
PID Feedback for Load-Balanced Parallel Gridless DSMC

Spencer E. Olson∗

Air Force Research Laboratory, Directed Energy Directorate,

3550 Aberdeen Ave. SE, Kirtland Air Force Base, NM 87117-5776

Andrew J. Christlieb

Mathematics Department, Michigan State University

D304 Wells Hall, East Lansing, Michigan 48824-1027

Fredrik K. Fatemi

Naval Research Laboratory, Optical Sciences Division
4555 Overlook Ave. SW, Washington D.C. 20375

Abstract

Parallel code presents a non-trivial problem of load balancing computational workload throughout a system of hardware and soft-
ware resources. The task of load balancing is further complicated when the number of allowable processors changes through
time. This paper presents a two-component load-balancing mechanism using optimal initial workload distribution and dynamic
load maintenance. The initial guess is provided by inversion of the workload distribution function. Workload distribution in-
version enables efficient domain decomposition for arbitrary workloads and easily compensates for changes in system resources.
Dynamic load balancing is provided by process feedback control as used, for example, in control mechanisms of physical pro-
cesses. Proportional, integral, and differential (PID) feedback readily allows controls to compensate for runtime-changes of the
workload distribution function. This paper demonstrates a one-dimensional realization of the ideas presented here. We apply this
load-balancing technique to our gridless direct simulation Monte Carlo algorithm. We demonstrate that the method does indeed
maintain uniform workload distribution across available resources as the workload and usable system resources undergo change
through time.

Key words: Load balancing, parallel, DSMC, gridless
PACS: 2.70.-c, 47.11.-j
2000 MSC: 68W10, 68W15

1. Introduction

Rarefied gas flows are found in a range of technologically
important applications and experiments. These include the
design of vacuum chambers for plasma aided manufactur-
ing [1–3], space environment test facilities [4, 5], micro-/nano-
electro-mechanical systems (MEMS/NEMS) [6, 7], spacecraft
thrusters [8, 9], expanding gas jets of [10] high altitude/velocity
aircraft [11–13], and cold atom physics experiments [14].

A common approach to simulating rarefied gas flows is to
use Direct Simulation Monte Carlo (DSMC) [15]. DSMC re-
casts the system in terms of a statistical representation of N test
particles. The motion of these particles is kept completely in-
dependent except for collisions between only nearest-neighbor
pairs of particles. Thus, by operating on small, localized groups
of particles, DSMC lends itself well to excellent parallelization.

∗Corresponding author.

Early work on efficient DSMC methods centered on the de-
velopment of algorithms ideal for vector supercomputers [16–
18]. While this work demonstrated the advantage of parallel
operations for DSMC, important limitations for DSMC on vec-
tor supercomputers arose. DSMC requires frequent random ac-
cess to memory and stochastic interaction between fundamen-
tal particle elements. Furthermore, multiple levels of branch-
ing that occur in DSMC tend to increase the need for random
variable access. Thus, taking greater advantage of vector hard-
ware is an increasingly difficult problem [19, 20]. McDonald
[19] demonstrated greater performance gains by targeting hy-
brid multi-processor, vector machines. Message passing pro-
vided synchronization and was used to transfer data (particles)
between processors. McDonald further demonstrated parallel
performance gains using multi-processor, scalar systems.

There are a few basic architectures to consider for imple-
menting a massively parallel DSMC code: 1) a large multi-
core shared memory system, 2) a network of distributed mem-
ory, lower-cost, few-core machines, or 3) more recently, multi-

Preprint submitted to Computer Physics Communications August 27, 2010

core Graphics Processing Unit (GPU) hardware. Because of
the lower cost as compared to large shared memory systems,
distributed-memory, multi-processor machines have become
the most prevalent architecture for parallel processing, although
multi-core GPU systems are currently being investigated [21].
As a result, high performance DSMC has evolved to fit into
networks of independent computational nodes. Rather than
sharing access among many processors to the same particles
in memory, simulations are broken up into smaller tasks that
are made as fundamentally independent as possible. By dis-
tributing the smaller tasks among a group of distributed mem-
ory machines, synchronization is made less local and CPU-
memory bandwidth limits are less restrictive. One DSMC
code to take advantage of the new distributed architecture is
MONACO [22]. Dietrich showed that the distributed archi-
tecture can be employed to produce excellent performance and
parallel efficiency [22].

Dietrich also demonstrated that parallel efficiency strongly
depends on the workload uniformity across processors in the
system. While workload distribution based on information
known a priori does improve the load balance throughout a sys-
tem of processors, a dynamic redistribution process is usually
needed to achieve optimal performance. Nicol and Saltz dis-
cussed one strategy for dynamic load balancing of DSMC based
on a method called Stop At Rise (SAR) [20, 23]. This method
defines a degradation function, which is used to perform a cost-
benefit analysis of re-decomposing the computational domain
versus leaving the decomposition unchanged. Nance et al. [24]
showed that the choice and implementation of the degradation
function for SAR is very dependent on the physical system be-
ing simulated.

Another dynamic load-balancing technique uses a strategy
analogous to heat diffusion [25]. Heat diffusion mathematics
are used to determine the proper amount of information to trans-
fer from one compute node to another. This load-balancing
technique was proven useful in a parallel DSMC code called
SMILE [26]. As reported by Wu and Lian [27, also see ref-
erences therein], a dynamic domain decomposition can also
be implemented using a graph partitioning technique. Wu and
Lian demonstrated such a dynamic, load-balance code in three
dimensions using an unstructured mesh.

