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Abstract

Autonomous vehicles are expected to shift not only the driving paradigms but also the notion

of vehicle ownership. Although autonomous vehicles are believed to introduce many safety,

mobility, and environmental bene�ts, they will be initially priced relatively highly. This paper

assesses the potential for circumventing this barrier by promoting a shared ownership program in

which households form clusters that share the ownership and ridership of a set of autonomous

vehicles. Such a program will increase the utilization rate of vehicles, making ownership of

autonomous vehicles more economical. We study parameters that a�ect the bene�ts expected

from autonomous vehicles, and introduce policy directions that can boost these bene�ts.

1 Introduction

Sharing economy, also known as collaborative consumption, is a fairly old concept that focuses on
the bene�ts obtained from sharing resources (products or services) that would otherwise go unused.
Although communities have been using the concept of sharing economy locally for many years,
advent of internet has led to its spread in global markets, and has highlighted its bene�ts.

The sharing economy model has been historically used for high-value commodities, such as exotic
automobiles, yachts, private jets, vacations homes, and the like. Although it has been long realized
that taking ownership of under-utilized high-value assets may not be always economically viable,
this economic model has become more popular recently for less expensive resources as well, thanks
to new platforms that allow easy and quick development of companion mobile applications. Sharing
economy in the context of mobility should not be confused with Mobility as a Service (MaaS).
While using MaaS is typically attributed to foregoing vehicle ownership altogether and outsourcing
transportation as a service, shared-use mobility does not necessitate foregoing vehicle ownership
and can take various forms (e.g., public transportation, ridesharing, carsharing, bikesharing), where
some players may own vehicles and share vehicles/rides with others.

Autonomous (also known as driver-less and self-driving) vehicles are expected to enter the market
in the near future. Although these vehicles introduce many bene�ts such as higher degrees of safety
and mobility to the users, their high prices, primarily resultant from the added cost of di�erent types
of sensors they need to be equipped with, can be prohibitive when it comes to purchasing them
(Wickerham, 2017). On the other hand, autonomous vehicles can reduce the number of vehicles a
household may need to perform daily tasks, since these vehicles can drive themselves to locations
where there is demand for transportation. One possible strategy to make autonomous vehicles more
a�ordable is to encourage shared ownership of these vehicles. Moreover, it is possible to lower the
ownership cost of autonomous vehicles further by (i) promoting shared ridership of these vehicles,
and (ii), renting out these vehicles when they are not being used by their owners.

The ability of autonomous vehicles to operate without a driver lowers the number of vehicles a
household may require to perform its daily tasks. Figure 1 demonstrates the average daily vehicle
miles traveled (VMT) by each vehicle in a household in the US in 2009. This �gure suggests that
the higher the number of vehicles owned by a household, the less the average utilization rate of
each additional vehicle tends to be. Although for a typical household owning more than one vehicle
might be �nancially justi�able considering the level of comfort and peace of mind vehicle ownership
may bring, this justi�ablity decreases with the purchase of additional vehicles. Apart from the
initial investment (or monthly payments), the cost of insurance, depreciation of value, and parking
can turn vehicle ownership into a �nancial burden. With autonomous vehicles, fewer vehicles can
cover the same set of trips compared to a higher number of legacy vehicles, making the idea of each
household member owning a car an obsolete one.
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Figure 1: Average daily vehicle miles for households with various number of vehicles. (Data obtained
from the National Household Travel Survey (NHTS), 2009.)

Though no rigorous analysis under optimal operations appear to have been done in the literature
yet, there is some awareness of such possibilities in the automotive industry as well as among the
increasing number of researchers and a�cionados of autonomous vehicles (Schall, 2015; Naughton,
2015; Fagnant and Kockelman, 2014; Schoettle and Sivak, 2015). In this paper, we introduce the
shared vehicle ownership and ridership (SVOR) program in which a group of households jointly
own and use a set of autonomous vehicles. Households can share rides with each other if the
spatiotemporal distributions of their trips allow for it. We propose analytical optimization schemes
to study the impact of this program at both individual and system levels.

2 Literature Review

The proposed program in this paper combines three shared mobility models: fractional vehicle
ownership, and peer-to-peer car- and ride-sharing. We combine the individual advantages o�ered
by each of these models, and propose a system that aims at maximizing e�ciency.

Fractional ownership of luxury commodities emerged in the US in 1970's with real estate time
shares, and was later spread to other high value commodities (Garigliano, 2007). Ford, in part-
nership with Zoomcar, was the �rst company to start a pilot project of fractional ownership of
non-luxury vehicles in Bengaluru, India, as a part of its 25 mobility experiment initiative (John
and Phadnis, 2015). During this three month pilot which took place in 2015, Zoomcar provided 5
vehicles, each of which were shared by 6 individuals. This was a �rst step for Ford and Zoomcar
to study the impacts and implications of fractional vehicle ownership. Follwoing this experiment,
Ford made a $24M investment in Zoomcar in 2016 (Prasad, 2016).

In the proposed system in this paper, households who share the ownership of vehicles have the
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possibility of sharing rides, if their trips are spatiotemporally compatible. Ridesharing systems
are well-studied in the literature, and a large volume of studies have con�rmed their numerous
bene�ts, including reduction in vehicle miles traveled (VMT), and less damage to the transportation
infrastructure and the environment (Chan and Shaheen, 2012; Heinrich, 2010).

Literature suggests that when it comes to switching to autonomous vehicles, previous modality
preferences play an important role. Individuals whose previous modality relies heavily on private ve-
hicles are less likely to forego vehicle ownership in favor of a central shared mobility service provider
(Krueger et al., 2016). Shared ownership of autonomous vehicles can provide such households with
the peace of mind of vehicle ownership, while at the same time leaving the door open for shared
ridership.

In order to make shared ownership of autonomous vehicles more a�ordable, households can
rent their vehicles when they are not being used. The advantage of using autonomous vehicles in
carsharing programs is that the complicated dispatching problem that one-way car sharing systems
face does not arise, since autonomous vehicles can drive themselves and there is no need to plan and
dispatch drivers for their re-distribution in the network. A comprehensive review and classi�cation
of carsharing models can be found in Barth and Shaheen (2002). There are multiple studies that link
carsharing to reduction in household vehicle holdings, increase in older vehicle sales, and postponing
vehicle purchase (Martin et al., 2010; Walb et al., 1986). Additional studies highlight the positive
impact of carsharing on VMT (Cervero and Tsai, 2004; Cervero et al., 2007). There are studies
in the literature that have looked at on-demand carsharing systems with autonomous vehicles.
Fagnant et al. (015b), for example, use simulations to study the implications of short-term on-
demand autonomous vehicle rentals in the Austin, Texas area. Fagnant and Kockelman (015a) look
at the problem of �nding the optimal �eet size for shared autonomous vehicle deployment in Austin,
Texas.

To the best of our knowledge, this study is the �rst to focus on shared ownership and ridership
of autonomous vehicles with an analytical formulation. In order to implement the SVOR program,
we need to form clusters of households, where members of each cluster jointly own a set of vehicles.
The goal is to increase e�ciency by �nding the minimum number of vehicles each cluster requires,
and allowing members of each cluster to rideshare if the opportunity presents itself. This is similar
to the problem of �nding the minimum number of vehicles in a dial-a-ride problem (DARP) with
time windows (Jaw et al., 1986; Psaraftis, 1983). In addition, we allow clusters of households to rent
out their vehicles using a central carsharing system. The problem of allocating vehicles to dynamic
requests bears similarities to the dynamic DARP with time windows. In this paper, we formulate
this problem as a pure binary program in a time-expanded network, and demonstrate through an
experimental study that this binary formulation can e�ciently solve the targeted problem.

