥M − 1 +W/2 . (2.35)
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For example, one needs at least 2 harmonics to be able to design nontrivial 2-
cluster partitions. More precisely, for M = 2, a1 > 1, a2 > 1 we have L ≥ 2 and
formulae (2.11), (2.22), and (2.23) become

a1(g2,1 − g0) + a2(g0 − g1,2) = 0 ,

λtang
2 =

1
N

(
a1 g

′
2,1 + a2 g

′
1,2

)
< 0 ,

λtran
3 =

1
N

(
a1 g

′
0 + a2 g

′
1,2

)
< 0 ,

λtran
4 =

1
N

(
a1 g

′
2,1 + a2 g

′
0

)
< 0 , (2.36)

which can be satisfied by varying the four coefficients u1, v1, u2, v2 in (2.34). To
demonstrate this we fix the cluster phases φ1 = 0, φ2 = π/2 and the cluster sizes
a1 = 6, a2 = 9 for N = a1 + a2 = 15 oscillators. Furthermore, we fix the eigenvalues
λtang

2 = −1, λtran
3 = −2, λtran

4 = −3 and by solving (2.36) we obtain u1 = 1/36,
v1 = −61/180, u2 = 5/6, v2 = 13/360. The results are shown in Fig. 1. The
designed coupling function g is shown in panel (a), the eigenvalues are displayed in
panel (b) and the clustering is demonstrated by numerical simulation in panel (c)
for randomly chosen initial conditions. (Due to periodicity the horizontal lines at 0
and 2π are identical and this will be the case for all simulation results shown below.)
Observe that the system approaches the 2-cluster partition

{{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12, 13, 14, 15}} , (2.37)

that is, 6 oscillators approach one cluster and 9 oscillators approach the other cluster
according to our design.

Note that using harmonic functions to design stable M -cluster partitions may
become complicated for M ≥ 3 since the tangential eigenvalues (2.18) are nonlinear
functions of the derivatives g′p,q, p, q = 1, . . . ,M , p �= q (see, e.g. (2.29) and (2.30)
for M = 3), and consequently they are nonlinear in u�, v�, � = 1, . . . L. Furthermore,
our design only ensures the existence and linear stability of the chosen cluster state.
When using higher harmonics one may stabilize many other different cluster states
(e.g. full synchrony) or more complicated attractors (e.g. heteroclinic cycles5),20))
which can have much larger basins of attractions than the chosen state.

Formula (2.35) gives a condition on the number of harmonics that allows one to
design stable M -cluster states with any partition A of {1, . . . , N} with prescribed
cluster phases (2.8). It would be interesting to determine a lower bound on the
number of harmonics needed to realize a given partition A as a stable periodic orbit
having no restrictions on the cluster phases. For example, in the case of only one
harmonic, the only partitions that can be realized as hyperbolic periodic orbits are
the trivial ones {1, 2, . . . , N} and {{1}, {2}, . . . , {N}}; see Ref. 23). On the other
hand, for two harmonics one may find additional 2-cluster and 3-cluster partitions
such as {{1, 2, . . . , k}, {k + 1, . . . , N}} and {{1, 2, . . . , k}, {k + 1}, {k + 2, . . . , N}};
see Refs. 2), 4), and 20).
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Fig. 1. Designing coupling function for stable 2-cluster partitions with cluster sizes a1 = 6 and

a2 = 9 for N = 15 oscillators. The phase difference between the clusters is set to π/2. The

designed coupling function (2.34) with L = 2 and Fourier coefficients u1 = 1/36, v1 = −61/180,

u2 = 5/6, v2 = 13/360 is shown in panel (a) and the corresponding eigenvalues are displayed in

panel (b). The numerical simulation results are shown in panel (c) where each curve corresponds

to a particular phase difference θi − θ1 for i = 1, . . . , 15. Observe that the system converges to

the designed 2-cluster partition (2.37).

§3. Equidistant clusters

As mentioned above, it may be complicated to determine the Fourier coefficients
when the number of clusters M is large. However, if one only wants to design stable
M -cluster partitions for specific cluster phases, much simpler coupling functions can
be constructed. In this section we consider the case when the clusters are equally
separated in phase, i.e.

