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Abstract

This work concerns the development of a gridless method for modeling the inter-
particle collisions of a gas. Conventional fixed-grid algorithms are susceptible to
grid-mismatch to the physical system, resulting in erroneous solutions. On the con-
trary, a gridless algorithm can be used to simulate various physical systems without
the need to perform grid-mesh optimization. An octree algorithm provides the grid-
less character to a direct simulation Monte Carlo (DSMC) code by automatically
sorting nearest-neighbor gas particles into local clusters. Automatic clustering al-
lows abstraction of the DSMC algorithm from the physical system of the problem
in question. This abstraction provides flexibility for domains with complex geome-
tries as well as a decreased code development time for a given physical problem. To
evaluate the practicality of this code, the time required to perform the gridless over-
head from the octree sort is investigated. This investigation shows that the gridless
method can indeed be practical and compete with other DSMC codes. To validate
gridless DSMC, results of several benchmark simulations are compared to results
from a fixed-grid code. The benchmark simulations include several Couette flows of
differing Knudsen number, low-velocity flow past a thin plate, and two hypersonic
flows past embedded objects at a Mach number of 10. The results of this comparison
to traditional DSMC are favorable. This work is intended to become part of a larger
gridless simulation tool for collisional plasmas. Corresponding work includes a grid-
less field solver using an octree for the evaluation of long range electrostatic forces.
We plan to merge the two methods creating a gridless framework for simulating
collisional-plasmas.
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1 Introduction

Simulations of gas systems have been useful for understanding many practical
problems: space shuttle damage, aerodynamics of craft, and so on. This paper
describes a gridless procedure for handling collisions in a direct simulation
Monte Carlo (DSMC) calculation. This new method enables shortened devel-
opment time for studying a specific physical system. It also shows promise
for increased accuracy for some very rarefied systems as well as systems with
high-gradient flows without a heavy cost increase in computational resources
(time, processor power, memory, etc.) required. Following a brief context for
simulating gas dynamics, the method is described in detail by springboarding
from a brief review of the more traditional and established grid-based DSMC.

Under the assumption that inter-particle interactions in a gas are dominated
by binary collisions, the evolution of the gas can be accurately modeled by
the Boltzmann equation, given by

∂f

∂t
+ [f, H ] = Q (f, f) (1)

with initial condition
f(~x, ~p, 0) = f0(~x, ~p) . (2)

f (~x, ~p, t) in Eq. (1) describes a phase-space distribution for the gas over all
space and momentum (~x ∈ D ⊂ R

3, ~p ∈ R
3) and H is Hamiltonian of the sys-

tem. The operator Q (·, ·) is a convolution over all phase space that accounts
for departure from the Liouville theorem due to collisions between particles
in the system [1–3].

In general, gas systems are characterized by the ratio of the mean free path
λMFP to the characteristic length L of the system. λMFP is given by

λMFP =
1√

2 σT n
(3)

where σT is the total elastic scattering cross-section and n is the local num-
ber density. The local characteristic length L of a system is the length scale
over which a macroscopic property S of the gas, e.g. temperature or density,
undergoes significant change and can be expressed as

L = S

(

∂S

∂x

)

−1

. (4)
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The ratio (λMFP/L), called the local Knudsen number and denoted by Kn, is
a measure of the collisionality of a gas. The relative importance of the collision
integral in Eq. (1) is directly tied to the value of Kn. As Kn tends to ≪1,
action in the gas is dominated by collision events. For Kn ≪ 1, the solutions
of Eq. (1) can be approximated as

fM =
n (~x, t)

N

(

π

2mkBT

)3/2

exp

{

−|~p− ~p0 (~x, t)|2
2mkBT (~x, t)

}

, (5)

where fM is termed a local Maxwellian. In this limit, one can employ the
Chapman–Enskog method to derive transport equations for number density
n (~x, t), stream velocity ~p0 (~x, t) /m, and temperature T (~x, t) [1]. Thus, Kn
serves as a guide for determining the most efficient approach for solving Eq. (1)
for a gas system.
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Fig. 1. Validity regions for various gas simulation approaches. For very low Knud-
sen number Kn, fluid equations, such as the Navier-Stokes equations are typically
used. As Kn → 0, the solutions of the fluid equations approach those of incompress-
ible, inviscid solutions of the Euler equations. For Kn & 0.1, statistical simulations
are often used to model microscopic interactions. As Kn → ∞, deterministic free–
molecular motion is the limit.

Fig. 1 shows the range of validity for different models of particle dynamics as
a function of Kn. As indicated in Fig. 1, there exists a cutoff region beyond
which the fluid model does not extend. A wide range of important physical
systems fall outside the scope of fluid models in this higher range of Kn. Ex-
amples of high Kn systems (Kn > 0.1) include (but are not limited to) comet
tails [4], spacecraft reentry [5], spacecraft plume interactions [6], micro-/nano-
scale gas flows [7–9], evaporative cooling for the formation of Bose–Einstein
Condensate [10, 11], and fundamental processes in plasma etching systems
[12–14]. Often these systems are far too complex to construct analytic solu-
tions to the governing equation (Eq. 1). Hence, theoretical studies of these
systems are mostly limited to numerical simulation and computation. Unfor-
tunately, for most high Kn problems of interest, directly solving Eq. (1) is
not computationally tractable. This is because of the excessive computational
resource requirement needed to describe and calculate the phase-space dis-
tribution function f (~x, ~p, t). For example, a six-dimensional f (~x, ~p, t) over a
spatial grid of 100× 100× 100 and a minimal momentum grid of 30× 30× 30
requires & 100 GB of memory just for basic storage.
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A popular approach for reducing the computational requirement is to use a
statistical method to evaluate at least part of Eq. (1). The most common
statistical method, pioneered by G. A. Bird [3], is direct simulation Monte
Carlo (DSMC). As implied by the name, DSMC involves a simulation of the
macroscopic gas dynamics by directly simulating the microscale processes of
individual particles in the gas. Since the method is not a direct discretization
of the Boltzmann equation, questions of accuracy and convergence were ini-
tially addressed by comparison with existing theory and experiments. Muntz
[15] provides a nice review of computational validation of DSMC. Wagner [16]
further validated the method by analytically establishing that DSMC con-
verges to the Boltzmann equation in the limit as N → ∞. More recently,
Hadjiconstantinou et al. [17] investigated statistical error associated with re-
sults drawn from DSMC and Gallis et al. [18] compared DSMC results with
the Chapman–Enskog formalization. A variety of review articles have been
written on DSMC and its impact on various fields of study [15, 19–22].

While the individual motion of each gas particle is followed deterministically,
the microscale binary collisions in the gas are simulated in a statistical manner.
To increase computational efficiency, the number of collisions that must be
tested and executed is limited by excluding the least likely of collision pairs
(the collision integral in Eq. (1) calls for collision interactions between all
points in phase space that conserve energy and momentum). Most-probable
collision pairs are found by binning all particles in space to find groups of
nearest neighbors. Based on local flow properties, random pairs of particles
from within a bin are selected to undergo the collision procedure,

C∆t (~xj, ~pj) ⊗ (~xk, ~pk) =
(

~xj, ~p
∗

j

)

⊗ (~xk, ~p
∗

k) , (6)

where C∆t is the collision operator for a time step of ∆t and ~p∗ denotes a
new momentum following the exchange due to the collision. The statistical
collision operator C∆t conserves momentum and energy and can be elegantly
described as a Markovian procedure based on a null collision operator (for
details see [23]). Typically, particle bins consist of a fixed underlying mesh
which represents a unique non-overlapping decomposition of the domain D,

D =
M
⋃

k=1

γk , (7)

where γk is the kth mesh cell. Although this mesh must cover all spatial regions
of interest, its memory requirement is much less than that of the multidimen-
sional phase-space distribution function f (~x, ~p, t).

Despite the memory requirement being much reduced, a mesh that covers the
entire domain D does not allow for optimal use of computational resources.
This can be the case, for example, when portions of the mesh remain empty due
to uneven distribution of particles throughout the mesh. In addition, a fixed
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grid of bins must be customized to the particular physical problem in question.
Grid-mismatch to the physical system can be cause for error in simulation
results. Conversely, a gridless method of determining local groupings of nearest
neighbors makes it possible to dynamically match the distribution of particles,
independent of the geometry of the boundary conditions or forces within the
system.

In this paper, we present a gridless statistical approach to the simulation of
rarefied gas dynamics. Using standard DSMC as a starting point, the gridless
method is described and compared to mesh based methods. Following a de-
scription of the methodology, we discuss convergence of the gridless method
and thereafter present results of benchmark simulations. The results obtained
from gridless DSMC are compared with those previously validated and ob-
tained from standard fixed-grid DSMC. A method of including boundary con-
ditions is described and demonstrated.

2 Numerical approach

Each particle in a gas system can be characterized by its position and mo-
mentum at time t

{(~x1(t), ~p1(t)) , . . . , (~xN(t), ~pN(t))} , (8)

where (~xi(0), ~pi(0)) are chosen by appropriately sampling Eq. (2). The N -
particle distribution function at time t may be expressed as

fδ (~x, ~p, t) =
1

N

N
∑

i=1

δ(~x − ~xi(t)) δ(~p − ~pi(t)) . (9)

In a direct simulation of microscopic gas dynamics, molecular motion and
collisional processes must be calculated. This involves following the position
of each particle in the system and exchanging energy and momentum between
particles during collisions.