In this paper, we discuss an efficient dynamic load-balancing
scheme based on process feedback control. This scheme is opti-
mally applied to systems that manage frequent and non-discrete
changes to the workload distribution. Consequently, the first
tests of the techniques presented here were done using gridless
DSMC. As described in Ref. [28], gridless DSMC is an imple-
mentation of DSMC that automatically adapts to the real-time
distribution of particles in a simulation. Hence gridless DSMC
can easily accommodate continuous changes to the workload
distribution. The gridless DSMC code has proven to be ex-
tremely flexible and has been applied to a range of rarefied
gas flow problems: Couette flow, thermal Couette flow, low-
velocity flow past a thin plate, high Mach flow past cylinders
of square or double-flare profiles [28], and very-low-velocity
flow of magnetically guided, evaporatively cooled, ultracold
atoms [29].

In the following sections, we describe our load-balancing al-
gorithm. We first discuss background information for load bal-
ancing and describe the test applications that will be used to
demonstrate the techniques put forth in this paper. We then
present our approach for establishing the two key aspects of
load balancing: (1) dynamic load redistribution and (2) the
initial guess. We also describe the application of our load-
balancing algorithm to gridless DSMC to create a parallel pro-
cessing code. Finally, we present the results of and conclusions
from applying this work to the test applications described in
Sec. 2.

2. Background

A typical approach for a parallel operation involves dividing
a large task into smaller, less-demanding tasks which can be
executed independently without affecting simulation integrity.
Load-balanced, parallel computation implies that the total given
workload of the major task is shared evenly across system
resources. This efficient use of system resources minimizes
wasted idle time resulting in quickest job completion.

For particle simulations, each of the smaller tasks must rep-
resent contiguous regions of space wherein collision statistics
are calculated. Thus, the division of labor involves a partition-
ing of computational space such that each partition can be ex-
ecuted independently without affecting collision statistics. In
addition, load balancing for particle simulations becomes a de-
termination of the partition boundaries such that each partition
represents an equal share of the total workload.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x (m)

y
(µ

m
)

Figure 1: (Color online) An atomic beam being evaporatively cooled as it
moves through a long, thin guiding channel. Particle groups, defined by small,
contiguous regions of simulation space, are assigned to different processors to
balance the workload on each of the processors. The different colors in this
figure represent particles that are simulated on various processors. The thin,
enveloping curves indicate the evaporation threshold as a function of x.

Fig. 1 shows a snapshot of a particle simulation near steady
state that is executed in parallel. In this simulation, particles
enter a longitudinal, magnetic, particle guide at x ≈ 0 with an

2

average longitudinal velocity 〈vx〉 > 0 and average transverse
velocity

〈
vy

〉
≈ 0. The configuration confines the particles in

the transverse direction and guides them along the minimum of
the magnetic field. The dotted line in Fig. 1 represents an evap-
oration surface. The most energetic particles travel beyond this
evaporation surface and are immediately removed from the sim-
ulation. The remaining particles collide and redistribute their
energy into the missing tail of a truncated thermal Boltzmann
distribution. This process results in changing a rarefied particle
beam at x ≈ 0 into a much colder, density-enhanced, particle
beam at the end of the guide. For more details concerning this
particular application, see Ref. [14].

The different colors for the particles shown in Fig. 1 indi-
cate the different parallel nodes to which particles are assigned.
As the simulation progresses, particles cross the boundaries of
the contiguous colored regions and are transfered from node
to node as they travel down the length of the beam. The size
of each nodal domain shown in Fig. 1 is chosen such that the
workload per node is kept uniform.

3. Technique

In order to maintain balance, we must first define a measur-
able that will be used to quantify workload. For simplicity, we
define the local workload size as the execution time τi as mea-
sured on the ith node, or rather the time required for the ith node
to execute an arbitrary number of time steps. It is important
to note that strict particle number per node is not necessarily a
good indicator of computational workload. This is because cal-
culating other gas dynamics can be computationally expensive.
For example, in a hypersonic simulation such as presented in
Ref. [28], some sections of the simulation domain exhibit very
high collision rates compared to other sections. As another ex-
ample, for simulations of trapped particles (e.g. in magnetic
traps [14, 30] as shown in Fig. 1, optical traps [31], or Penning
traps [32]), calculating accurate collisionless particle trajecto-
ries can be computationally diverse throughout the simulation
domain.

We base our load-balancing scheme for DSMC on the
premise that small changes to the partition boundaries between
parallel nodes can be made from time step to time step. This
premise enables incremental response to changes in the work-
load distribution as the particle simulation evolves. Incremen-
tal response causes the overall workload distribution to become
and then remain uniform across the CPUs in the system. In
this paper, we demonstrate a one-dimensional implementation
of this technique.

Figure 2: Diagram of a generic feedback control circuit.

Control theory provides ideal solutions for this incremental
change problem. Control theory includes the study of main-
taining a desired outcome from a system by continuously ma-
nipulating a set of system input parameters. The conceptual
schematic in Fig. 2 shows a basic configuration used in control
theory. The input to the control loop, marked as Reference on
the left side of the diagram, represents the desired outcome of
the system. At the beginning of the control loop, the reference
point is compared to a value that represents the current state
of the system. The difference between the reference point and
the system point is known as the control loop error ε. As indi-
cated in Fig. 2, the error ε is fed into the controller box. This
box converts the error ε into a set of system input parameters.
These input parameters are intended to change the system such
that the desired outcome is more closely matched by the actual
outcome of the system. The system response to this change of
input parameters is then measured by appropriate sensors and
fed back into the beginning of the control loop. For a more
in-depth discussion of control theory, see Ref. [33].

The conversion of ε into a set of input parameters inside
the controller box determines the effectiveness of the control
loop for achieving and maintaining the desired outcome. One
generic implementation of the controller box that has seen
widespread use is called Proportional, Integral, and Differential
(PID) feedback control [33, 34]. PID feedback control com-
bines the result of proportional, integral, and differential op-
erations on the error ε creating a total feedback response that
follows

KPε +
1
TI

∫ t

0
ε dt − TD

∂ε

∂t
. (1)

The coefficients KP, TI, and TD are called proportional, integral,
and differential gain respectively.