Cordeau and Laporte (2007) provide a literature review on the algorithms developed for the
dynamic DARP. The computational time, and/or number of requests these algorithms are able to
manage poses signi�cant limitations on the system proposed in this paper. We propose a greedy
heuristic algorithm that is able to provide high quality solutions within a short period of time.
Finally, we implement the SVOR program for a sample of households in San Diego, California, and
comment on the resulting e�ciency at the individual and system levels.

The contributions of this paper are three-fold. First, we introduce a general mathematical
framework to model a system with various levels of shared autonomous vehicle ownership and
ridership. It is believed that upon deployment, autonomous vehicles can enhance safety and mobility
and curb environment side-e�ects of the transportation sector. The second contribution of this study
is to put a question mark in front of this widely accepted premise, and point out factors that could
play a role in the degree to which, and the circumstances under which, these potential bene�ts
can be realized. Finally, we demonstrate the degree to which a shared ownership and ridership
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model can reduce the number of vehicles needed to satisfy the transportation needs of a population,
thereby reducing the cost of autonomous transportation through fractional vehicle ownership.

3 SVOR: Shared Vehicle Ownership and Ridership

Envision a set of households, F , who share the ownership of a set of autonomous vehicles, V . These
households form a cluster to which the vehicles under their shared ownership belong. Each vehicle
v ∈ V has the capacity to carry Cv number of passengers. Each household f ∈ F has a set of
essential trips that need to be served by autonomous vehicles. We de�ne set Me to include all the
essential trips of the households that belong to a cluster. Conceptually, essential trips are trips
for which individuals need to have timely and regular access to vehicles; however, households can
include any other types of trips in the set of essential trips if they need to ensure regular and timely
access to a vehicle for such trips. Common types of essential trips may include work-based trips,
grocery shopping, and trips to school.

For a given trip k, a cluster member needs to input into the system the location of the origin of
the trip, OSk, the location of the destination of the trip, DSk, the earliest departure time from the
origin location, EDk, and the latest arrival time at the destination location, LAk. While vehicles
are idle, they can be rented out to satisfy a set of on-demand transportation requests, M , in order
to cover a part of the system cost. A rental request k ∈ M should include the location where a
vehicle needs to deliver itself (OSk), and the location where it needs to return (DSk), along with
the rental period duration (Pk), and the rental time window ([EDk, LAk]).

The �rst goal of the system is to advise households in a cluster on the optimal number of vehicles
they need to purchase to cover their set of essential trips. In the interest of higher e�ciency, the
system is designed to allow cluster members to rideshare, if the spatiotemporal proximity of their
trips permits it. The second goal of the system is to maximize the total number of on-demand
car rentals in order to maximize the external revenue generated. These goals are implemented
sequentially, i.e., we �rst determine the optimal number of vehicles for each cluster of households
(under di�erent clustering schemes), and then use these vehicles for carsharing during their idle
times. In the next section, we mathematically model these two problems.

3.1 Mathematical Modeling

The SVOR program �nds the min number of vehicles for clusters of households to serve their set
of essential trips. When not serving the essential trips of cluster members, these vehicles can be
rented out to the general public. The speci�cations of the number of vehicles needed by each cluster,
the itineraries of these vehicles, and how these vehicles should be used to serve on-demand rental
requests can be obtained by solving two mathematical problems. In this section, we elaborate on
the properties of these mathematical formulations.

In order to model the system de�ned in the previous section, we formulate two optimization
problems. The �rst problem presented in section 3.2 �nds the optimal number of autonomous
vehicles that should be owned by a cluster under the constraint that the cluster's set of essential
trips be served. Furthermore, this optimization problem generates itineraries for all essential trips.
The result would be a system best described as a personalized transit system for each individual -
Pick-up and drop-o� times and locations would be pre-determined and �xed, but personalized to
each individual's travel needs. The second problem presented in section 3.3 uses the vehicles' idle
times to serve the maximum number of on-demand car rental/trip requests.

We will formulate these two optimization problems on a time-expanded network, where a link
identi�es the origin and destination of a trip as well as its departure and arrival times. Formulating
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Figure 2: A typical network to demonstrate the connection of depot stations together, and to
members of set S

the problem on a time-expanded network, rather than using a more general dial-a-ride formulation,
enables us to exploit the unique structure of the problem resulting from the fact that trips (requested
by individuals) and vehicles are both available within narrow sprites in time and space. This
simple observation enables us to simply �lter out the links that do not satisfy the spatio-temporal
constraints imposed by trip time windows and vehicle availability constraints. This more than
compensates the larger size of the link sets resulting from increasing the dimensionality of links by
adding time tags. Furthermore, formulating the two optimization problems on a time-expanded
network obviates the need for imposing explicit time constraints on trips by de�ning sets that only
include links that readily satisfy these constraints. Additionally, adding a time component to the
de�nition of links renders tour elimination constraints, which substantially increase the complexity
of pick-up and delivery problems, unnecessary.

Aside from reducing the number of constraint sets, formulating the problems on a time-expanded
network enables us to form pure binary (zero-one) programs. The resulting optimization problems
have very tight linear relaxations, limiting the need for branching and bounding to only very speci�c
cases, where the spatiotemporal proximity between trips and vehicles is signi�cant.

For a given cluster, let us de�ne the set of stations, denoted by Se. This set contains the origin
and destination locations of the cluster's essential trips. Furthermore, let us de�ne set S to contain
all the origin and destination locations of all essential and non-essential trips (by all clusters). By
introducing stations, we discretize the space dimension of the problem. In addition, let us discretize
the study time horizon into a set of short time intervals with length δt. We de�ne set T to include
all time intervals in the study time horizon. In this study, we use 5-min time intervals. In a network
discretized in both time and space, let us de�ne a node n as a tuple (ti, si) ∈ T × S. Consequently,
we can de�ne a link ` as a tuple of nodes ` = (ni, nj) = (ti, si, tj , sj), where (tj − ti)δt is the travel
time between stations si and sj . Let us de�ne set L to include all links in the network.

We de�ne an origin depot, Do, from which all cluster vehicles depart in the beginning of the
day, and a destination depot Dd, to which all cluster vehicles return at the end of the day. The
depots are virtual stations used to assist in the formulation of the problem. The origin depot, Do,
is connected to all stations in set S, and all stations in S are connected to the destination depot,
Dd. Finally, Do and Dd are connected to each other. Figure 2 displays a typical network structure
and demonstrates the connection between the depots and the stations.