The basic tenet of DSMC allows separation of the collisional time scale from
the time scale of the free molecular motion. Such a separation decouples simu-
lations of the different physical processes, allowing these to be executed in an
almost arbitrary order. It is thus possible to iterate a step-by-step algorithm,
wherein each step represents the simulation of a different physical process. A
simple implementation of DSMC could include a few steps as shown in Fig. 2.
First, collisions are performed between neighbors according to a physical col-
lision probability. Second, the particles are allowed free-molecular movement
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according to the system Hamiltonian H . Last, boundary conditions are applied
to particles as necessary.

(3)  Apply Bound. Cond.

(2)  Move Particles

(1)  Collide Particles

Fig. 2. Simple implementation of DSMC.

Repeated action of the split operator leads to a particular instantiation of
the discrete phase-space distribution function fδ (~x, ~p, t) in Eq. (9). To reduce
statistical noise, many instances of fδ (~x, ~p, t) are averaged together such that
f (~x, ~p, t) is given by

f (~x, ~p, t) ≡ 〈fδ (~x, ~p, t)〉 =
1

J

J
∑

j=1

∫ ∫

fδ j (~x, ~p, t)ρ(~x)φ(~p)dx3dp3 (10)

where J is the number of independent instantiations of fδ (~x, ~p, t) in the av-
erage and ρ(~x) and φ(~p) are suitable test functions. In grid based DSMC,
the underlying mesh may be thought of as the test function in constructing
the averages. For simulations of steady state behavior, the split operator is
iterated until transients have substantially decayed. Thereafter, J instances
of fδ (~x, ~p, t) (separated by several iterations of the algorithm so as to be sta-
tistically disconnected), are averaged together to compute limt→∞ f (~x, ~p, t).
For time dependent problems, the goal is to compute f (~x, ~p, ti) where ti is
the ith time step in the simulation. In this case, each instance of fδ j (~x, ~p, ti)
in Eq. (10) is taken from a separate simulation seeded with a new random
sampling of Eq. (2). Typically, the averaging in Eq. (10) is done by first pro-
jecting Eq. (9) onto a fixed underlying mesh and then averaging the values in
this mesh. In practice, one seeks macroscopic flow properties such as density,
stream velocity, and temperature. These properties are derived from moments
of the computed f (~x, ~p, t).

It must be noted that the de-coupling of the free molecular motion from col-
lisional processes is only valid for simulations where the probability of any
particle colliding with another in any given time step is much smaller than
unity [24]. This is ensured by requiring that the basic time step of the simu-
lation is no more than 10 % of the collision time.
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2.1 Collisions

Particle species for which long range interactions can be neglected only have
a significant probability for collisions with near neighbors. Thus, for imple-
menting a collision model for such particles, it is valid (and an efficient use of
computational resources) to limit collision tests to pairs of particles that are
separated by less than or on the order of the collision length. In other words,
it is unnecessary to calculate collision probabilities for pairs of particles which
are separated by a distance much greater than λMFP.

A typical approach for implementing efficient collision pair selection involves
inserting a preparatory step before step 1 in Fig. 2. During this preparatory
step, all particles are sorted into bins that represent a particular portion of
the simulated space. Collision pairs are then created by selecting partners
from within the same spatial bin. This allows an efficient selection of probable
collision pairs without the need to overextend the computational resources.

Traditionally, a fixed grid of computer memory maps to a grid of simulation
cells and provides natural binning for collecting and organizing the groups of
nearest-neighbor particles. While this fixed-grid approach enjoys much success,
development of fixed grids often requires much finesse for creating the correct
layout of grid cells. For example, a system with steep gradients (due to strong
external forces or sharp changes in flow properties) such as at the front of
a shock, a uniform grid is problematic: if the grid cells are too large, such
that the shock front is traversed by one or two cells, dramatic error in the
collision statistics at the shock front will result. On the other hand, if cells
are too small, particles will be non-physically thermally isolated from each
other. In addition, a dense grid in a rarefied gas region will result in wasted
computational resources. Ideally, creating a physically correct simulation with
a fixed grid involves an algorithm with the following steps.

(1) A fixed grid is created to best match the estimated solution.
(2) The simulation is executed until steady state is reached.
(3) The simulation results are compared with the geometry of the grid.
(4) If the stream lines of the flow field differ substantially from the geometry

of the grid, the algorithm returns to step 1 to repeat the process.

By iterating this algorithm, a correct grid would be found that produces the
correct solutions to the physical system. Adaptive mesh refinement is one
method of automatically carrying out these steps [25, 26].
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2.2 Gridless DSMC

Rather than attempting to create physically correct simulations via the grid-
refinement procedure, we have implemented a gridless technique that avoids
the issue of grid-mismatch. Without the need to match a grid to an underlying
physical system, the gridless approach further allows the abstraction of the
DSMC code from the description of the physical environment. In other words,
the user is allowed to focus on the details of the physical system (boundary
conditions, forces, etc.) rather than the DSMC layer of the simulation.

The main disadvantage of a gridless system stems from the computational
time required to sort particles into nearest-neighbor lists. It is of utmost ne-
cessity to avoid algorithms where the required computational time increases
quadratically (or greater) with particle number, such as bubble sort which
requires up to O (N2) time. Various non-gridded sorting algorithms have been
available for some time, but only since the development and work with the
generalized binary sort/search algorithm (expanded to k dimensions) has a
tractable solution been possible.

The general idea of the binary sort/search algorithm relies on the divide and
conquer principle. Consider a number secretly picked at random between two
known fixed points on the number line. Consider further that we are given the
task of discovering the number and can only ask “is it greater or less than”
questions. The binary search algorithm dictates that our first query use the
center point between the two fixed points. If the answer is “less than,” we
submit a second query for the value in the center of the section between the
first query and the end point on the left (assuming that the number line is less
on the left). We iterate the queries always using the center points of a smaller
and smaller section of the number line. This search executes in O (log2[ N ])
time.

Instead of searching a previously sorted set of data, the task in DSMC is to sort
a set of particles into nearest neighbor containers. To perform this operation,
we can continue to use the divide and conquer principle as in the following
example. Consider a one-dimensional set of random numbers for which we
are given the task to sort numerically. Using the divide and conquer princi-
ple, we first estimate the midpoint of the distribution of the numbers. Using
this estimated midpoint we compare all numbers to this selected value and
put all “less-than” numbers in a container on the left and all “greater-than”
numbers in a container on the right. This midpoint value, used to subdivide
the group, is called the pivot point. For each of the newly created groups of
numbers, we define a new pivot point and subdivide each container further
by the same process. By iterating this algorithm, the set of initially random
numbers is quickly ordered in O (N log [N ]) time. This is known specifically
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as the quicksort algorithm.

By retaining the values of the pivot points and the relation of those pivots to
the sorted data, a hierarchical tree structure is generated that is optimal for
the binary search described above. This tree is called a binary search tree. The
size, or depth, of the tree is characterized by the number of iterations required
to build the tree, or rather, the number of edges from leaf node to root in a
graph view of the tree.

The quicksort and binary search algorithms can easily be extended to k di-
mensions by iterating the one dimensional algorithms independently over each
dimension for each level of the tree. Doing so, each new level of tree results

in creating 2k new children for each parent node, or
(

2k
)l

new total nodes
for new tree depth of l. The two and three dimensional specializations of this
hierarchical tree method are known as the quadtree and octree, respectively.
In a quadtree, each parent node may have as many as four child nodes and in
an octree, the parent may have as many as eight child nodes. Because of the
simple application of the binary search algorithm to the tree, the quadtree and
octree lend themselves well for performing searches for a set of objects in two
or three dimensions. This is the approach taken by many modern computer
graphics systems for determining which items, from a set of objects, to ren-
der [27]. Such a hierarchical organization is also commonly used for simulated
collision detection [28], especially in modern computer gaming systems.

Because our particle simulations are at most three-dimensional, we will hence-
forth refer to the algorithms as the octree algorithm. By implementing the
octree algorithm, we have developed a code that automatically adjusts to the
changes of the particle distribution in a simulation requiring O (N log [N ])
time.

2.2.1 Octree for DSMC

For DSMC, it is necessary to add a series of specializations to the standard
octree building process. First, the choice of the pivot location can influence the
statistical error and ability of the code to adapt to the physical system. Second,
it is necessary to attach rules which disqualify children to avoid poor aspect
ratio as well as empty (and not useful) children. Third, it can be advantageous
to allow the bounded volume of a node to adapt more closely to the minimal
bounding volume of the particles within its boundaries. Finally, the stopping
condition, or the condition that halts further subdivision in a tree can have a
dramatic effect on the validity of the collision selection process. The remainder
of Sec. 2.2 discusses these specializations in detail.
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2.2.2 Pivot location

In a typical octree implementation, the clusters at each level of the tree are
uniform cubes obtained by bisecting the previous generation of clusters in
each coordinate direction. In other words, the geometric center of a parent
node is used as the pivot point for the quicksort. Although this choice of pivot
point requires near zero computational time to calculate, DSMC can benefit
by using an alternate scheme. In a gas simulation, particles are randomly dis-
tributed according to the Boltzmann equation (Eq. 1). The distribution may
exhibit large concentrations of particles in various regions of space as well
as large empty spaces in other regions. It is advantageous to select a pivot
point, such as the center of mass, that more equally divides the particles into
children nodes. By doing so, the sort finishes in a shorter time and results in
a shallower and more balanced tree. This facilitates a shorter walk through
the tree for later use. Furthermore, by ensuring that leaf nodes have roughly
the same particle number, statistical noise that is common in DSMC due to
large oscillations in the cell occupancy rate should be minimized, though not
eliminated. In addition, a more uniform tree depth tends to keep the computa-
tional load spread evenly throughout the leaves of the tree. This is important
for vectorization or parallelization schemes which will be demonstrated in a
follow-up paper.