The proportional term in Eq. 1 changes the system inputs in
a way that is directly proportional to the current value of ε. This
term tends to decrease both the steady-state magnitude of ε and
the timescale over which the control loop attempts to correct the
system output. Conversely, proportional feedback also tends to
cause the system to overshoot the desired outcome, resulting in
an oscillatory system point around the reference point.

The contribution from the integral term in Eq. 1 drives the
system inputs based on both the magnitude and duration of the
error ε. An undiminished ε causes the integral term to increase
in magnitude and more significantly affect the system response.
Thus, the primary benefit of the integral term is to sense and
correct for steady state error. Similar to the proportional term,
the integral term tends to decrease the control timescale while
also causing an oscillatory system output.

The differential term in Eq. 1 drives the system inputs based
on the derivative of ε. This term tends to slow the timescale
of the controller especially when ε is near zero. Thus, differ-
ential control reduces the magnitude of the overshoot caused
by the proportional and integral feedback terms and increases
the stability of the control loop. However, because differentia-
tion amplifies signal noise, this term can cause instability in a
process if the noise and/or the differential gain are sufficiently
large.

3

The process of optimizing the gain parameters for PID feed-
back control is called tuning. There are several methods known
to successfully tune PID circuits. These methods include math-
ematical analysis, manual tuning, as well as automatic software
tuning [34]. Analogous to other feedback control circuits, it can
be expected that a set of well-optimized gain parameters will
significantly improve the transient as well as steady state re-
sponse of the feedback control loop. Conversely, we observed
that some values of the gain parameters in Eq. 1 caused large
steady state error and/or large oscillations of the system error
ε. For simulations with large memory requirements, this cor-
responded to out-of-memory errors occurring and simulations
crashing as the workload became too great for some system
nodes. For this paper, gain parameters were found via rough
manual tuning and not via a full tuning optimization. Although
higher control performance was certainly possible, the gain pa-
rameters were tuned only to the point that waste of computa-
tional resources and wild oscillations in the system response
were significantly diminished. The gain parameters used in this
work were also satisfactorily used in several other simulations,
the results of which are not presented here.

In the following subsections, we first describe the use of PID
feedback control to perform dynamic load balancing during a
simulation. Second, we discuss the effect of initial conditions
on the PID controller. We present sub-optimal and optimal tech-
niques for priming the load balancer. Finally, we briefly discuss
the implementation of the load balancer as applied to gridless
DSMC.

3.1. Load Balancing

As stated earlier, we define the workload measurable of the
ith node as the execution time τi required per simulation time
step. The goal of load balancing is to equalize the execution
time τ of any two neighboring nodes without adding significant
overhead cost (discussed later in Sec. 4.2). Thus, for two neigh-
boring nodes CPU1 and CPU2, the PID error signal ε is defined
as

ε ≡ τ1 − τ2 (2)

where τ1 and τ2 are the computational times required for one
time step as measured on CPU1 and CPU2 respectively. Note
that the procedure for dynamic load balancing described here
implies communication between neighboring nodes only.

If ε , 0 at some time step of the simulation, a PID controller
determines the proper relative spatial boundary shift dLSHIFT
between CPU1 and CPU2 such that the resulting sub-domains
require the same amount of work. A schematic for the PID con-
trol law is shown in Fig. 3. As shown in Fig. 3, ε is fed into the
three term PID control box. The PID feedback result is scaled
by the lower portion of the diagram in Fig. 3 so as to corre-
late computational time τ to sub-domain side length L. CPU1
and CPU2 then move the respective boundary by an amount
±dLSHIFT.

∫
dt

dLSHIFT

−
++

d
dt

−+

τ2

τ1 I)(T −1

TD

PK

++
xy

x

y yx
y

x

ε

PID Terms

L1 + L2

2

Figure 3: A feedback control diagram describing the load-balancing algorithm.
The error signal is ε = τ1 − τ2, where τ1 and τ2 are the computational times
recorded on CPU1 and CPU2 respectively. ε is used to derive a relative shift,
dLSHIFT, in the common boundary between CPU1 and CPU2. CPU1 and CPU2
then move the respective boundary by an amount ±dLSHIFT.

The operations in Fig. 3 can be more formally written as

dLSHIFT =
1
2
L1 + L2

(τ1 + τ2)
(3)

·
(
KPε +

1
TI

∫ t

0
ε dt − TD

∂ε

∂t

)
where KP, TI and TD are the gain constants for the proportional,
integral, and differential terms in Eq. (3). KP is unitless whereas
TI and TD are in pseudo-units of simulation time-steps and de-
termine the length of time over which the respective controls
affect the feedback loop. The leading factor of 1/2 in Eq. (3)
is to account for the fact that both CPU1 and CPU2 undergo a
boundary move by an amount dLSHIFT. Typical values of our
control parameters are KP = 0.1, TI = 100, and TD = 1/80. As
indicated earlier, these values have not been determined by a
rigorous tuning optimization procedure. We expect that higher
performance can be attained by executing such a tuning opti-
mization. Furthermore, the exact tuning optimization is likely
to depend on the particular simulation.

As an illustration of the PID feedback load balancer, consider
a simple gas expansion problem: A one-dimensional, thermal
gas with a positive average velocity (

〈
v‖

〉
= 1 m/s) is allowed to

freely expand from a source at the origin. A set of restrictions,
including a minimum number of particles per CPU, is specified
such that only one CPU is allowed at t = 0, as shown in Fig. 4.
Fig. 4 represents the sub-domain of each active processor as
indicated by the different colored regions. The solid lines in
Fig. 4 show the actual boundaries of the domain that contains
all particles.

