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Over the past decade there has been a surge of shared-use mobility con-
cepts that are redefining how people move in urban areas. In this context, 
a new shared-use mobility concept, Car2work, that fills the gap between 
the existing approaches by integration of those approaches with the tran-
sit network is proposed. Car2work differs from the traditional dynamic 
ridesharing approaches in the following ways: (a) it is designed for recur-
ring trips; (b) the concept of drivers is dropped; instead, vehicles that 
carry at least one commuter are used; (c) commuters announce their 
trips in advance; and (d) multiple trips per commuter are allowed dur-
ing the day. The main goal is to connect commuters with workplaces but 
to guarantee a trip home and offer some degree of flexibility. The pro-
posed shared mobility system is modeled as a pure binary problem that 
is solved with an exact solution method. The solution method decomposes 
the original problem into a master problem and a subproblem, aggre-
gating over the vehicles and reducing the number of decision variables 
and constraints. A link reduction strategy based on spatiotemporal con-
straints is also implemented to reduce the number of decision variables. 
Numerical experiments were performed for two scenarios. The first sce-
nario included 10 commuters with two trips each, three workplaces, two 
transit stations, and 15 transfer points. The second scenario comprised 
25 commuters with two trips each, four workplaces, two transit stations, 
and 31 transfer points. It is demonstrated that consideration of the transit 
network increases the matching rate and reduces vehicle costs.

Over the past decade there has been a surge of shared-use mobility 
concepts. As defined elsewhere, shared-use mobility is “an innovative 
transportation solution that enables users to have short-term access to 
transportation modes on an as-needed basis” (1).

Providers are taking different approaches to shared-use mobility 
alternatives. For example, ride-sourcing companies, such as Uber and 
Lyft, started by offering on-demand mobility but quickly launched 
Uberpool and Lyft Line to let their customers share rides. According 
to the Lyft chief executive officer, within 6 months Lyft Line became 
the most popular service that the company was offering in San Fran-
cisco, California (2). Other companies, such as Leap, Chariot, Bridj, 
and Via, offer an alternative to transit by providing on-demand, flex-
ible private bus lines. ZipCar provides short-term car rentals; Carma 
and Zimride allow users to log their trips so that other users can find 
matches, and Scoop automatically creates carpools on a per trip basis. 

Traditional vanpool and carpool services that coworkers themselves 
arrange can also be found.

Numerous benefits have been reported to result from such systems, 
including reductions in the rates of car ownership and vehicle use, 
increased network connectivity, and encouragement of the use of 
multimodality transportation (1). However, their long-term effects are 
yet to be understood. In addition, most, if not all, of the approaches 
presented above do not fully integrate with the existing transit net-
work. As stated elsewhere, the effective integration of a ridesharing 
system with transit has the potential to increase the transit system 
coverage area, leading to societal and environmental benefits (3).

As a result, the authors propose a new shared-use mobility concept, 
Car2work, that has as its main goal connection of commuters with 
workplaces with leveraging of the line-haul capabilities of existing 
public transit and a guarantee of a trip back home. Car2work differs 
from the traditional dynamic ridesharing approaches, as it is designed 
for recurring trips with an emphasis on commuters, the concept of 
drivers is dropped and instead vehicles that carry at least one com-
muter are used, trips are announced in advance (hours before the trip 
is taken), and the users can request multiple trips for the same day. In 
addition, Car2work implements an automated all-or-nothing match-
ing strategy that guarantees that all or none of the trips announced by 
the commuter are satisfied.

As such, Car2work integrates with the existing transit network and 
efficiently tackles the last mile problem that is a limiting characteristic 
of public transit.

When Car2work is compared with existing shared mobility ser-
vices, Car2work falls between casual carpooling approaches, such as 
Carma or Zimride, and prearranged traditional vanpool systems. It 
offers more flexibility than traditional carpools, as no commitment to 
departure times or days of the week is required, but it is less flexible 
or casual than Carma or Zimride, in which users actively search for 
their rides. Addition of automation to the process reduces flexibility, 
but this reduced flexibility is compensated for by the initial targeting 
of recurrent (commuting) trips.

A motivation for this work comes from real-world observations 
(in Orange County, California) that in the types of regional develop-
ment patterns that tend to dominate the postautomobile era, one of 
the main barriers for the use of public transit (and especially rail) is 
the connectivity between workplaces, homes, and rail transit stations. 
Rail transit offers line-haul rail service between outlying residential 
areas and concentrated employment centers, but this service is largely 
negated by the need for personalized mobility between transit stations, 
homes, and places of employment. An attempt to address this issue 
was Zev•Net, a corporate station car system launched by the Univer-
sity of California, Irvine, in April 2002, in cooperation with Toyota 
Motor Sales (4). However, its implementation was limited to a single 
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station, and the full concept was never modeled from an operational 
perspective.