(a)

(b)

Fig. 3. Examples of a quadtree structure divided using a geometric pivot point;
(a) standard scheme, (b) scheme that adapts nodal volumes to the local minimum
bounding volume.

2.2.3 Disqualification rules

While building the octree, it becomes necessary to disqualify new child nodes
that may produce bad/incorrect collision statistics. The first disqualification
rule is expressed by a minimum number of particles allowed for a node: any
child that contains fewer particles than the minimum is absorbed into its
sibling created by the same division process. This provides some element of
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adaptability of the octree to the local particle distribution. Fig. 3a shows a
spiral set of particles that are divided by geometrically centered pivot points
into a three level tree that follows the first disqualification rule. Fig. 3b shows
a further adaptation by shrinking the local leaf-node volumes to the minimal
containing volume. This adaptivity plays a key role in the gridless simulation
of charged particle transport, where long range interactions are approximated
by a moment expansion about the geometric center of tree nodes [29]. The
choice of the minimum number of particles is discussed below in Sec. 2.2.5.

A second disqualification rule pertains to the aspect ratio of particle clusters
as described by the nodes of the octree. For DSMC, it is important to avoid
collision pairs that are so far apart that they have a minimal probability of
colliding. This non-locality problem is solved by avoiding large aspect ratios
defined as ARi = max {∆i/∆j, ∆i/∆k}, i, j, k ∈ {x, y, z}, and i 6= j 6= k,
where ∆i is the size of the cluster in the ith direction. To prevent poor aspect
ratio ARi, a level of the tree is not divided in the ith direction if ARi exceeds
3/2. Fig. 4 shows a set of three types of decomposition using this rule of
thumb to guard against nodes that fail to meet this aspect ratio criterion. In
each case, the contrived distribution of particles is sorted into a three-level
quadtree. Fig. 4a shows a geometric division and Figs. 4b-c show a division
about the center of mass.

2.2.4 Boundary shrinking

The differences between Figs. 4b-c pertain to the bounded volume of each
node. For Fig. 4b, each new child of the tree has its volume shrunken to min-
imally bound all its particles as was done for the geometric division shown in
Fig. 3b. Although this approach does adapt very well to an arbitrary distri-
bution of particles, it can cause dramatic error in the collision rate for DSMC.
This is because empty space will be incorrectly ignored and the local density
in each node will be calculated to be higher than the physical value. How-
ever, level 2 of Figs. 4a and c point out that with no adaptive shrinking, it is
possible to have a cluster where large regions of the cluster have no particles,
implying that the local Knudsen number will be artificially low.

We therefore arrive at Fig. 4c, which shows the approach used in our gridless
DSMC implementation. In this approach, clusters are shrunken if there is a
large discrepancy between the defined volume of the cluster and the actual
volume of the contained particles. The amount of free space on each side of
the node is considered independently. Before each test, the rectangular volume
that minimally bounds the particles is measured, with (∆particles)i being the
length of this rectangle in the ith direction. If the length of empty space on a
given side is greater or equal to (∆particles)i, then the edge of the node on that
side is redefined to be the edge of the particle distribution. It is found that
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(a) (b)

Level 3

Level 2

Level 1

(c)

Level 3

Level 2

Level 1

Fig. 4. Examples of tree structure for different models tree node division. (a) Di-
vision by the geometric center of the tree node. (b) Division by the center of mass
with the volume shrunk to barely contain all particles. (c) Division by the center of
mass with the volume shrunk only if a major portion of the volume is empty.

this method can sometimes shrink the leaf nodes to be too small. To avoid
shrinking too much, it should be possible to apply the criterion to a parent
node for deciding a shrinking question of a child node.

2.2.5 DSMC validity and octree stopping conditions

The goal of DSMC is to obtain correct collision statistics so that a rarefied
gas can be correctly modeled. Using the octree to sort particles into nearest
neighbor clusters, collision pairs are formed by randomly selecting partners
from the same cluster. It is therefore critical to create final clusters of particles
from which only probable collisions can occur. For instance, if a cluster is too
large, a randomly selected pair may be separated by too great a distance to be
considered for a probable collision event. We attempt to ensure the validity of
the collision selection process by engineering the size of the leaf node clusters
such that only probable collision pairs can be formed. Practically speaking,
this translates into choosing a spatially dependent number of particles needed
for an octree node. We now describe validity condition and how it translates
into the minimum number of particles per tree node.

In the following, let ∆ represent the length scale of the cluster of particles
from which collision pairs are selected. The validity test for DSMC can be
expressed as the ratio of ∆ to the mean free path λMFP. Alexander et al.
[30] demonstrated how the error in DSMC results depends on the ratio (∆ /
λMFP). Alexander et al. showed that for (∆ / λMFP) ≈ 1, error in the hard
sphere viscosity and thermal conductivity can be as high as 7.5% and 4.5%,
respectively. We therefore seek to keep all collision pairs separated by a fraction
of λMFP, depending on the error that we can tolerate.
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For simplicity, we assume that particles in a particular collision cluster are
uniformly distributed. If we select the maximum allowed cluster scale size to
be (1/2)λMFP, the average separation between two collision partners will be
(1/6)λMFP with a root mean square separation of ∼ 0.204λMFP. This is easily
demonstrated by measuring the average and root mean square values of the
difference between two random numbers that are both less than 0.5. Using
this choice, we express the validity condition as

∆

λMFP
.

1

2
. (11)

Using Eq. (11), we can derive a target number of particles per collision clus-
ter. Assuming a three dimensional simulation, the approximate number of
simulation particles in a cluster at position ~x, denoted ζ(~x), is given by

ζ(~x) =
1

FN
∆3n(~x) (12)

where n(~x) is the local number density of the gas and FN is the number
of physical particles each simulated particle represents. Using Eqs. (3), (11)
and (12), we write

ζ(~x) .

√
2

32FN σT
3 n2(~x)

. (13)

In Eq. (13), ζ(~x) represents the minimum number of particles that a cluster
can have with a given local number density n(~x) and produce valid collision
selections. For simulations in k dimensions, where (3 − k) dimensions are
ignored because of a symmetry, Eq. (13) is rewritten as

ζ(~x) .
1

FN

(√
2

4σT

)k
1

nk−1
(k) (~x)

(14)

where n(k) has inverse units of length to the kth power and is defined by

n(k) = n (1u)3−k

where u is the basic length unit of the simulation (meters for S.I. units).

To apply Eq. (14) to building the octree, we define the octree stopping condi-
tion given as

N < 2ζ(~x) . (15)

In other words, subdivision continues, until Eq. (15) becomes true. This has the
effect of creating a nodal occupancy rate of (1.5 ζ(~x)). In our implementation,
we allow the user to select a maximum and minimum value for this stopping
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condition, such that the stopping condition becomes

N < 2



























ζmin , ζ(~x) ≤ ζmin

ζ(~x) , ζmin < ζ(~x) < ζmax

ζmax , ζ(~x) ≥ ζmax

. (16)

In our simulations, we set ζmin = 4 so as to prevent unphysical thermal isola-
tion. The use of ζmin should be used as a key warning signal for a simulation
that does not contain enough particles to resolve the physical flow. An exam-
ple of this is demonstrated in Sec. 3.5.2. We also typically set ζmax = 100, but
more investigation needs to be made to determine the effect of high values of
ζmax.

2.2.6 Complex octree example

The advantage to a tree structure is that it gives grid-free localized refinement
of space for a given instant in time, providing a local set particles that are
good candidates for collision partners. The tree structure adds additional flex-
ibility to traditional DSMC and removes issues associated with grid choice by
automatically adapting the refinement so as to give optimal local resolution.
In Fig. 5, the finest level of the hierarchical tree for hypersonic flow past a
square cylinder is shown. The visualization of the clusters clearly shows how
the adaptivity of the tree is advantageous for flows that develop steep gradi-
ents in flow properties. The particular flow related to Fig. 5 is discussed in
Sec. 3.5.1.
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Fig. 5. Visualization of the finest level of the octree used for computing hypersonic
flow past a square cylinder in gridless DSMC.
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2.3 Revised DSMC algorithm

As described in the introduction for Sec. 2, the DSMC algorithm allows a
nearly arbitrary order of the sort, collide, move, and boundary-condition steps.
This allows us to optimize the order such that computational time is minimized
and implementation is less complicated. An outline of our implementation of
Gridless DSMC is shown in Fig. 6. Each time step begins with the current
population of particles sorted into an octree that satisfies Eq. (16). After the
sort is finished, macroscopic gas quantities (needed to obtain correct collision
statistics) are assigned to each of the leaves of the newly created octree. (The
following section will detail our method of performing this assignment in a
gridless environment.) This is followed by the collision selection and execu-
tion methods detailed in Sec. 2.3.2. Free particle movement then takes place,
followed by the application of boundary conditions.