We use the pre-processing procedure presented by Masoud and Jayakrishnan (2017) to generate
the set of links that are reachable by each trip, given its origin and destitution as well as its time
window. Let us denote by Lk the link set for trip k ∈ {M ∪Me}.
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3.2 Routing of Autonomous Vehicles

As stated previously, the SVOR program requires solving two mathematical problems. The �rst
probelem pesented in this section �nds the optimal number of vehicles to serve a cluster's set of
essential trips. This problem is formulated in the problem set (3). The formulation requires two
sets of decision variables de�ned in (1) and (2).

xv` =

{
1 If vehicle v travels on link `

0 Otherwise
(1)

ykv` =

{
1 If trip k is carried out by vehicle v on link `

0 Otherwise
(2)

Assuming that the households in a cluster have a total of m members, |m| serves as an upper-
bound on the number of vehicles needed to serve the cluster. Therefore, to determine the minimum
number of vehicles for a given cluster, we formulate an optimization problem, assuming there to be
|m| vehicles available, and try to maximize the number of vehicles that are not used.

Constraint sets (3b) and (3c) force all vehicles to go back from Dd to Do at the end of the day.
Constraint set (3d) is the �ow conservation constraint, forcing all vehicles that enter a station at
a given time interval to leave that station at the same time interval. Notice that vehicles do not
have to physically leave a station; this can be represented by links that have similar origin and
destination stations, but di�erent departure and arrival time intervals. Constraint sets (3e)-(3g)
route the set of trips in the network. Constraint set (3e) and (3f) ensure that a trip leaves its origin
station and enters its destination station within its time window, respectively. Constraint set (3g)
is the �ow conservation constraint for trips. Constraint set (3h) serves two purposes: it links vehicle
routes to trip routes, and ensures that the number of individuals assigned to each vehicle at any
moment in time does not exceed the vehicle's capacity, where Cv is capacity of vehicle v.

Since all vehicles have to start at the origin depot and terminate at the destination depot,
vehicles that are excessive and are not actually routed in the system have to take the direct link
connecting Do to Dd. Therefore, vehicles who travel on this link are not actually being used.
Consequently, to minimize the number of used vehicles, we maximize the vehicles that travel on this
link, as mathematically stated in the objective function of the problem in (3). The second term in
the objective function minimizes the total travel time by vehicles in the network. We set a positive
weight W for the �rst term in the objective function to take into account the relative importance
of minimizing the number of vehicles in a cluster compared to the total travel time experienced by
the cluster members. The solution to this problem simultaneously provides the minimum number
of vehicles required to serve the essential trips and itineraries for the trips and the vehicles.

While travel times in model (3) are considered constant, it is perceivable that with a high
penetration rate this program could a�ect network-level travel times. Under such circumstances, a
bi-level model can be used, where the mathematical program presented in (3) acts as the upper-
level problem. The lower-level problem takes the trip table generated by the upper-level problem
as an input, and generates updated travel times (using simulations or based on a user-equilibrium
framework), which can then be fed back to the mathematical model in the �rst level. The model
iterates until no further changes in travel times can be observed. Gao et al. (2005) provide a solution
methodology for solving such a bi-level model. Note that with a high penetration rate, failure to
account for changes in travel times would lead to misleading results that do not hold in practice.
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Minimize −W
∑

v∈V, ti∈T, tj∈T :

`=(ti,Do,tj ,Dd)∈L

xv` +
∑

v∈V,`∈L:
si 6=sj

xv` (3a)

Subject to:
∑

`=(ti,si,tj ,sj)∈L:

si=Dd,sj=Se\Do

xv` = 0 ∀v ∈ V (3b)

∑
`=(ti,si,tj ,sj)∈L:

si=Dd,sj=Do

xv` = 1 ∀v ∈ V (3c)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈L

xv` =
∑

sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈L

xv`
∀v ∈ V, t ∈ T, s ∈ Se\Do :
` = (ti, si, t, s) ∈ L

(3d)

∑
v∈V

∑
`∈Lk:
si=OSk

ykv` −
∑
v∈V

∑
`∈Lk:
sj=OSk

ykv` = 1 ∀k ∈Me (3e)

∑
v∈V

∑
`∈Lk:
sj=DSk

ykv` −
∑
v∈V

∑
`∈Lk:
si=DSk

ykv` = 1 ∀k ∈Me (3f)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈Lk

ykv` =
∑

sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈Lk

ykv`

∀v ∈ V, k ∈Me, t ∈ T,
s ∈ Se\{OSk, DSk} :
` = (ti, si, t, s) ∈ Lk

(3g)

∑
k∈Me,`∈Lk

xkv` ≤ Cvx
v
` ∀v ∈ V, ` ∈ L (3h)

xv` , y
kv
` ∈ {0, 1} (3i)

3.3 On-demand Carsharing

The pick-up and drop-o� schedules for the set of essential trips are determined by the optimization
problem in the previous section. The idle time windows of vehicles can be used to serve on-demand
transportation requests through a central car rental service provider.

Autonomous vehicles become idle after dropping o� a passenger, and before picking up the next
scheduled passenger. During this period, a vehicle needs to make a trip from the destination location
of the �rst passenger to the origin location of the second, in a travel time window that is bounded
from below by the scheduled arrival time of the �rst passenger, and from above by the scheduled
departure time of the second. The �rst optimization problem ensures that this travel time window
is larger than the actual travel time between the two locations. Although this time window is not
strictly an idle period (the vehicle should travel to the pick-up location for the second trip), the
vehicle can use the extra time to serve on-demand trip requests, and that is why we refer to the time
window between two consecutive scheduled drop-o� and pick-ups as the free travel time window.

In order to mathematically formulate the carsharing problem, we identify the set of free time
windows between scheduled trips, and �nd the maximum number of carsharing requests that can be
satis�ed during these time windows. We keep the set of free time windows for each vehicle v ∈ V in
set J(v). The eth free time window of vehicle v starts after dropping o� its eth assigned passenger,
and ends when passenger e + 1's pick-up has been scheduled. We denote this travel time window
by [ED(v,e) LA(v,e)]. During this time window, the vehicle needs to travel from the destination
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location of its eth scheduled trip to the origin location of its next scheduled trip. We denote these
parameters by OS(v,e) and DS(v,e), respectively, and formulate this problem using three sets of
decision variables in equations (4)-(6).

xve` =

{
1 If vehicle v travels on link ` during its eth free time window

0 Otherwise
(4)

ykve` =

{
1 If request k is served on link ` using the eth free time window of vehicle v

0 Otherwise
(5)

zk =

{
1 If carsharing request k is served

0 Otherwise
(6)

Contrary to the problem in (3) where all vehicles have access to the same link set L, here each
vehicle has a di�erent link set in each of its free time windows. Let us denote by Lve the set of

links for vehicle v during its eth free window. Furthermore, let us introduce set Lkve = Lk
⋂
Lve to

contain all links that are reachable by both vehicle v during its eth time window, and by request k.
The constraint sets that de�nes this problem are very similar to the constraint sets in the previous

section, where we routed the autonomous vehicles to satisfy the set of essential trips. Constraint
sets (7b)-(7d) route vehicles within their free time windows. Constraint set (7b) ensures that each
vehicle at each of its free time windows leaves its origin station after delivering its last passenger.
Constraint set (7c) ensures that the vehicle reaches its destination location before the departure
time of its next scheduled trip. Constraint set (7d) is the �ow conservation constraint. Constraint
sets (7e)-(7g) route on-demand requests in the network. These sets of constraints are similar to
constraint sets (7b)-(7d) that route vehicles, with a slight variation that not all on-demand requests
can be necessarily served. This is re�ected in the formulation by replacing the unit value on the
right hand side of constraint sets (3e) and (3f) by variable zk in constraint sets (7e) and (7g).
Finally, constraint set (7h) ensures that each request is assigned to a single vehicle, and each vehicle
is assigned to a single request at a time.