As the source injects more and more particles into the sys-
tem, it becomes more appropriate to divide the workload be-
tween more than one processor. At t ≈ 20 ms, one addi-
tional processor is added and the domain is evenly divided be-
tween the two active processors. The simulation then continues
and grows in size until yet another processor is made active
at t ≈ 35 ms. Fig. 4 demonstrates that the PID feedback load

4

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400

x
(m

)

t (ms)

CPU # 1

CPU #3

Domain decomposition (re)initialization

CPU #2

Actual domain extrema

Figure 4: (Color online) The computational domain is divided up into sections,
which are assigned to specific processors. After global domain decomposition
takes place, local shifts of CPU boundaries occur in order to perform locally
controlled load balancing. The colored regions indicate the computational sub-
domain as assigned to a given CPU. The solid lines indicate the boundaries of
the domain that contains all particles.

balancer continuously realigns the local sub-domain boundaries
while it attempts to properly distribute the workload. Fig. 5 fur-
ther shows that the computational time τ consumed by each
CPU in this toy problem is indeed uniform across the active
processors. Fig. 6 shows the number of particles assigned to
each CPU. From Figs. 5 and 6 it is apparent that particle count
is indeed not a good measure of workload as discussed in the
beginning of Sec. 3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400

τ
(s

)

t (ms)

CPU #1
CPU #2
CPU #3

Figure 5: (Color online) Computational time expended by each processor.

3.2. Initial Domain Decomposition

Even a load-balancing scheme that hones the workload distri-
bution during operation can waste significant system resources
if not placed in correct initial conditions. Initial domain decom-
position is the process whereby simulation space, or the do-
main, is initially allocated among the available computational

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

Pa
rt

ic
le

s
(1

00
0)

t (ms)

CPU #1
CPU #2
CPU #3

Figure 6: (Color online) Particles per CPU.

nodes. For many DSMC simulations, the number of proces-
sors that can be utilized can undergo change throughout the
length of the simulation. It is thus necessary to re-initialize the
workload distribution as processors are either added or removed
from a simulation. To achieve optimal performance and mini-
mal wait time in the system after each time (re)initialization is
performed, it is imperative that the initial decomposition repre-
sents a best estimate of the appropriate starting load balance.

As an illustration of a suboptimal or naı̈ve initial domain de-
composition, consider a system with an arbitrarily contrived
workload function as shown in Fig. 7. One might make
the naı̈ve assumption that the workload is evenly distributed
throughout the simulation space. Following this assumption,
processors would be assigned to equally sized sub-domains
spaced on an even grid of the complete domain, as shown in
Fig. 7. We call this flat profile decomposition, referring to the
processor distribution function. Using this decomposition with
the workload function shown in Fig. 7 results in an imbalanced
system where a few processors perform most of the work. The
weakly loaded processors spend most of their wall-clock time
in an idle state.

To more accurately divide the workload, predictive knowl-
edge of the workload is required. Assuming that such informa-
tion is available, it is possible to generate a very accurate do-
main decomposition that initially evenly balances load among
a set of processors. To generate a predictive description of the
system workload, we rely on the assumption that the number
of processors that can be used by a simulation varies with time.
Thus, for each time the number of active processors changes,
a more sophisticated initial domain decomposition can be ex-
ecuted using workload information as collected in prior simu-
lation time steps. For simplicity, flat profile decomposition is
used at t = 0.

To describe the more sophisticated domain decompositions
that occur for t > 0, we first define the workload distribution

5

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0 0.5 1 1.5

W
or

kl
oa

d
(A

rb
. U

ni
ts

)

z

Workload
Naive

CPU Distribution

Figure 7: (Color online) Workload and original CPU distribution based on flat
profile decomposition.

function W(z):

W(z) =
∑

i

Wi

∫
δ

(⌊
zi − z
Li
+

1
2

⌋)
dz (4)

where Li is the one-dimensional length of the ith computational
sub-domain in the z direction, zi and Wi are the central posi-
tion and workload per unit length of the same ith sub-domain
respectively, and δ(X) is the Dirac delta function. Wi is given as

Wi = τi/Li (5)

where τi is the computational time or the amount of CPU time
required to execute a given time step. W(z) describes the work-
load throughout the complete one-dimensional computational
domain. To efficiently use computational resources we attempt
to distribute the work to different nodes according to W(z).
Thus, the centers of neighboring nodes in regions of high work-
load will be closer together in simulation space than those in
regions of low workload.

There is one caveat when assigning initial nodal boundaries:
for simplicity and scalability, we seek to maintain nearest-
neighbor-only communication. A problem arises if nodes are
assigned sub-domains that are small enough for any given lo-
cal particle to traverse a local sub-domain entirely within one
time step. To protect against this, we modify W(z) by a func-
tion that describes the maximum density of processors allowed
Np(z) given by

Np(z) =
∑

i

Npi

∫
δ

(⌊
zi − z
Li
+

1
2

⌋)
dz (6)

where Npi is given by

Npi = Li/ [(v∆t)max]i (7)

and (v∆t)max is the maximum distance traveled by any given
local particle during a single time step. The total number of
usable processors is found by max

[
1 ,

∫
Np(z)dz

]
. Thus, we

end up with the processor distribution function PCPU(z) given
by

PCPU(z) =
∑

i

Wi Npi

∫
δ

(⌊
zi − z
Li
+

1
2

⌋)
dz . (8)

Processors will be assigned sub-domains according to Eq. (8)
to reflect both the need to concentrate resources in heavy work-
load regions as well as to avoid neighboring sub-domain centers
with insufficient separation. To apply Eq. (8), we use distribu-
tion inversion. We call this technique fitted profile decomposi-
tion.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1.5 -1 -0.5 0 0.5 1 1.5
 0

 2

 4

 6

 8

 10

(v
∆t

) m
ax

N
p

z

(v∆t)max

Np

Figure 8: (Color online) Maximum transit (v∆t)max of particles throughout
each node of the simulation and the resulting number of supportable processor
density Np(z).