(2)  Update Nodal Data

(1)  Sort into Octree (3)  Collide Particles

(5)  Apply Bound. Cond.

(4)  Move Particles

Fig. 6. Flow chart of our implementation of a gridless DSMC algorithm.

2.3.1 Gridless maintenance of macroscopic quantities

In traditional DSMC, local macroscopic gas properties are needed to maintain
correct collision rates. Many of these macroscopic quantities tracked per grid
cell are further time-averaged to reduce statistical noise. In a gridless approach,
there is no underlying structure to track and maintain such time-averaged
macroscopic quantities. We have therefore developed an adaptive method that
tracks these quantities at the lowest levels of the octree. Near the beginning
of each time step (just after sorting), instantaneous quantities, such as nj (ti)
and 〈~p〉j (ti), are measured per each jth octree node. To account for time
averaging, a weighted average is taken between the instantaneous data and an
interpolation of the data from the previous time step, as indicated in Fig. 7.
After performing this update, the old tree is then discarded.

To perform the interpolation, any unstructured interpolation scheme will work,
such as Shepherd’s algorithm [31]. Unfortunately, performing unstructured
interpolation is known to be very computationally intensive. We solve this
dilemma by accepting a method with an interpolant that does not pass exactly
through the data. Hernquist and Katz [32] developed such a method for use
with octrees in a smoothed particle hydrodynamics calculation.
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Perform weighted
average between
old and new data

Discard old tree

Interpolate old data
to new tree nodes:

〈p〉 ,
〈

p2
〉

, n, . . .

(2)  Update Nodal Quantities

Fig. 7. Steps to update local gas properties using a gridless technique.

0
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0

0

Fig. 8. Spherical spline interpolation of a coarsely sampled sin(x)/x function. The
diamonds indicate data points. Left: Comparing the interpolated spline to the orig-
inal set of data shows a reasonable interpolation. For visibility, a coarse sampling of
the interpolant was used. Right: A two-dimensional view of this interpolated spline
highlights the radii of influence assigned to each of the data points. The radius
of influence is dynamically assigned such that a given number of nodes fit inside
the spherical volume with that radius. For demonstration purposes, the number of
nodes within the volume of influence in this figure was limited to one. Thus, some
data points with very small separation have a nearly invisible radius of influence.

This method is based on a spherical spline that computes a weighted average
of the data in the octree to create approximate values at points not located
at the pivot points of the octree.

The kernel for the weighted average is given by

w (r, rI) =
1

πrI
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(17)

where r is the distance from the data to the point of evaluation and rI is known
as the radius of influence for the respective data point. Evaluation of the kernel
in Eq. (17) allows us to minimize the number of nodes used to compute an
approximate interpolated value. Using the binary search algorithm described
in Sec. 2.2, we find and use all nodes with a non-zero contribution to the
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weighted average. This speeds up the operation considerably as compared to
other unstructured interpolation routines.

The influence a particular node in the tree has on evaluations of Eq. (17) in
its nearby vicinity depends on rI, which is given by

rI =
(

3Vmin

4π

)1/3

(18)

where Vmin is the smallest volume that includes a specified number of nodes,
NI. rI is determined under the assumption of local isotropy in the local distri-
bution of octree nodes.

A demonstration of this technique is shown in Fig. 8, where the interpolation
of coarsely sampled sin(x)/x is performed. As shown in Fig. 8, if NI is chosen
too small, the spline may too quickly tend to zero between tree nodes, where
non-null values might be expected. Conversely, by choosing NI too high, ex-
trema in the data to be interpolated may be artificially dampened. It is thus
necessary to ensure that NI is neither too small nor too large. Depending on the
application, we have found reasonable values to be in the range 1 ≤ NI ≤ 10.
For the simulations in this paper, we found NI = 4 to be a robust choice.

In terms of using this method in DSMC for tracking local gas properties, the
effect is to both average in time as well as in space. Though a more thorough
study of this is needed, we believe this may further reduce the typical DSMC
noise. A more thorough study could include the comparison with simulations
where algorithms similar to Shepherd’s interpolation are used.

2.3.2 Collide particles

Within a tree-node, standard DSMC techniques are used for selecting colli-
sion pairs with an alteration only in the number of collision pairs to test.
G. A. Bird’s standard “no-time-counter” method [3] prescribes the number of
collision pairs to test Nsel as

Nsel =
1

2

FNN 〈N〉∆t (σTvrel)max

V
(19)

where FN is the number of physical particles each simulated particle repre-
sents, N is the number of simulated particles in the cell, 〈N〉 is this number
averaged over time, ∆t is the time step of the simulation, V is the volume
of the cell, and (σTvrel)max is the maximum value in the particular cell of the
product of the total scattering cross-section σT and relative particle velocity
vrel. The normalized probability of any given collision pair actually exchanging
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momentum is then given by

Pcoll =
(σTvrel)

(σTvrel)max

. (20)

In our gridless algorithm, we replace some of the factors in Eqs. (19) and (20)
with their space-time smoothed equivalents, denoted as < · · · >x,t, from the
gridless tracking scheme described in Sec. 2.3.1. Doing so, Eqs. (19) and (20)
become

Nsel =
1

2
FNN 〈n〉x,t ∆t 〈(σTvrel)max〉x,t, (21)

and

Pcoll =
(σTvrel)

〈(σTvrel)max〉x,t

(22)

where 〈n〉x,t and 〈(σTvrel)max〉x,t are the space-time averages of number density

n and (σTvrel)max respectively.

2.3.3 Move particles

Transport is handled via a method of characteristics for a time step ∆t,

~xi(t + ∆t) =~xi(t) +
1

mi

∫ t+∆t

t
~pi(τ)dτ, (23)

~pi(t + ∆t) = ~pi(t) +
∫ t+∆t

t

~Fi(~xi(τ), τ)dτ . (24)

The particular integrator that one uses to move the particles under free molec-
ular motion depends on the application. For instance, in a non-harmonic
atomic trap it is often best to use a high accuracy method, such as 5th–
4th order adaptive Runge–Kutta. For the case when there are trivial external
potentials, a simple leap-frog or 2nd order Runge–Kutta routine is sufficient.

2.3.4 Apply boundary conditions

After moving the particles and before continuing with the next time step,
it is necessary to apply boundary conditions. To do this, we introduce the
concept of boundary objects. A boundary object can be something as simple
as a reflective surface that has a bounded volume (for generality, the bounding
volume of a boundary object is allowed to be as large or small as possible).
While moving the particles, we maintain and update the maximum distance
any one particle in a particular octree leaf has traveled, ∆xmax = (||~v||∆t)max.
We expand the bounding box by ∆xmax on each side and test for resulting
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overlap with the bounded volume of the octree leaf, as depicted in Fig. 9. The
associated boundary condition for the overlapping boundary objects is then
tested and applied to all relevant particles within the leaf. This method is
briefly discussed in Sec. 3 with an example application.
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Obje
ct

L + 2(v∆t) max

Leaf Node

Obje
ct

Scaled
Bounding Box

Bounding Box

Fig. 9. Schematic of boundary object collision test for applying boundary condi-
tions. The side lengths of bounding boxes of all boundaries are first increased by
the maximum distance traveled (||~v||∆t)max by any one particle in the given octree
node. Boundary conditions are only applied from scaled boundaries that overlap
with the octree node. The shaded region indicates the overlap between one bound-
ary and the octree node.

For each new geometrical type of boundary condition, a new boundary object
must be coded. To streamline the application of complex physical boundaries,
an approach more similar in nature to graphics display code might be helpful:
large complex surfaces are often reduced into simple constituents.

2.4 Operator splitting of Eq. (1)

As pointed out earlier, DSMC typically involves operator splitting into two
distinct phases: transport and collisions. The transport step is purely deter-
ministic and, for some external forces, can be solved analytically. The col-
lisional step is handled via a Monte Carlo sampling procedure, where two
nearby test particles are selected at random and allowed to collide. For the
following, let the transport operator for a time step of ∆t be denoted by S∆t

and the collision operator be denoted by C∆t. The original approach proposed
by Bird is an Euler splitting, whereby, in l time steps, the system will evolve
as

f (~x, ~p, t + l∆t) = (S∆tC∆t)
l f (~x, ~p, t) . (25)
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Wagner [16] showed that this approach converges to a solution of the Boltz-
mann equation as N → ∞. Rjasanow and Wagner [23] further investigated the
effect of the type of operator splitting used: Euler (S∆tC∆t), Strang (C∆t/2S∆tC∆t/2),
and non-split methods. Rjasanow and Wagner found that non-split methods
converge faster and that the convergence for Strang splitting is almost as fast
as non-split schema. The results in this paper were computed using Euler
splitting. Future work will investigate the Strang type splitting in context of
the gridless DSMC algorithm.