The objective function of the carsharing problem presented in Eq. (7a) maximizes a weighted
sum of served trips. This weight can be determined based on the goal of the system. For instance,
if the objective is to maximize the revenue obtained from the system, ηk can be set as the rental
duration for request k. We use ηk = 1 in the experiments in this paper to maximize the total
number of served requests, with the goal of �nding the minimum number of vehicles required to
serve the community.
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Maximize
∑
k∈M

ηkzk (7a)

Subject to:
∑
`∈Lve:

si=OS(v,e)

xve` −
∑
`∈Lve:

sj=OS(v,e)

xve` = 1 ∀v ∈ V, e ∈ J(v) (7b)

∑
`∈Lve:

sj=DS(v,e)

xve` −
∑
`∈Lve:

si=DS(v,e)

xve` = 1 ∀v ∈ V, e ∈ J(v) (7c)

∑
si∈S,ti∈T :

`=(ti,si,t,s)∈Lve

xve` =
∑
sj∈S,tj∈T :

`=(t,s,tj ,sj)∈Lve

xve`

∀v ∈ V, e ∈ J(v)
∀t ∈ T, s ∈ Se\Do :
` = (ti, si, t, s) ∈ Lve

(7d)

∑
v∈V
e∈J(v)

∑
`∈Lkve:
si=OSk

ykve` −
∑

v∈V
e∈J(v)

∑
`∈Lkve:
sj=OSk

ykve` = zk ∀k ∈M (7e)

∑
v∈V
e∈J(v)

∑
`∈Lkve:
sj=DSk

ykve` −
∑

v∈V
e∈J(v)

∑
`∈Lkve:
si=DSk

ykve` = zk ∀k ∈M (7f)

∑
si∈Se,ti∈T :

`=(ti,si,t,s)∈Lkve

ykve` =
∑
sj∈Se,tj∈T :

`=(t,s,tj ,sj)∈Lkve

ykve`

∀v ∈ V, e ∈ J(v), k ∈M,
t ∈ T, s ∈ Se\{OSk, DSk} :
` = (ti, si, t, s) ∈ Lkve

(7g)

∑
k∈M,`∈Lkve

ykve` ≤ xve` ∀v ∈ V, e ∈ J(v), ` ∈ Lve (7h)

xve` , y
kve
` , zk ∈ {0, 1} (7i)

4 Solution Method

We formulated the �rst optimization problem to �nd the minimum number of autonomous vehicles
required to serve a cluster's set of essential trips, and optimally route these vehicles. This problem
does not need be solved in real-time, and therefore for problems of moderate size (as we will discuss
in the following sections) optimization engines such as CPLEX can be used to solve it.

The second optimization problem that maximizes the number of served carsharing requests may
need to be solved in real-time, as carsharing requests arrive dynamically. In this section, we devise
a heuristic to solve this problem in real-time. The numerical study that follows illustrates the level
of e�ciency and accuracy of this heuristic algorithm.

The carsharing problem as described in the previous section bears similarities to the family of
parallel machine scheduling problems in manufacturing. This class of problems includes a large
variety of problems, and is used to �nd the optimal sequence of using machinery in manufacturing
processes. Parallel machine scheduling problems vary in job characteristics (whether there are
preemptive or precedence constraints present, �xed/relaxed start or �nish times, etc.), machine
characteristics (identical or non-identical, serial or parallel, etc.), and the optimality criterion (max
number of completed jobs, min makespan, etc.). In the context of our carsharing problem, jobs are
carsharing requests, and machinery are the free time windows of drivers. The problem we are trying
to solve has the following characteristics:
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1. No preemptive or precedence constraints present: Once we �x the schedules of the essential
trips, the vehicles' free time windows can be used in any manner, i.e., there is no precedence
requirement on the sequence of the carsharing request to be satis�ed.

2. Multiple non-homogeneous machines/servers: In our problem each free time window of each
vehicle poses as a separate server. Furthermore, our servers are non-homogeneous, meaning
that each vehicle at each of its free time windows has a distinct origin and destination, as well
as start and �nish times.

3. Jobs are available during speci�ed time windows, rather than with speci�c start and �nish
times: the carsharing requests specify a time window during which a vehicle is required, rather
than specify the exact time for start and end of their requests. Note that this does not preclude
the case of requests that need the vehicle to be delivered at a speci�c time; for such requests,
the length of the rental time window would be equal to the length of the trip for which the
vehicle is being rented out.

4. Set-up cost: In our problem there exist server- and job sequence-dependent set-up costs.
Because vehicles have to travel to locations where they are requested, selecting a vehicle to
be assigned to a request and the sequence of requests assigned to a vehicle both play a role in
the total system cost.

5. Objective: maximizing the number of served jobs (satis�ed carsharing requests).

There is an extensive amount of literature on machine scheduling (Hall and Sriskandarajah 1996;
Cheng et al. 2004). Rabadi et al. (2006) propose heuristics to solve the non-preemptive unrelated
parallel machine scheduling problem, in which machine- and job sequence-dependent setup times
are considered, but jobs are all assumed to be available at time zero. Gabrel (1995) proposes
heuristics to solve the problem of scheduling non-preemptive jobs with an interval for starting time,
on identical parallel machines. To the best of our knowledge, there is no study that combines both
characteristics (set-up costs, and time windows for jobs), that can be used to solve the carsharing
problem formulated in the previous section.

4.1 Heuristic Algorithm to Solve the on-demand Carsharing Problem

The heuristic algorithm described in this section is based on the earliest �nishing time (EFT)
algorithm originally designed to solve the interval scheduling problem. In the interval scheduling
problem, there is a machine that needs to complete the maximum number of jobs possible. Each
job has a speci�c start and �nish time. At each step, the EFT heuristic selects the job with the
earliest �nishing time that does not con�ict with the previously selected jobs. The EFT algorithm
yields optimal solutions (Kleinberg and Tardos, 2006).

The carsharing problem is substantially more complicated than the interval scheduling problem.
In fact, it is easy to see that the carsharing problem is NP-Hard. Here, we modify the EFT heuristic
and tailor it to solve the carsharing problem. Our proposed algorithm is displayed in Algorithm 1.

In the mathematical program in (7), we used the tuple (v, e) to refer to the eth free time window
of vehicle v. In the interest of simplifying the notation, we treat each free time window of each
vehicle as a separate vehicle v′ ∈ V ′, where V ′ = {(v, e)|v ∈ V, e ∈ J(v)}.