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0 0.5 1 1.5

W
(z
),

P

C
PU

(z
)

 (

A
rb

. U
ni

ts
)

z

W(z)

PCPU(z)

Figure 9: (Color online) Processor distribution function PCPU(z) is a product
of the workload (W(z)) and supportable processor (Np(z)) functions.

To illustrate this technique, consider the situation shown in
Fig. 7 where flat profile decomposition places eight processors
evenly throughout simulation space. Although the decompo-
sition shown in Fig. 7 does waste system resources, it can be
used to gain information about the workload function W(z). In
fact, the measured workload will be exactly the curve shown in

6

Fig. 7. For the sake of demonstration, assume that maximum
transit (v∆t)max as measured within each node is given by the
contrived upper curve in Fig. 8. Using Eqs. (6) and (7), the
density of nodes that can be supported Np(z) is given by the
lower curve in Fig. 8. Integrating the Np curve in Fig. 8 shows
that up to nine processors can be supported by PCPU. The re-
sulting processor distribution function PCPU(z) is compared to
W(z) in Fig. 9.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9

C
PU

 C
en

te
r

Po
in

t [
z]

CPU #

Figure 10: (Color online) Inverted desired CPU distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0 0.5 1 1.5

W
or

kl
oa

d
(A

rb
. U

ni
ts

)

z

Workload
Fitted

CPU Distribution

Figure 11: (Color online) Workload and new CPU distribution for decomposi-
tion example.

To assign new sub-domains, we invert the distribution
PCPU(z): first we integrate Eq. (8) as

I(z) =
∫ z

0
PCPU(z)dz ,

then swap axes, and assign processor locations by mapping
from evenly spaced x-axis coordinates as shown in Fig. 10.
This process results in new processor locations as shown and
compared to the originally measured workload function W(z)
in Fig. 11. Supplemental material to this paper includes a Mat-
lab demonstration of this decomposition logic.

3.3. Application to Gridless DSMC
The independence of gridless DSMC from the simulation

geometry allows a parallel management code to easily wrap
around the DSMC code. In this way, the gridless DSMC com-
ponent within each processor of the parallel system runs al-
most independently. Communication between the various pro-
cessors is handled by the wrapping parallel code only at the
end of each time step. Using the boundary mechanism, de-
scribed in Sec. 2.3.4 of Ref. [28], virtual boundaries are in-
stalled within each DSMC instance to represent the boundaries
between the sub-domains of the CPUs. Particles that cross
these boundaries during the move operation are subsequently
shuffled (via network communication) to the appropriate neigh-
boring sub-domain at the end of the time step. By ensuring
that the length Li of any ith computational sub-domain satis-
fies Li �

(
v‖∆t

)
max, the shuffling is limited to nearest-neighbor

communication. This simplifies the implementation and mini-
mizes both network traffic (as many neighboring nodes are of-
ten on the separate cores of a single multi-processor machine)
and overhead.

It should also be noted that to apply the algorithms presented
here to any DSMC code, care should be taken to ensure that the
ith sub-domain width Li is somewhat greater than the mean free
path λMFP of the particles in the ith sub-domain. Particles within
a distance of λMFP from each other should generally be allowed
to collide. Enforcing a minimum sub-domain size based on
λMFP would ensure that particles are not synthetically isolated
from each other. Thus, it will likely be necessary to replace
occurrences of (v∆t)max in Sec. 3.2 by

max ((v∆t)max , m · λMFP)

where m generally satisfies m & 1 and depends on the time
step size ∆t. In the results presented in this paper, care was
indirectly taken by requiring a minimum number of particles
per sub-domain such that each sub-domain size was in excess
of λMFP.

4. Results

To demonstrate the methods presented in this paper more
fully, we return to the simulation described in Sec. 2 and de-
picted in Fig. 1. As described earlier, this calculation simulates
forced evaporative cooling and compression of a particle beam.

There are several major factors that contribute to the work-
load distribution for this simulation besides the density of par-
ticles. Particle guiding involves particles traveling through re-
gions with a significant range of forces. Furthermore, in the
physical system modeled by this simulation, the magnetic guid-
ing potential increases as a function of longitudinal position.
An increasing effort is therefore needed through the length of
the guide to obtain accurate trajectories. Since this simulation
attempts to show real cooling, it is necessary to use an integra-
tor that does not synthetically dissipate energy. Thus, we must
exert considerable effort to calculate accurate particle trajecto-
ries. To achieve this, this simulation uses a fifth-order, adaptive
Runge-Kutta integration. In addition to the variable forces, the

7

workload is modified by the evaporative cooling. Evaporative
cooling plays a role in increasing both the collision cross sec-
tion, as well as changing the density and hence collision rate.
With all of these effects, we expect the workload density to ex-
hibit a large dependence on longitudinal position.

To simulate the guided particle beam in a parallel context, the
code automatically divides the guide in the longitudinal direc-
tion as shown in Fig. 1. For demonstrating the load-balancing
approach of this paper, we use up to 20 processors. To start the
simulation, the guide is initially empty. This allows for only
one active processor out of the available pool of 20. A con-
stant flux of particles is injected into the guide at x = 0. As the
particle count increases, more processors are added to the sim-
ulation. The following two subsections will demonstrate the
load-balancing code while contrasting the fitted initial domain
decomposition logic with the simple, flat distributed model.

4.1. Decomposition and Load Balancing

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

τ
(s

)

t (s)

 0

 0.25

 0.5

 0 0.3 0.6

Domain Decomposition

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

τ
(s

)

t (s)

 0

 0.25

 0.5

 0 0.3 0.6

Domain Decomposition

Figure 12: (Color online) Computational time per CPU τ as a function of
simulation time t for a 20 processor simulation. (a) Simple flat and (b) fitted
decomposition results are compared.