φp = (p− 1) 2π/M (3.1)

for p = 1, . . . ,M . We show that one can choose simple harmonic and localized
coupling functions that result in stableM -cluster partitions with these cluster phases.
Furthermore, by tuning the localized coupling functions one can obtain a stable chain
of equidistant clusters with phases

φp = (p− 1) ξ , 0 < ξ ≤ 2π/(M + 1) (3.2)

for p = 1, . . . ,M . We remark that the results shown below are a generalization of
the example presented in Ref. 6).
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3.1. Equidistant clusters by harmonic coupling function

For any M -cluster partition there is a stable periodic orbit realizing that parti-
tion for the coupling function

g(ϕ) = − sin(Mϕ) , (3.3)

shown in Fig. 2(a) for M = 4. For this function

gp,q = 0 , g′p,q = −M (3.4)

for all p, q = 1, . . . ,M . Hence (2.11) is trivially satisfied and (2.12) gives Ω = ω. For
tangential stability the matrix (2.14) simplifies to

Tp,q = −M
N

(
δp,q

( M∑
r=1,r �=p

ar

)
− (1− δp,q)aq

)
. (3.5)

One may show that (besides the trivial eigenvalue λtriv
1 = 0) T possesses the tangen-

tial eigenvalues

λtang
p = −M

N

M∑
r=1

ar = −M (3.6)

for p = 2, . . . ,M . That is, −M is an eigenvalue of T with multiplicity M − 1,
implying tangential stability (2.22). The transverse eigenvalues (2.21) also evaluate
to

λtran
M+p = −M

N

M∑
q=1

aq = −M , (3.7)

for p = 1, . . . ,W , implying transverse stability (2.23). We note that the resulting
periodic orbits are robust, that is, qualitatively the same behavior occurs for all
perturbations on g that are sufficiently small in the C2 norm.

Considering the coupling function (3.3) for M = 4, system (1.1) converges to a
4-cluster state. Figure 2(c) shows an example for N = 15 oscillators and randomly
chosen initial condition that converges to the partition

{{1, 2, 3, 4}, {5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}} . (3.8)

The clusters are located at φp = (p − 1)π/2, p = 1, 2, 3, 4 according to our design
(3.1). Note that different initial conditions may lead to 4-cluster states with different
partitions (but with the same φp’s). For certain initial conditions, some clusters may
even be empty resulting in 3-, 2-, or 1-cluster states. In general, we can say that
system (1.1) with coupling function (3.3) has many stable cluster states comprising
all partitions of {1, . . . , N} into at most M -clusters located at (3.1).

3.2. Equidistant clusters by localized coupling function

Here we consider a localized coupling function that gives clustering into arbitrary
partitions. For any M -cluster partition let us pick a smooth function g(ϕ) and
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Fig. 2. The coupling functions (3.3) and (3.14, 3.15) are displayed in panels (a) and (b), respectively,

for M = 4 and ξ = 2π/M . They both support stable 4-cluster states. Panels (c) and (d) show

the corresponding time series of phases for a system of N = 15 coupled oscillators. Each

curve corresponds to a particular phase difference θi − θ1 for i = 1, . . . , 15. Observe that the

convergence is slower in case (d) suggesting that the tangential and transverse eigenvalues are

closer to the imaginary axis.

0 < ξ ≤ 2π/M such that the following holds:

g(0) = g(ξ) = 0 ,
g′(0) = g′(ξ) = −M ,

g(ϕ) ≡ g′(ϕ) ≡ 0 for
3ξ
2
≤ ϕ < 2π − ξ

2
. (3.9)

An example of a function approximately satisfying (3.9) is shown in Fig. 2(b) for
ξ = 2π/M and M = 4. Considering ξ = 2π/M the p-th cluster only influenced by
the (p− 1)-st cluster for p = 2, . . . ,M and the first cluster is only influenced by the
M -th cluster. Introducing the notation a0 = aM , gp,0 = gp,M , g′p,0 = g′p,M , we can
write

gp,q = 0 ,
g′p,p = g′p,p−1 = −M for p = 1, . . . ,M ,

g′p,q = 0 for any other p, q . (3.10)

Hence again (2.11) is trivially satisfied and (2.12) gives Ω = ω. For tangential
stability the matrix (2.14) becomes

Tp,q = −M
N

(
δp,qap−1 − (1− δp,q)δq,p−1ap−1

)
. (3.11)
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2 2

Fig. 3. Panel (a) shows the coupling function (3.14, 3.15) for ξ = 2π/(M + 1.5) and M = 4. This

function also supports stable 4-cluster states. The corresponding time series are shown in panel

(b) for N = 15 coupled oscillators; each curve corresponds to a particular θi−θ1 for i = 1, . . . , 15.