In the �rst step of the algorithm, we initialize two sets of arrays. The �rst array, Loc(v′),
indicates the current location of vehicle v′. The second array, Time(v′), indicates the time vehicle
v′ becomes idle (available). We initialize the location array Loc for each vehicle v′ ∈ V ′ with the
origin station of the vehicle, and the time array Time with the earliest departure time of the vehicle.
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Algorithm 1 On-demand vehicle allocation
Allocates carsharing requests using the idle autonomous vehicles

1. Initialize: ∀v′ ∈ V ′

Loc(v′) = OSv′

T ime(v′) = EDv′

2. Find the set of feasible requests R(v′), ∀v′ ∈ V ′

∀k ∈ R :

If Max{T ime(v′) + shp1(Loc(v′), OSk), EDk}+ shp(OSk, DSk) ≤ LAk

R(v′) = R(v′) ∪ k

3. Find the matched request and driver by studying the minimum �nishing time for all combinations of vehicles
and requests

(
∀v′ ∈ V ′, k ∈ R(v′)

)
(v′∗, k∗) = Argminv′∈V ′,k∈R(v′)

{
Max{T ime(v′) + shp(Loc(v′), OSk), EDk}+ shp(OSk, DSk)

}
4. Update sets

Loc(v′∗) = DSk∗

T ime(v′∗) = Max{T ime(v′∗) + shp(Loc(v′∗), OSk∗), EDk∗}+ shp(OSk∗ , DSk∗)

5. Delete k∗ from R(v′),∀v′ ∈ V ′.

6. Update R(v′∗) based on rider travel time windows:

∀k ∈ R(v′∗) :

If Max{T ime(v′∗) + shp(Loc(v′∗), OSk), EDk}+ shp(OSk, DSk) > LAk

}
R(v′∗) = R(v′∗)\k

Go to step 3.

7. Stopping Criteria: ∀v′ ∈ V ′, R(v′) = ∅.
1shp(i, j) : shortest path travel time between i and j

Figure 3: Determining the set of feasible requests R(v′) for vehicle v′

12



The algorithm starts by determining the set of feasible carsharing requests for each vehicle. In
order for a request to be feasible for a vehicle, the vehicle should be able to drive from its current
location to the request's origin, stay in possession of the renter for the requested duration of time,
and �nally arrive at its own destination (the pick-up location of its next scheduled essential trip)
before its latest arrival time.

Figure 3(b) studies the feasibility of three carsharing requests for an example vehicle. The
boundaries of the boxes show the free time window of the vehicle, and the line (marked by colors
blue, red, or green) associated with each request marks its time window. The �rst request (at
the bottom) is feasible for the vehicle: the vehicle arrives at the request's origin location after
the request's earliest departure time, is able to stay in possession of the renter for the requested
duration (that ends before the request's latest arrival time), and travels to its destination within
its time window. The second and third requests, however, are not feasible for the vehicle. In case
of the second request, the vehicle cannot stay in possession of the renter for the duration of the
request, and in case of the third request, the vehicle cannot arrive at its own destination in time,
after �nishing serving the request.

In the third step the algorithm �nds �nishing times for all combinations of vehicles and their set
of feasible requests. The �nishing time for vehicle v serving request k is sum of the time required
for the vehicle to arrive at the request's origin, the rental period, and the waiting time for the rental
window to start in case the vehicle arrives at the rental location in advance of the rental window.

The vehicle and request pair that lead to the earliest �nishing time will be selected and matched
together. In step 4, the location of the matched vehicle will be updated to the destination of the
matched request, and the time array of the assigned vehicle will be updated to the drop-o� time of
the rented out vehicle. In step 5, the matched request in step 3 will be eliminated from the set of
available requests to all vehicles. Furthermore, since the time window and location of the matched
vehicle have been updated, the set of feasible requests for this vehicle needs to be updated as well.
The algorithm stops when sets of feasible requests for all vehicles become empty.

5 Experiments

We implemented the SVOR program for a sample of households in San Diego County, using data
from the 2000-2001 California statewide household travel survey (Casas, 2002). In this survey,
Caltrans collected travel data from 17049 volunteer households in California. These households were
selected carefully to ensure that the sample would be a good representation of the state population.
After cleaning the data by eliminating records with incomplete or contradicting information, we
identi�ed a total of 1184 households residing in the city of San Diego. For these households, detailed
information on the number of household members, number of vehicles owned by households, and
logged trips for each household member during a working day along with the purpose of each trip
were available, among other information.

We determined the set of essential trips for each household based on the information on the
purpose of trips. All car-based trips (e.g., private cars, public and private shuttles, public trans-
portation) reported by households were considered in this study, regardless of the reported mode.
Note that over 70% of the initial modal share collected through the survey belongs to private vehi-
cles, while 25% of the modal share is unspeci�ed, 3% belongs to walking, and the remaining 2% is
collectively claimed by bus, heavy and light rail, and bike. We categorized trips concerning work,
school, childcare, medical, �tness, community meetings, volunteer activities, visiting friends and
family, and entertainment activities as essential (core), and the rest of the trips as non-essential.
After cleaning the dataset, among the 1184 households, 573 of them were left without any essential
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trips during the survey day, and therefore were not considered for the shared use and ownership
program. These households, however, were taken into consideration for the car rental service to
serve their non-essential trips. The 1184 households made a total of 3306 trips, 1624 (49%) of which
were essential trips.

The �rst step in implementing the program is to cluster households. Each cluster should include
a number of households with enough commonalities that would interest them to participate in
the shared vehicle ownership and ridership program together. Various parameters can be used to
determine a suitable cluster for a household, including home location, demographics and socio-
economic status of households, level of spatiotemporal proximity of trips between households, and
income level, to name a few. In this study, we cluster households at di�erent levels and using
di�erent criteria. In sections 5.1 and 5.2 we study the impact of clustering households based on the
proximity of their residence locations and the degree of overlap between their trips, respectively. In
section 5.3, we study two extreme clustering approaches and estimate upper and lower bounds on
the potential savings on the number of vehicles and VMT in our sample.

5.1 Residence-based Clustering

In our �rst implementation, we use agglomorative clustering, an unsupervised learning method,
to group households based on their home location (Steinbach et al., 2000). Figure 4 displays the
resulting 277 clusters of households. These clusters are distinguished by color based on their size
(i.e., the number of their household members). Figure 4 also displays the distribution of number
of households in clusters. About 80% of clusters have three or fewer household members, which
makes it an easier task to manage shared vehicles when it comes to incorporating the preferences of
members on whom to add to the clusters in the future, or the cluster members with whom to share
rides. About 30% of the households are geographically isolated from others and therefore remain
as singleton clusters. Figure 4 also illustrates the Voronoi polygons attributed to clusters. These
polygons suggest to which cluster a prospective household looking to join the program would belong
based on its residence location.

For each cluster, we solve the optimization problem (3) to �nd the optimal number of vehicles
required to serve the cluster's entire set of essential trips. All problems are solved on a PC with
Core i7 3GHz and 8GB of RAM, using the AMPL modeling language and CPLEX 12.6.00 solver
with standard tuning. Solution times are displayed in Figure 5. Not surprisingly, solution times
increase with cluster size; however, they remain within a reasonable range for a problem that does
not need to be solved in real-time. Figure 5 suggests that the mathematical formulation in problem
(3) is scalable with respect to the number of households in clusters.

The solution suggests that a total of 379 vehicles are required to serve all the essential trips
by all clusters (including the single household clusters). Note that households are still in need of
transportation for their non-essential trips. Therefore, this number serves as a lower bound to the
total number of required vehicles.

Figure 6(a) shows the distribution of the number of vehicles owned by households in year 2000.
This �gure suggests that the majority of households owned at least 2 vehicles. Figure 6(b) shows
the distribution of the optimal number of vehicles needed under the SVOR program. This �gure
shows that about 65% of clusters need no more than one vehicle to serve their essential trips. No
cluster needs more than 4 vehicles.