Fig. 12(a-b) shows the computational time per each CPU re-
quired for simulating the particle guide as a function of simu-
lation time. Each figure uses the same dynamic, PID feedback

load balancer preceded by either the simple flat profile decom-
position model as in Fig. 12(a) or the fitted profile decomposi-
tion model as in Fig. 12(b). At the beginning of the simulation,
there are no particles and thus only one CPU is active. As more
and more particles are added to the system, additional nodes
are made active and the computational domain is reassigned.
Fig. 12(a-b) shows each repeat decomposition until all twenty
of the available processors have been added. After each itera-
tion of the given decomposition logic, boundaries are allowed
to evolve under the load-balancing PID control. The insets in
Fig. 12(a-b) show a closeup of each domain decomposition and
the results of the initial PID control.

From Fig. 12(a), it is clear that the flat profile decomposition
hardly distributes the workload properly. This is evident by the
large adjustments that are necessary as the PID logic attempts
to correct the imbalance. Although the dynamic load balancing
PID control does eventually reign in the imbalance, significant
time is wasted as the system undergoes large oscillations in the
workload distribution.

On the other hand, as shown in Fig. 12(b), the fitted profile
decomposition results in the workload being distributed evenly
before the PID control takes over. In contrast to the large oscil-
lations in Fig. 12(a), Fig. 12(b) shows a continual even work-
load distribution and smooth transitions even as new processors
are added to the calculation.

Fig. 13(a-b) shows the particle number per processor as a
function of simulation time. The wide range in particle num-
bers per CPU as the PID control approaches steady state reflects
the higher computational load for regions where collisions play
a larger role as well as the integrator requiring more calcula-
tions due to larger magnetic forces. This shows that the PID
control does indeed balance the actual workload such that each
processor in the system spends roughly an equal portion of time
calculating each step as shown in Fig. 12(a-b).

4.2. Scalability
For any parallel processing scheme, there is a certain fraction

of the total computational time that must be used for managing
the parallelization. This overhead often involves communica-
tion between nodes, explicit synchronization (which can result
in idle processors) between nodes, sub-domain boundary calcu-
lations/decomposition, and so on. To justify the use of a parallel
approach for a given calculation, the cost of the overhead must
not outweigh or be equal to the benefit gained through using the
additional computational resources.

Fig. 14(a-b) shows the overhead ∆τ per each processor as a
function of simulation time for the examples above. Fig. 14(a)
shows that the flat profile decomposition causes considerable
overhead during the initial PID control. In spite of this, it
is also clear that after the PID control balances the workload,
the remaining overhead is less than 5%. As expected from the
smooth transitions via the fitted profile decomposition method,
Fig. 14(b) shows that the overhead can be minimized, even
while activating new processors for the simulation.

The scalability of the parallel approach presented in this pa-
per depends on the application. The overhead using the one-
dimensional splitting, as described in this paper, depends on

8

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
 (

10
00

 p
er

 C
PU

)

t (s)

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
 (

10
00

 p
er

 C
PU

)

t (s)

Figure 13: (Color online) Number of particles N assigned to each of 20 pro-
cessors as a function of simulation time t. (a) Simple flat and (b) fitted decom-
position results are compared.

whether the virtual boundaries between the sub-domain nodes
must make large excursions. Large movements in the bound-
aries cause a dramatic increase in necessary particle exchange
between neighboring nodes. In the examples presented here,
the splitting is done along the direction of the stream velocity.
In addition, because we only present the non-steady state turn-
on phase of the simulations, significant movement among the
internal virtual parallel boundaries is necessary to achieve load
balance. As the system approaches steady state, the overhead
will decrease.

In practice, the overhead can be significantly lower than seen
in the examples here. Because of the nearest-neighbor-only
communication paradigm, the fractional overhead per CPU
does not increase with the number of processors. In practice,
we have seen overhead values as low as 0.1% for as many as
256 active processors.

5. Conclusion

We have demonstrated an adaptive technique for managing
load balancing in a parallel simulation. The results show that

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1
-

∆τ
/τ

t (s)

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1
-

∆τ
/τ

t (s)

Figure 14: (Color online) Average overhead (∆τ) for each of 20 processors in
fraction of total computational time per time step (τ) as a function of simulation
time t. (a) Simple flat and (b) fitted decomposition results are compared.

the overhead is near negligible, usually around 1-5%. The re-
sults further show that the load among system resources can be
easily balanced even with a dynamically changing simulation.

5.1. Future Direction

The algorithms presented in this paper assume that workload
change generally occurs slowly. Simulations can exist where
instantaneous workload change can occur at any time in the
simulation. For instance, a simulation might include a pro-
cess that begins and ends at arbitrary simulation times. A reset
condition to detect sudden large change in the PID controller
should be defined whereupon the initial workload distribution
process described in Sec. 3.2 is re-initiated.

For more complex workload configurations, domain decom-
position in more than one dimension may be optimal. It would
thus be of interest to determine whether PID feedback control
and workload distribution inversion can be used efficiently in
concert or separately for two and three dimensions. One possi-
ble method of extending this work to two and three dimensions
is to use a hierarchical approach as described by Campbell et al.
[35]. A hierarchical approach dictates that one-dimensional

9

methods be repeated over each dimension. In two dimensions,
this results in rows of one-dimensional load balancing groups.
Ideally, the dimension corresponding to the most intense load-
balancing effort would also correspond to the individual cells
of the rows of load balancers. Thus, most communication and
sub-domain movement is isolated separately within each one-
dimensional load balancing group. For three dimensions, this
results in grouping rows together into a single load balancing
group that divides the entire computational domain in the di-
rection of the final dimension.