Here the tangential eigenvalues are not easy to calculate. However, the Geršgorin
Circle Theorem38) still ensures tangential stability. Here Rp = M

N ap−1 in (2.25),
i.e. the eigenvalues of T are contained by the union of M discs, each centered at
−M

N ap < 0 and with radius M
N ap for p = 1, . . . ,M . That is, the disc∣∣∣z +

M

N
max

p
{ap}

∣∣∣ ≤ M

N
max

p
{ap} , z ∈ C , (3.12)

(centered at −M
N maxp{ap} < 0 with radius M

N maxp{ap}) contains all eigenvalues of
T , implying tangential stability (2.22). The transverse eigenvalues (2.21) become

λtran
M+p = −M

N
(ap + ap−1) < 0 (3.13)

for p = 1, . . . ,M implying transverse stability (2.23).
As an example of a coupling function approximately satisfying (3.9), we consider

the function
g(ϕ) = fM (ϕ) + fM (ϕ− ξ) , (3.14)

where fM is a 2π-periodic ‘wiggle function’ with a negative slope at ϕ = 0, that is
otherwise close to zero:

fM (ϕ) = −2 tanh
(
M sin(ϕ

2 )
)
sech2

(
M sin(ϕ

2 )
)
cos(ϕ

2 ) . (3.15)

Function (3.14, 3.15) is shown in Fig. 2(b) on choosing ξ = 2π/M and M = 4. Figure
2(d) shows the time evolution of phases for N = 15 oscillators with this coupling
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for randomly chosen initial conditions that converges to a stable 4-cluster state with
partition (3.8). The clusters are located at φp = (p− 1)π/2, p = 1, 2, 3, 4 according
to our design (3.1). As for (3.3), there also are many simultaneously-stable cluster
states with up to four clusters.

One may check that the localized function (3.9) may result in a stable chain of
M equidistant clusters (3.2) when taking 0 < ξ ≤ 2π/(M + 1). Now the p-th cluster
is only influenced by the (p − 1)-st cluster for p = 2, . . . ,M but the first cluster
is not influenced by the M -th cluster. The existence and stability of M -cluster
states in this context are discussed in Appendix C. Figure 3(a) shows the localized
coupling function (3.14, 3.15) for ξ = 2π/(M + 1.5) and M = 4, while Fig. 3(b)
displays the corresponding time evolution of phases approaching φp = (p − 1) ξ,
p = 1, 2, 3, 4 according to our design (3.2). Note that considering (3.14, 3.15) with
ξ = 2π/(M+k), k ∈ N

+, the (M+k)-cluster partitions are stabilized. In this case an
emerging M -cluster partition is in fact a special case of an (M + k)-cluster partition
with k empty clusters.

3.3. Finite state computation — ‘abacus dynamics’

Here we show that exploiting the dynamics above one can perform finite state
computation by using multiple valued logic. We present the dynamical principles
that allow the implementation of such logic. Our approach differs from the method-
ology used in Refs. 14) and 15) where complicated time dependent signals were
applied on a system of nonidentical oscillators to obtain clustering.

Notice that when stabilizing equidistant clusters by using coupling functions
(3.3) or (3.9) the number of distinct stable M -cluster partitions is MN (each of the
N oscillators may be placed into any of the M clusters). By applying large enough
perturbations to individual oscillators one may ‘transfer’ them from one cluster to
another and so steer the system between different M -cluster partitions. (Indeed,
small perturbations decay since the cluster states are stable.) Here we demonstrate
this concept by using the harmonic function (3.3) but one may generalize it for
localized functions (3.9).

First, we notice that together with the stable M -cluster partitions with equidis-
tant clusters at φp = (p − 1) 2π/M , p = 1, . . . ,M , unstable M -cluster partitions
are created with clusters located halfway between the stable clusters at φ̃p = (p −
0.5) 2π/M , p = 1, . . . ,M ; see the dashed horizontal lines in Fig. 4. A large enough
perturbation to an oscillator can drive it ‘to the other side’ of an unstable cluster,
i.e. into another M -cluster state. More precisely, if one resets the phase of an os-
cillator by an amount that is larger than π/M (the distance between a stable and
the neighboring unstable cluster in phase) the oscillator joins the neighboring stable
cluster. In this way one may steer the system between different M -cluster partitions
similarly as one sets an abacus into different states by sliding the beads.