After forming clusters of households and determining the �xed schedules of autonomous vehicles
to serve their cluster members, we need to address the non-essential trips. One possibility is to use
a central carsharing system that rents out the autonomous vehicles owned by clusters to serve non-
essential trips of the entire population. The question is, what percentage of the non-essential trips
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Figure 4: Clusters of households. Households in each cluster are assumed to share ownership of a
set of autonomous vehicles

Figure 5: Solution time (sec) of �nding the optimal number of vehicles and vehicle itineraries for
each cluster size
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(a) Frequency distribution of the
number of vehicles owned by clus-
ter members in year 2000

(b) Frequency distribution of the
number of autonomous vehicles re-
quired for clusters under the SVOR
program

(c) Number of additional vehicles required
to serve non-essential trips

Figure 6: Impact of the SVOR program on vehicle ownership under residence-based clustering

can be served by such a centralized system, and how many additional vehicles need to be owned by
the carsharing system to serve the entire set of non-essential trips of the population. Note that not
only the 611 households who participate in the SVOR program, but also the 573 households who
did not report any essential trips need to have their non-essential trips served.

Using Algorithm 1 to rent out the 379 autonomous vehicles owned by clusters with the goal of
serving as many non-essential trips as possible, we manage to serve 63% of the non-essential trips.
We then use a variation of Algorithm 1 to �nd the additional number of vehicles the rental company
needs to own in order to serve the remaining 37% of the non-essential trips. We assume a depot
for the rental service provider located strategically in the network (marked with a star symbol in
Figure 4) where there is a very high density of trip origin and destination locations. We increment
the number of vehicles one at a time, having each vehicle start its trip from the depot, to which it
returns at the end of the day. We assign trips to each newly added vehicle using Algorithm 1 until
all trips are served.

The results suggest that a total of 125 vehicles need to be owned and managed by the rental
service provider to serve the rest of the non-essential trips. All these vehicles, however, do not have
the same contribution in terms of the number of served trips. Figure 6(c) displays the cumulative
percentage and number of trips served by each additional vehicle. This �gure suggests that using
only 30 vehicles, the rental service provider can serve 75% of the remaining non-essential trips.
The remaining 95 vehicles each serve only 1 or 2 trips with origins and/or destinations in remote
areas. In fact, using cluster-owned vehicles in their idle times, and owning an additional 30 vehicles,
the rental company can serve more than 90% of the on-demand trips. Comparing the count of
504 vehicles that could serve the entire transportation demand against the 2194 vehicles owned
by households suggests that the SVOR program has the potential to have a signi�cant impact on
vehicle ownership.

The savings in the number of vehicles in the proposed system originate from three di�erent
sources: (1) introduction of autonomous vehicles, (2) shared ownership of these vehicles, and (3)
ridesharing within clusters. It would be interesting to observe how much of the savings can be
attributed to each source. Towards this end, we consider two additional cases. In the �rst case, we
study the impact of households trading their current vehicles for the optimal number of autonomous
vehicles. In the second case, we allow households to form clusters in order to share the ownership
of vehicles. The third and most comprehensive case considers the shared ownership and shared
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Table 1: Impact of di�erent elements of the SVOR program on vehicle ownership and vehicles miles
traveled using household locations as clustering criterion

Base Case: Case 1: Case 2: Case 3:
Year 2000 data Autonomous vehicles Autonomous vehicles Autonomous vehicles

+ Shared ownership + Shared ownership
+ Shared ridership

No. of vehicles 2,194 787 528 504
Total VMT 29,959 62,980 64,836 65,610
Average VMT 13.6 80 122 130

ridership of vehicles among the members of each cluster, as described by the SVOR program.
Table 1 summarizes the number of required vehicles, and the total and average VMT for each

case. Number of vehicles determines the initial investment, and average VMT per vehicle translates
into life expectancy and operational costs. While these two costs may directly impact the cost of
vehicle ownership, total VMT translates into the environmental cost of switching to autonomous
vehicles. Note that for now we assume that there is parking space available to vehicles when and
where required.

In case 1, where legacy vehicles are replaced with autonomous vehicles, a total of 787 vehicles
need to be purchased by the households in our sample. Not surprisingly, replacing legacy vehicles
with autonomous vehicles results in an increase in total and average VMT, since the number of
autonomous vehicles is substantially less than the number of legacy vehicles, implying that au-
tonomous vehicles have to make empty trips in order to serve their owners. In the second case,
allowing shared ownership of autonomous vehicles leads to a 30% reduction in vehicle ownership
compared to case 1, although this reduction in the number of vehicles comes at the price of a 50%
increase in average VMT for each vehicle. The increase in total VMT, however, is not substantial.
Finally, in the third case where SVOR of autonomous vehicles is studied, an additional 5% decline
in vehicle ownership compared to case 2 can be witnessed, accompanied by a slight increase in both
total and average VMT.

Note that the number of vehicles needed in the SVOR program only provides a lower bound,
since trips that do not happen regularly might not have been occurred during the survey day.
Additionally, the convenience of travel o�ered by autonomous vehicles can induce new trips. Part
of these trips that have not been accounted for can be served using the unutilized capacity in the
current system. For others, however, additional vehicles might be required. The number of vehicles
under the 3 cases in Table 1, however, provide a solid basis for quantifying the e�ect of each element
of the SVOR program.

5.2 Clustering Based on Trip Overlap

An alternative way of clustering households is based on the overlap between household trips. For
each household pair, we compute the degree of compatibility between their trips. For a given pair
of households h1 and h2, we de�ne an n1 × n2 matrix, where n1 and n2 denote the number of
essential trips by the two households, respectively. Each cell cij in this matrix assumes the value
1 if trips i and j can be ful�lled using the same vehicle, i.e., one of the two following conditions
holds: (i) the vehicle can ful�ll the trips sequentially (i.e., ful�ll one trip, followed by the second),
and (ii), the vehicle can ful�ll the trips concurrently (i.e., perform the pick-up task for both trips
(in any sequence), followed by the drop-o� task for the two trips (in any sequence)). If neither of
these two conditions is satis�ed, the cell cij will assume the value 0, implying that the two trips
are incompatible. The summation of all elements in matrix C is what we de�ne as the degree of
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(a) Histogram of number of vehicles
currently owned by cluster members

(b) Histogram of optimized number
of autonomous vehicles required for
clusters

(c) Histogram of optimized number
of autonomous vehicles required for
clusters

(d) Solution time (sec) of �nding the
optimal number of vehicles and vehicle
itineraries for each cluster size

(e) Number of additional vehicles required to
serve the entire set of non-essential trips

Figure 7: Impact of the SVOR program on vehicle ownership under clustering based on degree of
inter-household trip overlaps

compatibility between households h1 and h2. We use agglomerative clustering based on the degree
of compatibility between households to group households into 261 clusters.

A total of 340 autonomous vehicles are required to serve the essential trips of the 261 clusters.
Figures 7(a) and 7(b) compare the distribution of vehicles owned by households before and after
implementing the SVOR program. It is interesting to note that more than half of the clusters need
only one autonomous vehicle, whereas in the base case the majority of clusters owned four or more
vehicles (Numbers for the base case are obtained by adding the number of vehicles owned by all
households in a cluster based on the survey data). Figures 7(c) and 7(d) display the distribution of
cluster size, and the solution times to optimize the itineraries in clusters, respectively. Similar to
the residence-based clustering, the solution times remain within a reasonable range.