Though we anticipate that extending PID feedback con-
trol into higher dimensions using the hierarchical approach is
straightforward, enforcing alignment to coordinate axes may
prove detrimental for global efficiency. An alternate approach
could include measures to separate global domain structure
from local domain structure. For example, a hierarchical tree
could be constructed to represent the entire computational do-
main, where the size and location of leaf nodes in the tree
represent local computational demands. In each of these lo-
cal zones, a single one-dimensional PID feedback controller
could be aligned along an arbitrary axis. The direction of the
local feedback controller would be determined by some method
that dynamically measures the direction of the most demanding
load-balancing effort. Allowing the local domains to be aligned
arbitrarily will enable higher local efficiency without globally
effecting the efficiency of other local balancers. This approach
may perhaps be considered a hybrid strategy between the graph
decomposition as presented by Wu and Tseng [36] and the ge-
ometrical PID-feedback-based decomposition presented here.

Acknowledgments

This work was partially supported by the Army Research Of-
fice and the Office of Naval Research (Project number 42791-
PH). SEO was partially supported for this work by a National
Research Council research associateship. Computational re-
sources for this work were provided by the Naval Research Lab-
oratory as a part of the Defense High Performance Computing
Modernization Program.

References

[1] A. J. Christlieb, W. N. G. Hitchon, and E. R Keiter. A computational
investigation of the effects of varying discharge geometry for an induc-
tively coupled plasma. Plasma Science, IEEE Transactions on, 28(6):
2214–2231, 2000. doi: 10.1109/27.902250 .

[2] A. V. Vasenkov and M. J. Kushner. Angular anisotropy of electron energy
distributions in inductively coupled plasmas. J. Appl. Phys., 94:5522,
2003. doi: 10.1063/1.1614428 .

[3] C. Cai, I. D. Boyd, and Q. Sun. Rarefied background flow in a vacuum
chamber equipped with one-sided pumps. J. Therm. Heat Trans., 20(3):
524–535, 2006. doi: 10.2514/1.19178 .

[4] I. D. Boyd, C. Cai, M. L. R. Walker, and A. D. Gallimore. Computation
of Neutral Gas Flow From a Hall Thruster Into a Vacuum Chamber. AIP
CONFERENCE PROCEEDINGS, pages 541–548, 2003.

[5] D. F. G. Rault and M. S. Woronowicz. Application of direct simulation
Monte Carlo to satellite contamination studies. J. Spacecraft and Rockets,
32:392–397, May 1995. doi: 10.2514/3.26627 .

[6] A. J. Christlieb, W. N. G. Hitchon, I. D. Boyd, and Q. Sun. Kinetic
description of flow past a micro-plate. J. Comp. Phys., 195(2):508–527,
2004. doi: 10.1016/j.jcp.2003.10.027 .

[7] W. Yuan, H. Chang, W. Li, and B. Ma. Application of an optimization
methodology for multidisciplinary system design of microgyroscopes.
Microsystem Technologies, 12(4):315–323, 2006. doi: 10.1007/s00542-
005-0054-2 .

[8] I. D. Boyd. Review of Hall Thruster Plume Modeling. J. Spacecraft and
Rockets, 38:381–387, May 2001. doi: 10.2514/2.3695 .

[9] I. D. Boyd and J. P. W. Stark. Modeling of a small hydrazine thruster
plume in the transition flow regime. J. Prop. Pow., 6(2):121–126, 1990.
doi: 10.2514/3.23232 .

[10] J. S. Wu, S. Y. Chou, U. M. Lee, Y. L. Shao, and Y. Y. Lian. Parallel
DSMC simulation of a single under-expanded free orifice jet from tran-
sition to near-continuum regime. J. Fluids Eng., 127:1161, 2005. doi:
10.1115/1.2062807 .

[11] J. F. Padilla and I. D. Boyd. Assessment of Rarefied Hypersonic Aerody-
namics Modeling and Windtunnel Data. 9 th AIAA/ASME Joint Thermo-
physics and Heat Transfer Conference, 2006.

[12] M. S. Ivanov and S. F. Gimelshein. Computational Hypersonic Rarefied
Flows. Annual Review of Fluid Mechanics, 30:469–505, 1998. doi:
10.1146/annurev.fluid.30.1.469 .

[13] J. N. Moss, R. C. Blanchard, R. D. Braun, and R. G. Wilmoth. Mars
Pathfinder Rarefied Aerodynamics: Computations and Measurements. J.
Spacecraft and Rockets, 36:330–339, May 1999. doi: 10.2514/2.3475 .

[14] S. E. Olson, R. R. Mhaskar, and G. Raithel. Continuous propagation and
energy filtering of a cold atomic beam in a long high-gradient magnetic
atom guide. Phys. Rev. A, 73(3):033622, March 2006. doi: 10.1103/Phys-
RevA.73.033622 .

[15] G. A. Bird. Molecular Gas Dynamics. Oxford University Press, 1976.
[16] D. Baganoff and J. D. McDonald. A collision-selection rule for a particle

simulation method suited to vector computers. Phys. Fluids, 2:1248–
1259, July 1990. doi: 10.1063/1.857625 .

[17] S. Dietrich. An efficient computation of particle movement in 3D DSMC
calculations on structured body-fitted grids. In Proceedings of 17th Int.
Symp. On Rarefied Gas Dynamics, Aachen, Germany, 1991.

[18] I. D. Boyd. Vectorization of a Monte Carlo simulation scheme for
nonequilibrium gas dynamics. J. Comp. Phys., 96:411–427, October
1991. doi: 10.1016/0021-9991(91)90243-E .

[19] J. D. McDonald. Particle Simulation in a Multiprocessor Environment.
AIAA Paper, 9(1):1366, 1991.