Car2work is modeled under a simulation framework that at its core 
relies on a variation of the peer-to-peer ride-matching problem pre-
sented elsewhere that is extended to accommodate the existing speci-
fications (5). Commuters announce their trips, and the model finds 
the optimal trip plan, including transit connections and a guaranteed 
match for the return trip home. An exact solution method based on an 
aggregation–disaggregation algorithm is proposed.

The methodology is general enough to address a variety of scenar-
ios, including the use of autonomous vehicles, different fleet splits, 
multiple transit modes, various commuter preferences, dynamic 
requests, and a short-term car rental service while vehicles are idling, 
although these scenarios are not considered here. In addition, this 
paper does not focus on a potential business model that will make the 
proposed system economically viable.

Related WoRk

The peer-to-peer ride-matching problem is not new to the literature. 
Agatz et al. provided an extensive review of the dynamic ridesharing 
problem, detailing its characteristics and variants and the different 
strategies to solve the problem that have been proposed (3). Among 
the variants of the problem presented by Agatz et al., Car2work falls 
under the category of multiple riders, multiple drivers with the added 
multimodality and multihop component (3).

Similar problems described in the literature are the pickup and 
delivery problem with transfers (6–8) and the dial-a-ride problem 
with transfers (9). Shang and Cuff proposed a scheduling heuristic 
to solve the problem in the instance of a real case with 167 deliveries 
(6). The number of vehicles was also optimized, and transfers could 
occur at any location, for any item, and for any vehicle. Cortés et al. 
provided an extensive review of the existing literature of the pick-up 
and delivery problem, its extensions, and various solution approaches 
and proposed a new extension to handle transfers (7). The solu-
tion method was exact. It used a branch-and-cut method based 
on Benders’ decomposition (10) and implemented combinatorial 
Benders’ cuts (11). The largest instance proposed had six requests, 
two vehicles, and one transfer point. Masson et al. used an adaptive 
large neighborhood search to solve the pickup and delivery problem 
with transfers (8). All delivery points could be transfer points, and the 
larger instances had 106 requests, 24 delivery locations, and 24 trans-
fer points and 193 requests, five delivery locations, and five transfer 
points. The same investigators extended the previous heuristic to solve 
the dial-a-ride problem with transfers (9). In all cases, it was shown 
that the transportation costs were reduced by the inclusion of transfer 
points. However, the added user inconvenience of transfers was not 
accounted for.

Transit concepts similar to the one presented here that aim to 
increase transit flexibility also exist, notably, flexible route transit 
systems (12–14), flexible taxi-pooling dispatching systems (15), or 
such variations of the dial-a-ride problem as the high-coverage point-
to-point transit system (16). Herbawi and Weber proposed a multihop 
ride-matching problem with time windows in which drivers cooper-
ate to bring riders to their destinations (17). The problem is solved 
by the use of a tailored genetic algorithm (17). With the exception 
of the mobility allowance shuttle transit described by Quadrifoglio  
et al. (12), which is solved by the introduction of logic cuts to a 
mixed-integer programming formulation on the basis of assump-
tions about user behavior, the examples presented above rely on the 

building of custom heuristics to find nearly optimal solutions. In 
most cases, such heuristics are used to respond to a rider’s request 
in real time.

Car2work is a peer-to-peer ridesharing system similar to the sys-
tems described above, in the sense that it is inherently spatiotempo-
rally sparse. This factor makes the use of the most efficient matching 
algorithms important, given the limited available resources. Although 
the use of heuristics in dial-a-ride problems is common and can yield 
good-quality solutions, this is not the case with the proposed sys-
tem. One reason is that dial-a-ride problems have multiple drivers 
that work for the system and may perform pickups and drop-offs 
at any location and at any point in time. In addition, not all requests 
are concentrated in peak hours (as opposed to commuter trips), and 
therefore the possibility that multiple drivers will be idle when 
a request arrives is higher. In such a setting, a heuristic algorithm 
can provide a good driver assignment to a passenger, mostly on the 
basis of spatial proximity. The proposed system, however, uses a 
multitrip approach in which commuters can announce more than 
one trip—namely, the home-to-work and the work-to-home trips—
and allows transfers (multihop) and multimodality transport. These 
conditions make the use of clustering heuristics impractical, as not 
only the spatiotemporal constraints of a single trip but also the trip 
connectivity constraints that in most cases span the entire day need 
to be met. In addition, since the demand for the proposed system is 
not dynamic—trips are announced well in advance—the matching 
does not need to happen in real time. Since detection of a match is 
not time sensitive, the use of heuristic algorithms will lead only to 
suboptimal solutions with no additional benefits. As a result, the 
problem is formulated as a binary problem, and it is solved by use 
of an aggregation–disaggregation algorithm that renders optimal 
solutions.