3 Results

To verify the validity of this numerical approach, we demonstrate some stan-
dard DSMC simulation tests. We begin this section with a demonstration of
the convergence properties of gridless DSMC. Next we discuss the speed of
the algorithm and give timing results for the major bottlenecks. To show the
accuracy of the algorithm, we further present the results from several differ-
ent simulations. The first set of results pertain to low density gradient flows
including a series of standard benchmark simulations of Couette flow and a
simple test of drag from low-velocity (Ma ≈ 0.13) flow past a flat plate. The
second set of results are from two simulations of hypersonic flow (Ma ≈ 10)
where density gradients are large and the gridless method stands most to prove
its utility.

For both sets of simulations, boundary conditions consist of specularly and
diffusely reflecting surfaces. For diffusely reflecting surfaces which are held at
a given temperature, incident particles are re-emitted in an effusive manner
with a velocity given by a random sampling of the thermal distribution of the
surface. In some cases, the walls are also given a shear velocity component
(parallel to the surface) which causes the incident particles to be re-emitted in
a reference frame moving at the velocity of the wall. For specular surfaces, in-
cident particles are reflected such that energy is conserved and the momentum
component transverse to the surface is reversed.

3.1 Convergence

The major advantage to using DSMC versus a direct solution of the Boltz-
mann equation (Eq. 1) is to lessen the amount of computational resources
needed. As previously discussed, a single iteration of the DSMC algorithm is
clearly less computational demanding than a single iteration of a finite dif-
ference method that might be used to solve Eq. (1) directly. It thus becomes
important to determine the convergence properties of the seemingly less de-
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manding algorithm. (In other words, if DSMC requires near infinite time to
converge, we have gained nothing.) In this section, we discuss convergence of
our DSMC implementation. Convergence in terms of the central limit theorem
(CLT) will be described first. Convergence tests are shown for a Couette flow
similar to Sec. 3.3.2. To demonstrate the CLT in our DSMC implementation,
we also show the results of a simulation for a uniform three-dimensional gas
in a periodic box.
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Fig. 10. Top: Waterfall plot of the temperature showing convergence of the velocity
driven Couette flow as a function of N (see Sec. 3.3.2). Bottom: Shows the rate of
convergence as a function of N .

At least two forms of a central limit theorem (CLT) apply to the DSMC
algorithm. The first is the standard CLT which states that the mean of a
sample of random variables of a particular distribution becomes more normally
distributed as the number of random samples increases. In accordance with
the Berry–Esséen theorem, convergence goes as

ǫZ ∝ 1/
√

Z , (26)

where Z is the number of random samples and ǫZ is the error. This convergence
law pertains to the value of J (number of samples taken) for computing the
final form of f (~x, ~p, t) in Eq. (10). In addition, it is evident in Eq. (9) that
such a CLT applies to the value of N (number of representative particles in
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the system). To verify the standard CLT for N , we first examine a refinement
study with respect to N for the Couette flow described in Sec. 3.3.2. The size
of the representative particles, FN, is varied such that the physical number
density remains constant throughout the refinement study. The top panel of
Fig. 10 shows a waterfall plot of the temperature profile in the Couette flow
as a function of N . Each curve of the waterfall plot represents the average
of J = 5400 samples and is displaced vertically by 5 K from the neighboring
curves. As N increases, the measured momentum distribution becomes more
thermal and the associated effective temperature profiles become more smooth
across the channel. The bottom panel of Fig. 10 depicts, as a function of N , the
average error of a particular run to the apparent limiting solution (taken from
smoothed results of the simulation with N = 5 × 105). This plot shows that
the convergence goes as ≈ 1/N0.6. It should be noted that for the simulations
presented in this paper, J was chosen large enough such that ǫN ≫ ǫJ .

We assert that an additional, non-standard form of the CLT applies to the
thermalization of a discrete gas and is related to the number of collisions within
the gas. For simplicity, consider first a homogeneous gas with a particular
momentum distribution f(~p). For such a gas, Wild [33] showed that it is
possible to solve Eq. (1) via an iterative process. Each iteration takes into
account more and more of the collision history of the gas and the resulting
form of f (~x, ~p, t) is called the Wild expansion. For Maxwellian molecules, the
Wild Expansion takes on a simplified form, the first three iterations of which
are given by

f1(t) = e−tf0

f2(t) = f1(t) + e−t(1 − e−t)Q (f0, f0) (27)

f3(t) = f2(t) + e−t(1 − e−t)2

· [Q (f0,Q (f0, f0)) + Q (Q (f0, f0) , f0)] /2

where it has been established that limn→∞ fn(t) = f(t) [33]. The iteration
number n of the expansion is related to the number of collisions the system has
undergone by time t, as evidenced by the depth of the nested collision operator
Q (·, ·) . For example, terms in Eq. (27) such as Q (f0,Q (f0, f0)) describe
particles that undergo collisions with particles that have already collided once.
It is worth noting that the Wild expansion has been used as a time accelerant
in standard DSMC by tracking the probability of multiple binary collisions
per particle [34, 35].

Carlen et al. [36] determined a convergence rate for the expansion in Eq. (27)
and showed that a CLT applies, such that the convergence of fn(t) to the true
solution f(t) is exponential in n. As a corollary to the CLT for truncation
of the Wild expansion, Carlen et al. further showed that a CLT applies to
f(t) (the true solution of Eq. (1)) such that f(t) converges to a Maxwellian
exponentially in time. In other words, an initially non-thermal distribution
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function f (~x, ~p, t) will thermalize in exponential time. In this context, time
is typically measured in units of the collision time.

We expect that the discrete system 〈fδ (~x, ~p, t)〉 will exhibit similar behavior.
It is easy to see that a given fδ j (~x, ~p, t) of the discrete particle system maps
onto parts of fn (~x, ~p, t) and one might expect that 〈fδ (~x, ~p, t)〉 provides a
fairly complete coverage of fn (~x, ~p, t). Hence we expect exponentially fast
convergence of 〈fδ (~x, ~p, t)〉 to a Maxwellian where the final error is subject
to Eq. (26) for N . As a demonstration of this, we consider a homogeneous
three-dimensional gas placed in a cubic volume (1 m3) with periodic boundary
conditions in all three dimensions. The simulated domain is filled with Ar such
that Kn = 0.1, λMFP = 0.1 m, and the time step is constrained to be . 0.1τcoll,
where τcoll is the mean time between collisions. The initial spatial distribution
is uniform and the initial momentum distribution f(~p) is given by

f(~p) =
∏

i

f(pi) , i ∈ x, y, z (28)

where

f(pi) ∝



























0 pi ≤ pmin

2
√

β/π pmin < pi ≤ 0

exp [−β(pi − p0)
2] 0 < pi

, (29)

β = (2MkBT )−1, and (p0/M) is the drift velocity.

As the non-thermal gas begins to evolve, collisions between particles cause
momentum exchange and f(~p) is altered through the process, as shown in
the left panel of Fig. 11. Each subsequent evolution of f(~p) through a time
span of length τcoll might be represented by a subsequent iteration of the Wild
expansion. As in Eq. (27) as n increases, a larger collision history accrues and
one would expect that f(~p) effectively becomes the result of a nested convolu-
tion of the initial condition in Eq. (29). Thus, following a CLT, f(~p) becomes
more normally distributed until a thermal system is achieved as depicted by
the bottom curve in the left panel of Fig. 11.

The right panel of Fig. 11 shows the deviation of f(~p) from a Gaussian as
a function of the average number of collisions per particle, denoted by Ncoll.
In accordance with the expected convergence rate, the deviation does indeed
decrease at an exponential rate until the statistical fluctuation ǫN becomes
dominant. Further, the right panel of Fig. 11 shows that ǫN goes as Eq. (26)
as dictated by the standard CLT. As shown, an increase of N by four times
leads to a decrease in the final error by a factor of 2.
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Fig. 12. Computational time required per particle per DSMC component as a
function of N .

3.2 Computational time issues

For large DSMC simulations, the computational time required for an itera-
tion of the algorithm is of utmost importance. Because the physical system is
simulated by paying attention to the microscale interactions, memory as well
as CPU resources are taxed very heavily. Time step iterations on the order
of 1 µs per simulation particle are considered to run at average speed, while
fast codes, all of which are optimized grid-based systems, have been known to
need as little as ∼ 0.5 µs (on comparable hardware) per particle 2 .

While we do not anticipate creating a gridless methodology that is faster than

2 Private communication with I. D. Boyd, 2005
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gridded DSMC with the fastest integer based (hash) sorting algorithms, we
seek to show that any performance degradation relative to the typical speeds
is not too prohibitive. We therefore analyze the major components in our
implementation to help validate this method as being reasonably useful. The
timing results shown in this section were produced on an AMD Athlon 64
X2 4800+ processor (2.4 GHz). Fig. 12 shows the time required to compute
each component of the algorithm for a simple three-dimensional periodic box.
Timings for the move and collision portions of the algorithm are combined
because, although they still stand to undergo significant optimization in our
implementation, the basic differences between these and those of a gridded
DSMC implementation are very small. Fig. 12 clearly shows that the primary
bottleneck in gridless DSMC, as it stands, is the octree sorting. We are aware
of several aspects in our code that can undergo significant optimization. In
spite of this, we do not expect the general trend exhibited Fig. 12, nor the
conclusion that the octree sort is responsible for the major time sink, to change.