[20] G. J. LeBeau. A parallel implementation of the direct simulation Monte
Carlo method. Comp. Meth. Appl. Mech. Eng., 174(3–4):319–337, 1999.
doi: 10.1016/S0045-7825(98)00302-8 .

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable par-
allel programming with CUDA. Queue, 6(2):40–53, 2008. doi:
10.1145/1365490.1365500 .

[22] S. Dietrich. Scalar and Parallel Optimized Implementation of the Direct
Simulation Monte Carlo Method. J. Comp. Phys., 126:328–342, July
1996. doi: 10.1006/jcph.1996.0141 .

[23] D. M. Nicol and H. Saltz. Dynamic Remapping of Parallel Computations
with Varying Resource Demands. IEEE TRANSACTIONS ON COMPUT-
ERS, 37(9):1073, 1988.

10

http://dx.doi.org/10.1109/27.902250
http://dx.doi.org/10.1063/1.1614428
http://dx.doi.org/10.2514/1.19178
http://dx.doi.org/10.2514/3.26627
http://dx.doi.org/10.1016/j.jcp.2003.10.027
http://dx.doi.org/10.1007/s00542-005-0054-2
http://dx.doi.org/10.1007/s00542-005-0054-2
http://dx.doi.org/10.2514/2.3695
http://dx.doi.org/10.2514/3.23232
http://dx.doi.org/10.1115/1.2062807
http://dx.doi.org/10.1115/1.2062807
http://dx.doi.org/10.1146/annurev.fluid.30.1.469
http://dx.doi.org/10.1146/annurev.fluid.30.1.469
http://dx.doi.org/10.2514/2.3475
http://dx.doi.org/10.1103/PhysRevA.73.033622
http://dx.doi.org/10.1103/PhysRevA.73.033622
http://dx.doi.org/10.1063/1.857625
http://dx.doi.org/10.1016/0021-9991(91)90243-E
http://dx.doi.org/10.1016/S0045-7825(98)00302-8
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1006/jcph.1996.0141

[24] R. P. Nance, H. Hassan, R. G. Wilmoth, B. Moon, and J. Saltz. Parallel
Monte Carlo simulation of three-dimensional flow over a flat plate. J.
Therm. Heat Trans., 9(3):471–477, 1995. doi: 10.2514/3.689 .

[25] S. Taylor, J. R. Watts, M. A. Rieffel, and M. E. Palmer. The Concur-
rent Graph: Basic Technology for Irregular Problems. IEEE parallel and
distributed technology: systems and applications, 4(2):15–25, Summer
1996. doi: 10.1109/88.494601 .

[26] M. Ivanov, G. Markelov, S. Taylor, and J. Watts. Parallel DSMC strate-
gies for 3D computations. Parallel Computational Fluid Dynamics: Al-
gorithms and Results Using Advanced Computers, 1996.

[27] J. S. Wu and Y. Y. Lian. Parallel three-dimensional direct simulation
Monte Carlo method and its applications. Computers and Fluids, 32(8):
1133–1160, 2003. doi: 10.1016/S0045-7930(02)00083-X .

[28] S. E. Olson and A. J. Christlieb. Gridless DSMC. J. Comp. Phys., 227
(17):8035–8064, September 2008. doi: 10.1016/j.jcp.2008.04.038 .

[29] S. E. Olson. Long, High-Gradient Magnetic Atom Guide and Progress
Towards an Atom Laser. PhD thesis, University of Michigan, 2006.

[30] H. Wu and C. J. Foot. Direct simulation of evaporative cooling. J. Phys.
B, 29:L321–L328, April 1996. doi: 10.1088/0953-4075/29/8/003 .

[31] S. E. Olson, M. L. Terraciano, M. Bashkansky, Z. Dutton, and F. K.
Fatemi. Cold atom confinement in an all-optical dark ring trap. Phys.
Rev. A, 76(6):061404, 2007. doi: 10.1103/PhysRevA.76.061404 .

[32] A. J. Christlieb, R. Krasny, and J. P. Verboncoeur. A Treecode Al-
gorithm for Simulating Electron Dynamics in a Penning–Malmberg
Trap. Comp. Phys. Comm., 164(1–3):306–310, December 2004. doi:
10.1016/j.cpc.2004.06.076 .

[33] W. L. Brogan. Modern Control Theory. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1991.

[34] K. J. Åström and T. Hägglund. The future of PID control. Control
Engineering Practice, 9(11):1163–1175, 2001. ISSN 0967-0661. doi:
10.1016/S0967-0661(01)00062-4 .

[35] P. M. Campbell, E. A. Carmona, and D. W. Walker. Hierarchical domain
decomposition with unitary load balancing for electromagnetic particle-
in-cell codes. In Distributed Memory Computing Conference, 1990., Pro-
ceedings of the Fifth, volume 2, pages 943 –950, apr 1990.

[36] J. S. Wu and K. C. Tseng. Parallel DSMC method using dynamic domain
decomposition. Int. J. Numer. Meth. Eng, 63:37–76, 2005.

11

http://dx.doi.org/10.2514/3.689
http://dx.doi.org/10.1109/88.494601
http://dx.doi.org/10.1016/S0045-7930(02)00083-X
http://dx.doi.org/10.1016/j.jcp.2008.04.038
http://dx.doi.org/10.1088/0953-4075/29/8/003
http://dx.doi.org/10.1103/PhysRevA.76.061404
http://dx.doi.org/10.1016/j.cpc.2004.06.076
http://dx.doi.org/10.1016/j.cpc.2004.06.076
http://dx.doi.org/10.1016/S0967-0661(01)00062-4
http://dx.doi.org/10.1016/S0967-0661(01)00062-4

	Introduction
	Background
	Technique
	Load Balancing
	Initial Domain Decomposition
	Application to Gridless DSMC

	Results
	Decomposition and Load Balancing
	Scalability

	Conclusion
	Future Direction