During their idle times, essential vehicles managed by the rental service provider can serve
57% of the non-essential trips of the entire population. The company needs to own 128 additional
vehicles to serve the remaining 43% of the non-essential trips. Figure 7(e) shows the contribution
of each additional vehicle to serving the remainder of non-essential trips. This �gure suggests that
although 128 vehicles are required to serve the entire set of non-essential trips, the �rst 27 vehicles
can serve more than 70% of the remaining set of non-essential trips, and along with the cluster
vehicles, around 90% of the entire set of non-essential trips.

Similar to the previous section, we study the impact of each component of the SVOR program
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Table 2: Impact of di�erent elements of the SVOR program on vehicle ownership and vehicles miles
traveled using degree of trip overlaps as clustering criterion

Base Case: Case 1: Case 2: Case 3:
Year 2000 data Autonomous vehicles Autonomous vehicles Autonomous vehicles

+ Shared ownership + Shared ownership
+ Shared ridership

No. of vehicles 2,194 787 497 468
Total VMT 29,959 62,980 102,790 73,841
Average VMT 13.6 80 207 158

on vehicle ownership and VMT. Results are displayed in table 2. The same declining trend in
vehicle ownership that was observed in residence-based clustering can be witnessed in trip-overlap
clustering as well, as we move from case 1 to case 3. For each case, however, the total number of
vehicles in trip-overlap clustering is less than that of residence-based clustering. This is an intuitive
�nding, since in trip-overlap clustering we are grouping households whose trips have higher degrees of
compatibility and therefore can be served using fewer vehicles. Fewer vehicles in this case translates
into higher total and average VMT. One interesting observation is that in case 3 where we allow
households in a cluster to rideshare, the total and average VMT are less than case 2 in which
ridesharing is not allowed. While in residence-based clustering (Table 1) adding the ridesharing
capability slightly increased the total and average VMT due to lower number of vehicles, this is not
the case in trip-overlap clustering, since the clustering criteria is partially based on the compatibility
of households to rideshare.

5.3 Level of Clustering

In sections 5.1 and 5.2 we studied the impact of clustering households based on two di�erent crite-
ria. In this section, we present two additional and more extreme clustering approaches to provide
some bounds on the impact of shared vehicle ownership and ridership program for our sample of
households. Results are displayed in table 3.

The �rst extreme approach is to conduct no clustering at all, and assume each household as
a singleton cluster, resulting in 611 clusters. Our analysis shows that these households need 678
vehicles to cover their essential trips. To satisfy the non-essential trips of all 1184 households in our
data set, The car rental service provider needs to own 109 separate vehicles in addition to having
access to household-owned vehicles during their idle times.

By simply replacing legacy vehicles with the optimal number of autonomous vehicles, the total
number of vehicles owned by the entire sample reduces from 2194 to 787. This 2.8 fold reduction in
vehicle ownership, however, comes with the side e�ect of higher VMT for vehicles, as discussed in
the previous section. The amount of increase in VMT, however, depends highly on the availability
of parking. Here, we discuss two extreme scenarios on parking availability. In the �rst scenario,
parking is available when and where required, and in the second scenario, there is no parking
available, i.e., vehicles may have to drive around. In the latter case, if time allows, vehicles can
travel to the closest available parking spot owned by any of its cluster households. Unavailability of
parking is not limited to physical availability, but the a�ordability of the available parking spaces as
well. If parking is expensive, it might be a �nancially wiser alternative for vehicles to drive around.

Our analysis shows that availability of a�ordable parking opportunities has a substantial impact
on the total VMT. For the households in our sample, we �nd a 5-fold increase in the total and
average VMT when there is not access to a�ordable parking. This result, however, is obtained
under the assumption that introduction of autonomous vehicles does not change household travel
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Table 3: Impact of level of clustering and parking availability of vehicle ownership and VMT

Clustering method
Household-based Residence Trip Single
(no clustering) -based overlap cluster

No. of clusters 611 277 261 1
Avg. cluster size 1 2.21 2.34 1184
Min no. of autonomous vehicles owned by clusters 678 379 340 258
Percentage of non-essential trips covered 63% 63% 57% 100%
Additional no. of vehicles required 109 125 128 0
Total number of vehicles 787 504 468 258

Parking not available:

Optimized total VMT 335,640 305,800 286,060 158,020
Current avg. VMT 13.6 13.6 13.6 13.6
Optimized avg. VMT/shared vehicle 450 715 734 612
Optimized avg. VMT/additional vehicle 278 278 286 0
Optimized avg. VMT/vehicle 426 607 611 612

Parking available when and where desired:

Optimized total VMT 62,980 65,610 73,841 76,134
Optimized avg. VMT/shared vehicle 73 134 174 295
Optimized avg. VMT/additional vehicle 121 119 115 0
Optimized avg. VMT/vehicle 80 130 158 295

patterns.
In the second extreme case, we group all households into a single cluster. In this case, a total

of 258 vehicles would su�ce to serve all trip requests, which is a 3-fold reduction compared to the
�rst extreme case, where each household formed a singleton cluster. An interesting observation is
that even under the assumption of unavailability of a�ordable parking, this case leads to substantial
savings in the total VMT. This observation has two implications. First, as the number of households
participating in the program and hence the average cluster size increases, the impact of parking
availability becomes less prominent. The reason for this trend is that at higher levels of demand,
vehicle trips would be booked back to back, not leaving time for vehicles to pass by aimlessly driving.
Second, the substantial reduction in VMT along with a decline in the number of vehicles observed
under the single-cluster scenario demonstrate the signi�cant bene�ts that the merger of ridesharing
services and autonomous vehicles can provide in transportation systems.

The two clustering approaches from sections 5.1 and 5.2 lie between the two extreme cases studied
above. Although the di�erence between the residence-based and trip overlap-based clustering is not
substantial, the results indicate that the bene�ts of clustering households based on trip overlap
would become more prominent with higher participation rates.

Among the clustering approaches discussed above, the last scenario which considers a single
cluster renders the most bene�ts. In this scenario, a regional shared-mobility service provider owns
and manages a �eet of autonomous vehicles that serves the entire transportation needs of a region.
We can, in fact, expect this type of shared-mobility service to emerge before autonomous vehicles
are o�ered for private ownership, for two reasons. First, in order for autonomous vehicles to be
ready for consumer use, high-de�nition maps of the entire United States road network need to
be developed. The type of maps required for this purpose need to include far more details than
currently contained in street maps maintained by companies like Alphabet (i.e., the Google Maps).
To have �eets of autonomous vehicles operate in certain urban regions would require far less e�ort in
collecting the network data on the targeted areas. Therefore, for areas with higher levels of demand
creating high-de�nition maps can be prioritized, given the time-consuming nature of creating these
maps. Additionally, investments in developing high-de�nition maps would be more economical for
highly populated areas, and crowd-sourced information will be available more abundantly to keep
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these maps updated. A centralized service provider is more likely to be able to make the investment
required for creating high de�nition maps, at least for regions with high levels of demand, while this
is less likely to be the case for each individual household.