As the most time-intensive portion of our code occurs within the octree sorting
algorithm, we further discuss the execution time required to sort. Theoreti-
cally, because we use a quick sort, this sorting time should go as O(N log(N)).
As described in Sec. 2.2, the sorting algorithm can be augmented to be optimal
for a particular calculation. For DSMC, we augment the algorithm to divide
by the center of mass. Because of the additional time required to calculate
the center of mass, it is expected that this augmentation causes an additional
computational load. To analyze the severity of this additional load, we com-
pare three different types of octree sort. The first method we name the Center
method. This is the most standard division routine for the octree, where a
node divides into children based on the geometrical center of the node. Be-
cause of this type of division, each of the child nodes are of the same shape
and size. This represents the least expected computational load as is verified
in Fig. 13, which shows the time-to-sort per particle as a function of increasing
total particles.

The second method we name the CM method, or center-of-mass method. In
this case, an octree node is divided into children with each of the axes of the
division passing through the center of mass of the node. As shown in Fig. 13,
the CM method is slower than the Center method. This is because the center
of mass of each node must be computed before subdividing the node.

The third method we name the CM-Shrink method. Similar to the CM method,
subdivisions are performed about the center of mass of the parent node. The
difference is that the volume of each of the newly created children are shrunken
to only bound the particles within this box. Though using the CM-Shrink
method for DSMC would result in high collision rates (because the density
would be over estimated), this type of subdivision will be useful for integra-
tion with plasma codes. This is the slowest of the three methods as shown
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in Fig. 13, since, in addition to measuring the center of mass, the bounding
volume must also be measured, although this represents only a slight increase
in computational load per particle over the CM method.
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Fig. 13. Time to sort per particle (τsort) as a function of number of particles in the
system N . The three volume defining methods shown only differ by a component lin-
ear in N. For DSMC calculations, where local density should not be over-estimated
if we are to obtain correct collision rates, the most appropriate volume defining
techniques are either the CM, or Center division methods. The CM–Shrink routine
would be useful for plasma simulations.

It can be seen from Fig. 13 that though the performance of the three methods
varies, the difference between them is not too great. In addition, the execution
time of this sort is on the order of 1 µs, or less than an order of magnitude
slower than optimized fixed-grid DSMC. We conclude therefore, that this grid-
less method is a viable DSMC method with respect to sort time.

3.3 Couette flow
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Fig. 14. Setup for Couette flow simulations. The channel between the two plates is
initially filled with a uniform distribution of simulated Ar gas at 273 K.

A classic test to help validate a DSMC code is that of a Couette flow. A Cou-
ette system is described by two parallel, diffusely (i.e. non-specular) reflecting
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plates, each at some specified temperature and transverse velocity, as depicted
in Fig. 14. The dynamics of one-, two-, or three-dimensional gas between the
plates are allowed to approach steady state. For the two following Couette-flow
tests, the simulations were run as a function of Kn.

3.3.1 Thermal diffusion

In the first Couette-flow test, a uniformly distributed one-dimensional sample
of Ar gas, initially at rest and at 273 K, is placed between two stationary
plates held at 173 K and 373 K respectively. The system is then allowed to
evolve until steady state is reached. For each of these simulations, the number
of simulation particles was kept constant at N = 104. Many samples were
averaged together to reduce the statistical noise in the presented results. For
the fixed grid data, 1 × 105 samples were used [37], whereas for the gridless
data, 2× 104 to 7× 104 samples were used, depending on the value of Kn.
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Fig. 15. Temperature profile across a channel in a thermal Couette flow simulation.
The left and right walls are held at 173 K and 373 K respectively. The particles
are initially uniformly distributed between the two plates with zero average velocity.
The results for Knudsen numbers of 0.01, 0.1, 1, 10, and 100 are compared to similar
results from a fixed grid approach. (Fixed grid data as published in [37] used with
permission.) Fixed grid data courtesy of Dr. Quanhua Sun [37].

Profiles of the steady-state temperature across the channel for various orders
of Kn are shown in Fig. 15. We find very good agreement with the results from
the fixed grid simulation, which are also shown in Fig. 15, for Kn <= 10. For
the very rarefied case with Kn = 100, we find that the gridless technique
appears to produce results closer to the free molecular flow regime than does
the fixed grid system. As discussed below, we believe this may be an indication
that the gridless method actually performs better than the fixed grid system
for very rarefied gases.
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3.3.2 Velocity diffusion

In the second Couette-flow test, the two parallel plates indicated in Fig. 14 are
held at a temperature of 273 K, but given anti-parallel velocities (transverse to
the channel where the gas resides) of ~v1 = −150 m/s ŷ and ~v2 = 150 m/s ŷ.
Initial conditions as well as averaging procedures for this simulation coincided
with those of the first Couette-flow test.

 270

 275

 280

 285

 290

 295

 300

 305

 310

 315

-0.4 -0.2  0  0.2  0.4

T
em

pe
ra

tu
re

 (
K

)

Position in Channel (m)

Gridless
Fixed Grid 0.01

0.1

1

10

100

Fig. 16. Temperature profile of a Couette flow simulation. The particles are initially
uniformly distributed between the two plates, the transverse (to the channel) veloc-
ity of each plate is ±150m

s respectively. Fixed grid data courtesy of Dr. Quanhua
Sun [37].

 0

 50

 100

 150

 200

 250

 300

-0.4 -0.2  0  0.2  0.4

T
ra

ns
ve

rs
e 

V
el

oc
ity

 (
m

/s
)

Position in Channel (m)

Gridless
Fixed Grid

0.01

0.1

1
10

100

Fig. 17. Velocity profile of a Couette flow simulation. The particles are initially
uniformly distributed between the two plates, the transverse (to the channel) veloc-
ity of each plate is ±150m

s respectively. Fixed grid data courtesy of Dr. Quanhua
Sun [37].

Temperature profiles of this simulation are compared to similar fixed-grid
results in Fig. 16 and velocity profiles are likewise compared in Fig. 17. From
each of these two figures, we can see a very good agreement with the fixed
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grid data for the higher density cases. Similar to the thermal Couette flow,
there is a slight disagreement in the low to very rarefied cases (Kn = 10 and
Kn = 100). Looking at a closeup of the temperature profiles in these low
density cases, shown in Fig. 18, there appears to be slightly more curvature in
the gridless results than in the fixed-grid results. This appears to be the case
even for a much lower number of averages in the gridless case (∼ 5 × 104 for
Kn = 10).
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Fig. 18. Temperature profile of a Couette flow simulation for significantly high
values of Kn. Fixed grid data courtesy of Dr. Quanhua Sun [37].

The differences between the sets of results of these two Couette-flow tests
cannot be easily attributed to systematic error in the gridless approach. This
is because for one case, the simulation appears to be slightly more collisional
(the case of velocity diffusion where curvature in the temperature profiles is
seen), while for the other case the gridless simulation appears to be slightly
less collisional (the case of thermal diffusion where the results more closely
resemble a free molecular flow). In spite of these initial findings, a refinement
study is needed to determine the relative performance of the fixed-grid to a
gridless system for the very rarefied case. More alignment in the timing of
sampling for averages between the two methods will need to take place.

3.4 Low-velocity flow past a thin plate

We also demonstrate simulations of low-velocity (Ma ≈ 0.13) flow past a thin,
flat plate. As depicted in Fig. 19, a thin, diffusely reflecting plate is placed
within a stream of Ar gas at T = 273 K and at an angle θ with respect to
the stream velocity ~v0 = 40 m/s x̂. In this paper we present the results for
θ = 0 and compute drag coefficient CD of the plate. We compare CD to values
computed by various grid-based calculations, including a set of comparative
calculations from Ref. [8] and a DSMC code implemented by G. A. Bird called
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DS2V [38] which has the option of adapting its mesh after each run for subse-
quent runs. Ref. [8] presents a comparison of CD as calculated by three different
means: traditional DSMC, DSMC with information preservation (IP-DSMC),
and a non-statistical model known as the transition probability matrix model
(TPM).

Fig. 19. A 2D flow past a thin plate using gridless DSMC.

A thin plate of length L is placed centered at the lower boundary of a simula-
tion domain of size 6L× 6L. The boundary wherein the plate is embedded is
treated as a specular reflecting surface. This mirrors the physics of the simula-
tion into a virtual domain below the plate and allows us to properly simulate
the infinitesimally thin plate completely surrounded by Ar gas. The bound-
ary opposite of the plate is set to be diffusely reflecting with a velocity equal
to ~v0 such that it emulates a completely thermalized and uniform section of
the Ar stream above the simulation domain. With ~v0 parallel to the top and
bottom boundaries, atoms are injected and removed from the left and right
boundaries at a rate that sustains the thermal stream of Ar gas. We should
note that because of technical details, the flat plate in the DS2V calculation
is placed in the center of the computational domain with specularly reflecting
walls parallel to the stream velocity.

For this simulation L = 0.5 m, Kn = 0.1, and 〈N〉t = 5 × 105 where each
particle represented FN = 4.66 × 1014 Ar atoms. With the domain initially
filled, the simulation was allowed to run to steady state, after which 1 × 105

samples of fδ (~x, ~p, t), each separated by ≈ 6.8∆t, were averaged together as
in Eq. (10). Fig. 20 shows contour plots of the number density and velocity
components of the flow past the thin plate.