The process is demonstrated in Fig. 4 for M = 4 clusters and N = 15 oscillators
where the same initial conditions are used as in Fig. 2(c). We simply reset the phases
of chosen oscillators by 1 or −1 (that is larger in magnitude than π/4) and so transfer



Designing the Dynamics of Coupled Oscillators 625

Fig. 4. Realizing the ‘abacus dynamics’ by transferring oscillators between M = 4 clusters for

N = 15 oscillators. The same coupling function and initial conditions are used as in Fig. 2(c).

The discrete path (3.16) is realized by resetting the phases of individual oscillators by ±1 at

t = 5, 10, 15, 20, 25. The horizontal dashed lines show the locations of unstable clusters: the

applied resets must exceed the distance π/4 between stable and unstable clusters to lead to

transitions.

them into other clusters. In particular, the discrete path

{{1, 2−→, 3, 4}, {5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}} ,
↓

{{1, 3, 4}, {2, 5−→, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}} ,
↓

{{1, 3, 4}, {2, 6, 7}, {5, 8, 9−→, 10, 11}, {12, 13, 14, 15}} ,
↓

{{1, 3, 4}, {2, 6, 7}, { 5←−, 8, 10, 11}, {9, 12, 13, 14, 15}} ,
↓

{{1, 3, 4←−}, {2, 5, 6, 7}, {8, 10, 11}, {9, 12, 13, 14, 15}} ,
↓

{{1, 3}, {2, 5, 6, 7}, {8, 10, 11}, {4, 9, 12, 13, 14, 15}} , (3.16)

is realized between 4-cluster partitions where→ and← denote phase resets by 1 and
−1, respectively. Note that one may transfer oscillators between non-neighboring
stable clusters by using larger resets. Since the cluster states are stable the above
described computational scenario is robust against sufficiently small noise. For large
numbers of oscillators the huge number of available partitions can facilitate large
computations.

§4. Discussion

Our results demonstrate that the coupling function holds a lot of information
about the possible dynamics of globally coupled oscillators: it is flexible enough to
permit all possible clusterings to appear as attracting periodic orbits. Moreover, it
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can be designed to ensure the existence and stability of specific cluster states and
the designed systems may be capable of performing finite state computation.

We remark that the coupling function may also permit complex heteroclinic
networks between cluster states of saddle type2),4) when the unstable manifold of
a cluster state is contained in the stable manifolds of other cluster states. These
state space structures may also be used for finite state computation and information
encoding.3),4),31) However, designing the coupling function such that a particular het-
eroclinic network is realized is a difficult task: not only the existence and eigenvalue
structure of specific saddle cluster states have to be ensured but also the existence of
heteroclinic connections between them. We note that by tuning the coupling func-
tions that permit heteroclinic networks one may find chaotic attractors.4) This shows
that we have only scratched the surface of the dynamical complexity that may exist
in globally coupled systems of identical oscillators.

Stabilizing multiple cluster states results in a robust system with enormous com-
putational capabilities. The underlying network structure is however quite different
from the VLSI (very-large-scale integration) design24) that our current day comput-
ers rely on, and also differs from CNN (cellular neural network) design.35) In VLSI
and CNN systems large numbers of elements are connected to each other such that
each element is linked to a few others. In contrast, high degree of connectivity is
required to realize the abacus-like computation proposed in this paper. It shall be an
interesting future research direction to invent computational algorithms for machines
with this new architecture and also build them in the laboratory.

An interesting question arises when one wishes to build such systems: how
sensitive they are with respect to time delays in the couplings (that are unavoidable
in practice)? It is known that time delays introduce phase shifts to the coupling
function of the phase models.8),10),16) Initial investigations show that as the delays
are increased the designed cluster states may lose their stability so that the system
would approach undesired cluster configurations. However, one may find windows
of larger delays where the designed states are stable and so the system performs
as it does for zero delay. We remark that to achieve certain emergent patterns
in coupled oscillator systems, one may also design the coupling delays,18),22) the
network topology,25),26) or/and the differences between individual oscillators.14),15)

Exploiting such design principles may lead to the manifestation of brain-like neural
computers of the future.28)
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Appendix A
Tangential and Transverse Eigenvectors

For the M -cluster partition

A = {{1, . . . , a1}, {a1 + 1, . . . , a1 + a2}, . . . , {N − aM + 1, . . . , N}} (A.1)

one may show that the eigenvectors corresponding to the trivial eigenvalue (2.17)
and the tangential eigenvalues (2.18) are given by

vtriv
1 =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , vtang

p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αp,1
...

αp,1
...

αp,M
...