Second, a �eet of autonomous vehicles used in a shared-mobility context in populous areas is
more likely to have a higher utilization rate, which could amount to a possibly lower cost to the
consumer. High demand makes such shared-mobility services less sensitive to the high cost of
autonomous technology, and the inexpensive transportation alternative provided to the consumers
may render vehicle ownership in certain urban regions obsolete.

This type of regional shared-mobility service, however, might not be accessible or attractive
to everyone. It might not be a �nancially feasible strategy for shared-mobility service providers
to target households who reside in remote areas. In addition, there will always be individuals
who would like to ensure their privacy, �exibility, or timeliness by owning private vehicles. Such
individuals could seek other clustering approaches, or at extreme cases, form individual clusters.

6 Discussion

Throughout this paper, we made the assumption that the introduction of autonomous vehicles does
not impact household travel behavior. However, autonomous vehicles can change household travel
patterns in multiple ways. Having access to a new technology that allows individuals to make use of
their time while traveling can encourage longer trips that would have otherwise been avoided due to
the burden of driving. Moreover, access to autonomous vehicles could induce higher number of trips.
With self-driving vehicles, trip chaining (which is currently a necessity to many households) would
not be as essential. Self-driving cars can transport household members without a valid driver's
license and perform activities such as parking or refueling in their idle times, making current trip
chains smaller, changing travel patterns, and increasing the number of trips. Longer and more
frequent trips impose higher costs on the transportation infrastructure, and can cancel out some of
the bene�ts that autonomous cars introduce by reducing the number of vehicles.

The results of our study suggests that availability of a�ordable parking is a major determinant
of the total VMT and the consequent cost to the transportation infrastructure and the environment.
We demonstrated, however, that this impact depends on the degree of resource-sharing. With the
right type of clustering and larger cluster sizes, total VMTmay stay within a reasonable range. In the
best case scenario where a central shared-mobility service provider serves the entire transportation
demand of a region, there is only a 20% increase in total VMT, compared to the household-based
clustering scenario where households simply replace their legacy vehicles with autonomous ones.

It should be noted the analysis presented in this paper do not capture all the e�ects of introducing
autonomous vehicles. In spite of a possible increase in VMT, autonomous vehicles can signi�cantly
reduce the adverse impact of transportation on the environment by targeting two main sources of
emission dissemination. Autonomous vehicles can reduce the number of vehicles required by orders
of magnitude, as demonstrated in this study, reducing part of the congestion created as a result of
higher VMT, under the right policies (e.g., VMT-based tax). In addition, these vehicles signi�cantly
increase network capacity, as we will discuss next. The combination of these two factors can reduce,
and in some regions completely eliminate, the stop-and-go conditions that are a major contributor
to vehicle emissions.

In addition to fewer vehicles, autonomous vehicles can further contribute to congestion-relief
due to their ability to communicate. Tientrakool (2011) shows that a highway populated with a
mix of autonomous and legacy vehicles can experience a substantial increase in capacity depending
on the percentage of communicating vehicles in the tra�c mix. Her study suggests that when less
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than 30% of the tra�c mix can communicate, the resulting rate of change of capacity is rather slow.
With penetration rate of 30%− 85% the rate of change of improvement in capacity increases, and
when the percentage of communicating vehicles in the tra�c mix exceeds 85%, the resulting rate of
change of increase in capacity improves very quickly, to the extent that at the 100% penetration rate,
the capacity reaches more than 10, 000 vehicles/hours/lane, to the point of reaching the capacity of
more than 10, 000 vehicles/hours/lane under full penetration. The increase in capacity is caused by
lower inter-vehicle gaps that need to be maintained (Schakel et al., 2010; Levin and Boyles, 2016).
Furthermore, the communication capabilities can reduce the probability of tra�c break-downs,
hence maintaining higher capacities under non-idealized conditions (Kesting et al., 2010).

Autonomous vehicles eliminate the possibility of human error, which is the leading cause for the
majority of tra�c collision fatalities. An autonomous driver will never get distracted, fall asleep, or
drive under the in�uence. Furthermore, autonomous vehicles can make split-second decisions based
on probabilistic models fed by far more complete information than a human driver can have access
to, while a human driver needs to take longer to make a decision based on in-complete information.
As the percentage of autonomous vehicles in the tra�c mix increases, so does the level of safety, as
the network becomes more deterministic.

Although beyond the scope of this paper, the complicated nature of actual deployment of au-
tonomous vehicles goes beyond assessing their level of contribution in enhancing safety, mobility,
and the environment. Legal liability in car collisions (Du�y and Hopkins, 2013), insurance matters
(Peterson, 2012), and e�cient management of shared �eet, which all become even more complicated
in the context of a shared ownership and ridership model, are all matters that should be studied.

To conclude, although change in travel patterns and increase in VMT under certain conditions
may lead to higher costs to the transportation system, the many bene�ts of autonomous vehicles
described in this paper may more than outweigh the possible downfalls, if the right policies are put
in place. Furthermore, higher contribution rates in the SVOR program would exponentially increase
the bene�ts. Note that the sample we used for this study contained only 0.1% of the population,
which is far less than the participation rate expected for such services. Despite the small sample
size, we showed that in the case of a central shared-mobility service provider we can achieve a 9-fold
reduction in the number of vehicles. Although these savings fall within the previously suggested
range of 6-10 fold reduction in the number of vehicles, note that these savings can increase with
the penetration rate of shared ridership. Much of the the higher success rate of the SVOR program
proposes in this paper can be attributed to its �shared ridership� component.

Finally, introduction of autonomous vehicles in the tra�c mix may call for some policy adjust-
ments to reduce the possible adverse impacts of this new technology. Our study points out that
parking availability and cost play important roles on the potential environmental and congestion-
relief bene�ts expected from autonomous vehicles. A grid-lock for an autonomous vehicle that is
traveling aimlessly is equivalent to free parking. The temptation to drive around when idle may be-
come more strong with alternative-fuel autonomous vehicles, since under current regulations, roads
and highways are funded by gasoline tax, and therefore the only driving related cost alternative-fuel
autonomous vehicles would have to bear is the depreciation cost associated with higher VMT. To
avoid such behavior, changing from gasoline-based to VMT-based tax might be a necessary policy
adjustment.

7 Conclusion

In this paper, we proposed a mathematical framework to model shared ownership and ridership
of autonomous vehicles. The motivation behind this model is to assess the impact of switching to
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autonomous vehicles on the number of vehicles and total VMT, under various degrees of shared
ownership. For a group of households willing to participate in the program together, we formulated
an optimization problem to �nd the minimum number of vehicles required to satisfy their trans-
portation needs. The program allows participants to register their vehicles in a central carsharing
program when they were not being used, in order to generate revenue. We implemented this pro-
gram for a sample of households in the San Diego County, California, and studied the impact of
di�erent clustering criteria on vehicle ownership and vehicle miles traveled.

Our study suggests that self-driving vehicles, when used in a shared setting, can introduce a
much more �exible and inexpensive form of shared-mobility in certain populous regions, rendering
vehicle ownership and public transit in its current form obsolete. For other areas with less dense
populations, replacing legacy vehicles with autonomous cars, especially under a shared ownership
program, can still introduce bene�ts in terms of reduction in vehicle ownership. Our study also
suggests that the extent of environmental and congestion-relief bene�ts expected from autonomous
vehicles depends on operational and deployment strategies such as availability of a�ordable parking.
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