To compare the results of this simulation to those produced by various grid-
based calculations, we compute the drag coefficient of the thin plate. The drag
coefficient CD is given by

CD =
2~F · ~v0

AMn |~v0|3
(30)

where ~F is the force on the plate due to collisions with the gas, A is the area of
the plate, and M is the molecular mass of the gas. For the system with results
shown in Fig. 20, A = 0.5 m2, ~F · ~v0/v0 = 1.44 mN, M is the atomic mass of
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Ar (39.948 amu), n = 2.6 × 1019 m−3, and ~v0 = 40 m/s x̂. This corresponds
to CD = 2.1. Tab. 1 shows CD for 0.05 ≤ Kn ≤ 10 for gridless DSMC and all
the previously mentioned grid-based calculations.

As shown in Tab. 1, the gridless CD compares relatively well with the values
from the grid-based calculations for most of the range of Kn. However, as
Kn increases, a difference arises between the gridless value and those from
the other DSMC calculations, including DSMC of Ref. [8], DS2V DSMC, and
IP-DSMC. We performed a variety of tests to discover where the discrepancy
between these calculations may lie. These tests included a refinement study in
total number of simulated particles, changing the boundary conditions such
that both walls parallel to the flow were specularly reflecting, and increas-
ing the boundaries of the computational domain up to two-fold for both the
gridless and DS2V cases.

The first two tests were primarily conducted using the gridless code. For the
first test, particle number refinement, we noticed very little change in the
computed value of CD over a range of 1 × 105 to 1 × 106 particles with a
spread in values of less than 1%. For the second test, we changed the boundary
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Kn CD

Gridless
DSMC

TPM DSMC
DS2V
DSMC

IP-
DSMC

0.05 1.5 1.6 1.5 1.5 1.5

0.1 2.2 2.3

0.2 3.1 3.1 3.0 3.0 3.0

0.8 3.8 3.7 4.3 4.3 3.9

1.2 3.9 4.1 4.8 4.4 4.7

10 4.3 4.4 4.6

Table 1
Drag coefficient (CD) for flow past a flat plate at θ = 0 incidence angle as com-

puted by gridless DSMC, two versions of traditional DSMC (DSMC and DS2V-
DSMC), DSMC with information preservation (IP-DSMC), and a non-statistical
model known as the transition probability matrix model (TPM) [8].

condition in the gridless simulation for the wall opposite the thin plate to
specularly reflecting, as was done in the DS2V case. Similar to the particle
number refinement, we saw very little change in the computed value of CD.

For the third test, we increased the size of the domains in both the DS2V and
gridless codes. With the gridless code, we noticed no clear changes in CD even
for a domain as large as 6L× 12L, with the largest distance in the transverse
direction. With DS2V, we did notice a general decrease in CD as the domain
size increased. For Kn = 10, the value decreased from CD = 4.8 with a domain
size of 6L × 6L to CD = 4.6 with a domain size of 6L × 12L, again with the
largest distance in the transverse direction.

During this series of tests, we made two other key observations concerning
the differing computed values of CD. First, we noticed a difference between
the drag computed by DS2V before and after adaptive mesh refinement. In
each of the rows for the DS2V results, at least one iteration of adaptive mesh
refinement occurred. We noticed a decrease in CD after refinement for two
values of Kn: CD = 2.5 → 2.3 for Kn = 0.1, CD = 3.4 → 3.0 for Kn = 0.2,
but little increase in CD for Kn = 10. The pre-adapted values of CD for
Kn = 0.8 and 1.2 were not recorded.

We also noticed that there was a difference between how the averaged value of
CD changed as more and more samples were accumulated. For gridless DSMC,
the average value did not change significantly after the first 100 samples,
although the statistical noise of the value became much reduced. For DS2V
on the other hand, we noticed that the value tended to increase as more and
more samples were taken. For example, for Kn = 10 at sample number 400,
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CD, as computed by DS2V, was 4.4 and steadily increased over the next 500
samples after which it remained at 4.6. We conclude that there are likely many
factors that affect the computed value of CD and that these additive effects
become more prominent for large values of Kn.
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3.5 Hypersonic flow

To further demonstrate the utility of gridless DSMC, we turn to hypersonic
flows. As objects travel through a medium at hypersonic speeds, a shockwave
follows the disturbance wherein density, temperature, and velocity gradients
are large. To simulate such a flow accurately, a DSMC code must take into
account the density variations when selecting pairs of particles for collisions.
As discussed in Sec. 2.2.5, the selection process must ensure that collision
partners are not separated by a distance larger than a fraction of the mean
free path λMFP. For flows with large density gradients, this translates into
large variations in the scale size ∆ of the clusters from which collision pairs
are taken. This represents the most intensive mesh refinement needed for grid-
based DSMC and the case which stands to benefit most from a gridless routine
such as presented here.

We present two simulations of flow of Ar gas around rectangular and non-
rectangular objects. For both simulations, the undisturbed stream velocity
is set to ∼ 3000 m/s. With an input temperature of 273 K, this corre-
sponds to a Mach number of Ma = 10. Simulation results using the gridless
DSMC are compared to those of a standard gridded DSMC as implemented
by G. A. Bird’s DS2V program [38]. The DS2V code has also been subject to
validation tests of hypersonic flow and comparison with other codes [39].

3.5.1 Flow past a square cylinder

Our first hypersonic flow consists of a 0.5 m wide square cylinder embedded in
the flow of Ar moving at a speed of ∼ 3043 m/s with a stream number density
equal to 2.6 × 1019 m3. This corresponds to a Knudsen number of Kn = 0.1.
The computational domain is set to be 8 m wide (in the direction transverse
to the flow velocity) and 3 m long with the embedded square cylinder at the
center of the domain.

The simulations begin with an empty computational domain which fills until
steady state is reached. After steady state is reached, a series of samples are
taken and averaged together to produce the final results. The results in this
section represent an average of 4200 samples for gridless DSMC which used
2.3 × 106 particles (on average) and 4239 samples for the DS2V case which
used 1.4 × 106 particles (on average). The DS2V simulation underwent one
iteration of adaptive mesh refinement. To compare the results of the two sim-
ulations, we examine contour profiles of the number density, Mach number,
and temperature. For clarity, only a subset of the computational domain is
shown such that the bow shock developed by the embedded object is most
visible.
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The results of these two simulations show little difference in the density and
Mach number profiles as shown in Figs. 21 and 22. Some differences between
the quality of the plots (i.e. apparent noisiness of the data) may be most likely
attributed to differences in the sampling routines. Also qualitative, the gridless
DSMC method appears to demonstrate exceptional symmetry in the results.
The most significant differences between the results, albeit also relatively mi-
nor, can be seen in the profiles of the Ar temperature (see Fig. 23) behind the
object in the flow direction. It is possible that these minor differences are also
the result of the different sampling routines in the test cases.
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Fig. 21. Number density for hypersonic flow past a square cylinder. Left: gridless
DSMC. Right: DS2V.
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Fig. 22. Mach number for hypersonic flow past a square cylinder. Left: gridless
DSMC. Right: DS2V.
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Fig. 23. Temperature for hypersonic flow past a square cylinder. Left: gridless
DSMC. Right: DS2V.
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As discussed in Sec. 2.2.5, the collision selection system must ensure that
collision partners are separated by only a fraction of the mean free path λMFP.
In gridless DSMC, we do this by engineering the size of the octree leaf-node,
or dynamic collision cell, according to λMFP. We attempt to achieve a flat
profile in the leaf-node scale size ∆ to λMFP ratio with a maximum value
given by (∆/λMFP) . 0.5. In the left panel of Fig. 24, we show the mean value
of this ratio for the hypersonic flow past a square cylinder. As can be seen
in the figure, the profile is relatively flat throughout the simulation domain,
even across the bow shock in the flow. This demonstrates two key aspects of
the gridless technique described in this paper. First, the leaf nodes can be
made uniformly small enough to ensure that only probable collisions occur,
and second, the leaf nodes can be made to be no smaller than necessary. This
second key point is important to ensure that the simulation does not force an
unphysical thermal isolation.

The right panel of Fig. 24 shows the validity condition reported by the DS2V
program to the user. For flatness comparison, the data in the right panel were
normalized to twice their average value. DS2V retains information per grid
cell about the ratio of the average separation of collision partners to λMFP and
warns the user as this value approaches unity or greater. Although Fig. 24
shows that this validity condition is routinely met in the results of the DS2V
version of this simulation, Fig. 24 also shows the lack of uniformity of the
condition. Barring further mesh refinement, it is possible that the cell sizes
become smaller than necessary and begin thermally isolating particles in the
stream.

It should be noted that the difference in smoothness of the two profiles in
Fig. 24 is expected. The DS2V data in the right panel result from averag-
ing over many collisions through simulation time whereas the gridless DSMC
validity metric in the left panel represents an instantaneous state of the gen-
erated octree at a given time in the simulation.
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Fig. 24. Validity metric for DSMC. Left (gridless): ratio of the scale size of the leaf
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3.5.2 Flow past a double-flare
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Fig. 25. Dimensions of the double flare.