αp,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬
⎭ a1

⎫⎬
⎭ aM

(A.2)

for p = 2, . . .M . The quantities αp,1, . . . , αp,M are complicated nonlinear functions
of g′p,q where p, q = 1, . . . ,M , p �= q. The structure of the tangential eigenvectors
vtang
p show that perturbations in these directions preserve the cluster structure.

Similarly for the p-th cluster with ap > 1, the (ap − 1)-dimensional eigenspace
corresponding to the transverse eigenvalue (2.21) is spanned by

vtran
M+p = cM+p,1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
1
χ
...
χ
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ cM+p,2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
χ
1
...
χ
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ . . .+ cM+p,ap−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
χ
...
1
χ
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ ap , (A.3)

where χ = −1/(ap − 1) and the ap − 1 scalars cM+p,1, . . . , cM+p,ap−1 are arbitrary.
The structure of the vectors in vtran

M+p corresponds to perturbations that split the p-th
cluster by pulling one oscillator to the opposite directions than the others. For other
M -cluster partitions with the same cluster sizes ap, p = 1, . . . ,M the tangential and
transverse eigenvectors can be determined by permuting components of (A.2) and
(A.3) appropriately.
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Appendix B
Designing Stable 3-Cluster States for Odd g

Following the calculation shown in §2.1 we now consider the special case of odd
coupling function g(ϕ) = −g(−ϕ) that yields

g0 = 0 , g1,2 = −g2,1 , g2,3 = −g3,2 , g1,3 = −g3,1 , (B.1)

so Eq. (2.27) simplifies to

(a1 + a2) g1,2 − a3 g2,3 + a3 g1,3 = 0 ,
a2 g1,2 + a2 g2,3 + (a1 + a3) g1,3 = 0 , (B.2)

with solution ⎡
⎣g1,2

g2,3

g1,3

⎤
⎦ = const

⎡
⎣ a3

a1

−a2

⎤
⎦ . (B.3)

Since the coupling function is odd, its the derivative is even g′(ϕ) = g′(−ϕ) which
results in

g′1,2 = g′2,1 , g′2,3 = g′3,2 , g′1,3 = g′3,1 . (B.4)
Thus, (2.30) and (2.32) simplify to

μ =
1
N

(
(a1 + a2)g′1,2 + (a2 + a3)g′2,3 + (a1 + a3)g′1,3

)
,

ν =
4
N

(
a1 g

′
1,2g

′
1,3 + a2 g

′
1,2g

′
2,3 + a3 g

′
2,3g

′
1,3

)
,

λtran
4 =

1
N

(
a1 g

′
0 + a2 g

′
1,2 + a3 g

′
1,3

)
,

λtran
5 =

1
N

(
a1 g

′
1,2 + a2 g

′
0 + a3 g

′
2,3

)
,

λtran
6 =

1
N

(
a1 g

′
1,3 + a2 g

′
2,3 + a3 g

′
0

)
, (B.5)

and the conditions μ < 0, ν > 0, λtran
4 < 0, λtran

5 < 0, λtran
6 < 0 can be satisfied by

choosing, for instance,

g′1,2 < 0 , g′2,3 < 0 , g′1,3 < 0 ,

g′0 < min
{
−
a2 g

′
1,2 + a3 g

′
1,3

a1
, −

a1 g
′
1,2 + a3 g

′
2,3

a2
, −

a1 g
′
1,3 + a2 g

′
2,3

a3

}
. (B.6)

Appendix C
Chain of Equidistant Clusters by Localized Coupling Function

For a function satisfying (3.9) with 0 < ξ ≤ 2π/(M + 1) we have

gp,q = 0 ,
g′p,p = −M for p = 1, . . . ,M ,

g′p,p−1 = −M for p = 2, . . . ,M ,

g′p,q = 0 for any other p, q . (C.1)
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Hence again (2.11) is trivially satisfied while (2.12) gives Ω = ω. For tangential
stability the matrix (2.14) simplifies to

T1,q = 0 ,

Tp,q = −M
N

(
δp,qap−1 − (1− δp,q)δq,p−1ap−1

)
for p = 2, . . . ,M . (C.2)

Since T is a lower triangular matrix, it has the eigenvalues

λtriv
1 = 0 ,

λtang
p = −M

N
ap−1 < 0 for p = 2, . . . ,M , (C.3)

implying tangential stability (2.22). The transverse eigenvalues (2.21) evaluate to

λtran
M+1 = −M

N
a1 < 0 ,

λtran
M+p = −M

N
(ap + ap−1) < 0 for p = 2, . . . ,M , (C.4)

implying transverse stability (2.23).
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