Our second hypersonic flow resembles a set of simulations and experiments
of flow past a biconic cylinder as described in Refs. [39–43]. A representative
half cross-section of the biconic body is shown in Fig. 25. The biconic cylinder,
placed in a hypersonic flow condition, creates sharp bow shock that exhibits
very large density, velocity, and temperature gradients. The work represented
in Refs. [39–43] compares various axially symmetric simulations of the flow to
a set of experimental data.

Because our code is not currently set up to work in an axi-symmetric geometry,
we instead simulate a hypersonic flow in two dimensions around an object of
similar cross-section. Although we cannot compare with experimental results
as is done in Refs. [39–43], we compare the results from gridless DSMC to those
of the DS2V program as done in the previous section. We note that DS2V was
used in Ref. [39] to simulate flow past the double cone and compared well with
both experimental data and previous simulation results.

The geometry of the double flare object in the simulations presented in this
section is as shown in Fig. 25. The undisturbed stream velocity and number
density are 3000 m/s and 2.6 × 1021 m−3 respectively. The computational
domain is set to be 20 cm along the direction of the flow velocity and 25 cm in
the transverse direction. The object is embedded into the center of a specularly
reflecting wall parallel to the stream velocity.

Similar to the simulations of flow past the square cylinder, the simulations
begin with an empty computational domain which fills until steady state is
reached. The simulations are allowed to reach steady state, after which a series
of samples are taken to form the final result. For the gridless DSMC case, the
results represent 2× 104 samples averaged together with 2.6× 106 particles
in the simulation. The DS2V simulation underwent one iteration of adaptive
mesh refinement and its results are an average of 21779 samples with 1.6×106

particles.
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To compare the results of the two simulations, we again examine contour pro-
files of the number density, Mach number, and temperature. From Figs. 26, 27
and 28 we see that the comparison is generally favorable, although differences
do appear in portions of the flow, especially behind the object.
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Fig. 26. Number density for hypersonic flow past double flared object. Left: gridless
DSMC. Right: DS2V.
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Fig. 27. Mach number for hypersonic flow past a double flared object Left: gridless
DSMC. Right: DS2V.
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Fig. 28. Temperature for hypersonic flow past a double flared object Left: gridless
DSMC. Right: DS2V.

The differences in this case are a slightly more pronounced than for the flow
past a square cylinder as seen in Figs. 26, 27, and 28. In Fig. 26, for example,
upper tip of the contour for 10 × 1021 m−3 is slightly pulled further back in
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the gridless case. For Mach number and temperature, the most significant
differences occur behind the object in the flow direction as seen in Figs. 27
and 28. Although sampling may play a small role for this comparison, to
correctly place the blame for the mismatch, we must examine the validity
factors for each of the two simulations. In Fig. 29, we again show the validity
metrics for each of the simulations, with the gridless version in the left panel
and the DS2V version in the right panel. Similar to the previous section, for
visualization, the DS2V quantity (mean collision separation to λMFP ratio) is
normalized by twice the undisturbed stream value.
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Fig. 29. Validity metric for DSMC. Left (gridless): ratio of the scale size of the leaf
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collision separation to λMFP renormalized for visualization to twice the average
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One of the first things to note from Fig. 29, is that neither of the two simula-
tions is completely valid according to the given tests. In the gridless case, we
see that the simulation was nearly unable to make any leaf node small enough
such that (∆/λMFP) . 0.5. This means that more particles were needed to
allow correct size adjustment for the leaf nodes. In the DS2V case, we see that
there appear to be regions of good calculation, as well as regions of bad com-
putational value. The bad regions are primarily very close the object, while the
best regions are at, and around the shock wave front. Similarly, we conclude
that more particles were needed in the simulation. We note that the DS2V
program did issue a warning concerning the situation: “There is a region in
the flow where the criterion for a good DSMC calculation is not satisfied, more
molecules are desirable.”

Although the validity tests for both simulations indicate that more parti-
cles are needed to create a valid calculation, the differences in the panels
of Fig. 29 bring to light significant differences between the two approaches.
First, although the gridless case had larger set of working particles ( 2.6× 106

compared to 1.6×106 for DS2V), it appears that the only region of good com-
putational value is just behind the double flared object. Second, although the
DS2V code indicates good computational worth from the regions at the front
of the shock wave, the gridless code shows this as among the worst regions in
its simulation. In other words, the shock wave front increases the density such
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that a cluster cannot be created with ≥ 4 particles such that (∆/λMFP) . 0.5.
This reinforces the discussion in the previous section that suggests that the
cell sizes in the gridded calculation can possibly become too small.

To help correct this simulation, we can apply Eq. (14) to help determine the
new number of particles needed to obtain correct collision selections. Being
conservative for the sake of computational resources, let us set a target to
obtain correct flow collisions up to a density of 2 × 1022 m−3. Using Eq. (14),
we find that we need FN ≈ 5×1012 instead of 6.47×1013 as was used for the
gridless simulation above. This means that we need to add a factor of ∼ 13
more particles to the system.

Figs. 30, 31, and 32 show data from similar simulations that correctly resolve
the flow using an order of magnitude more particles. In this case, the number
of particles in the DS2V and gridless cases was the same. The data compare
very well with a very few minor differences which are again most pronounced
in the region behind the object in the flow direction. To verify the validity of
this pair of simulations, we examine the validity metrics for the two methods
in Fig. 33. Similar to Fig. 24 of the square cylinder simulation, Fig. 33 indeed
gives evidence that there were enough particles to trust the collision statistics
in the simulations. Also similar to the square cylinder example, we see in
Fig. 33 that the instantaneous gridless metric in the left panel is very flat
even through the steep density gradients of the shock front. The metric for
the DS2V code on the other hand, shows a variation especially at the shock
front. This implies that grid cells may have, in fact, been made too small, or
at least are in danger of being made too small.
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Fig. 30. Number density for hypersonic flow past double flared object. Left: gridless
DSMC. Right: DS2V.
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Fig. 31. Mach number for hypersonic flow past a double flared object Left: gridless
DSMC. Right: DS2V.
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Fig. 32. Temperature for hypersonic flow past a double flared object Left: gridless
DSMC. Right: DS2V.
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Fig. 33. Validity metric for DSMC. Left (gridless): ratio of the scale size of the leaf
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value of the unresolved case shown in Fig. 29 (2 × 0.2).
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4 Conclusion

We have developed a gridless method for DSMC. The method makes use
of a hierarchical tree structure for determining collision partners in DSMC
and a spherical spline interpolation for tracking local time averages of gas
properties at the tree nodes. Initial tests indicate that in 1 and 2 dimensions,
the method is at least as accurate as the traditional grid based approach.
Further, it appears, that for a given accuracy, the gridless approach requires
fewer samples in the averaging process than does the grid based method. This
may be a result of the clustering method used or it could be attributed to the
strong smoothing associated with spline interpolation and it requires further
exploration. In addition, the novel treatment of boundaries provides a highly
flexible tool, capable of handling flow past complex objects without needing
to tune volumetric meshes.

We discuss the practicality of gridless DSMC with respect to computational
resources (hardware and time). While the lack of a fixed mesh allows a min-
imal memory footprint, a demonstration of the execution time of the major
components of the code shows that the primary bottleneck is in building the
hierarchical octree. From this demonstration, we see that the CPU time per
particle in the current implementation is less than an order of magnitude
higher than the fastest grid based methods. Thus, we conclude that, based on
timing alone, gridless DSMC can be competitive with traditional fixed grid ap-
proaches. We expect that with optimization, the speed of our gridless DSMC
algorithm may be further increased.

We see several key advantages to the gridless approach that justify the mod-
erate sacrifice in computational time. First, simulated particles are clustered
based on local density. Thus, the nodal occupancy fluctuations should be min-
imized and improved collision statistics will result. Second, the abstraction of
the DSMC algorithm from the physical system establishes an ease of use (i.e.
simple reusability of code). Because of this ease of use, simulation develop-
ment can focus on the physics of the problem at hand. Third, the abstracted
DSMC layer can be wrapped inside an additional layer that forms the basis of
a parallel computation scheme. This outer layer would be primarily for man-
aging particle exchange and load balancing issues between different blocks of
the underlying DSMC layer.

Gridless DSMC is currently being employed to simulate collision processes
within ultra-cold (∼ 10 µK down to nK regime) gas systems. This effort aims
to model and evaluate the forced evaporative cooling process in novel atomic
traps such as long (& 2 m) magnetic atom guides [44] and dark, all-optical
atom traps [45] to achieve sub-microkelvin temperatures. Preliminary results
using gridless DSMC for forced evaporative cooling have been promising [46].
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In addition to simulating neutral gas dynamics, this work represents a larger ef-
fort to develop a gridless methodology (and associated suite of software tools)
that includes multi-scale plasma simulations. Initial effort focused on colli-
sionless plasma simulations and the gridless approach of evaluating boundary
integrals using a tree code (BIT) [29, 47, 48]. Using the methods from this
work, a consistent strategy for including collisions in kinetic plasma simula-
tions will follow. As such, the merger of BIT and gridless DSMC will provide
a self contained tool for collisional plasma simulations.
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