SySteM definition

Car2work is a mobility alternative designed for commuters with rela-
tively regular commuting schedules. It differs from the traditional 
dynamic ridesharing problem described previously, in which the 
matching occurs on short notice, drivers are independent private enti-
ties, the system is designed for occasional or nonrecurring trips, and 
the trips are prearranged (3). The following are the main differences 
between dynamic ridesharing and Car2work:

1. Car2work’s core is based on recurring (commuting) trips. 
However, it can be extended to nonrecurring, occasional trips, if such 
trips are added on top of existing routes, as in a dynamic ridesharing 
problem.

2. The concept of drivers is dropped and instead vehicles carry at 
least one commuter when traveling. The driver can be any commuter 
in the vehicle. Transit vehicles are treated differently, as they do not 
require a driver for the user to travel.

3. Commuters announce their trips in advance, and an automated 
all-or-nothing matching strategy is performed. All trips announced by 
the user need to be completed; otherwise, the traveler is not matched. 
A simple trip announcement consists of an origin, destination, earliest 
departure time, latest arrival time, and maximum deviation from the 
shortest travel time (or, alternatively, a maximum travel time bud-
get). Commuters can announce either one or multiple trips.

4. Because of the possibility of multiple trips, the routing decision 
variables are indexed over trips and not commuters.
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Most of the points listed above can be relaxed to accommodate 
other types of operations. Such commuter preferences as willingness 
or ability to drive could be introduced, and it could be assumed that 
vehicles are autonomous and can travel without a driver or that not 
all trips announced by a user need to be accommodated.

As an example, Figure 1 shows a Car2work system with five users, 
three workplaces, and two transit stations. The color code indicates 
the commuter-to-workplace relationship, and the solid and dashed 
arrows represent the morning and evening commutes, respectively. A 
lunch and a personal business trip, corresponding to Nodes 11 and 12, 
respectively, are also depicted. For simplicity, this representation does 
not include time as a variable, and it is assumed that all the commuters 
have the same working schedule and preferences.

Commuters 1 and 7 have preassigned vehicles, and another vehicle 
is parked at Transit Station 5. The optimal solution to this problem with 
the objective of maximization of the number of served commuters 
suggests that Commuter 1 should leave home to pick up Commuter 2 
and then Commuter 3 and drive to Transit Station 4. Commuters 1 
and 2 work at the same workplace (Workplace 9), whereas Commuter 3 
works at Workplace 8. At Transit Station 4, they all take the train 
toward Transit Station 5. Here, Commuters 1 and 2 take the vehicle 
parked to drive to their final destination, Workplace 9. Commuter 3 
drives to Workplace 8 using a vehicle that Commuters 6 and 7 have 
parked at Transit Station 5 on their way to Workplace 10. Commut-
ers 6 and 7 use the vehicle left by Commuters 1, 2, and 3 at Transit 
Station 4 to get to their workplace, Workplace 10. While the com-
muters are at their respective workplaces, two employees from Work-
place 8 decide to use the vehicle for a lunch trip. Another employee 
from Workplace 8 has a business meeting at Location 12 and uses the 
vehicle left by Commuter 3. For the return trip home, the commuters 
undo what they did to get to work.

Model foRMulation

The formulation presented is inspired by the peer-to-peer ride-
matching problem defined elsewhere (5). The problem is formulated 
by the use of a time-expanded network and as a pure transshipment 
problem. Stations or nodes are homes, workplaces, transit station loca-
tions, or any other location announced by the commuters. A supply 
node (SO) and a demand node (SD) were added to the set of stations 
(S) in the network. Time (T) is discretized into Tn intervals of length dt 
between the earliest departure and the latest arrival times observed in 
the set of trips TS. The trip set is split into transit trips (TSt) and com-
muter trips (TSr). Ok and Dk represent the origin and destination stations, 
respectively, of trip k ∈ TS. Similarly, the set of vehicles V is defined 
and includes the vehicles available to the commuters (Vr), the transit 
vehicles (Vt), and a dummy vehicle (Vdummy). A dummy vehicle is intro-
duced to ensure that commuters can linger during some time periods at 
a given station; by definition of the decision variables, a commuter must 
be in a vehicle at all times. This may occur with transferring situations 
or at the beginning or end of a trip. Each vehicle v ∈ V has a capacity 
Cv. Commuters are represented by the set R. Finally, the set of links L 
is defined as the 4-tuple (si, ti, sj, tj), representing a link from station si to 
station sj departing at time interval ti and arriving at time interval tj. The 
travel time between stations si and sj (tti, j) can be defined as (tj − ti) • dt. 
The following subsets of L are further defined: Lt is the subset of transit 
links in which si and sj are transit stations, Lk is the subset of feasible 
links for trip k ∈ TS, and Lv is the subset of feasible links for vehicle 
v ∈ V. The set Lkv is defined as (Lk ù Lv). The set of feasible links for the 
dummy vehicle is also defined as L′v. The decision variables are

X
k l v

l
kv =





1 if trip includes traveling on link with vehicle

0 otherwise
(1)

FIGURE 1  Car2work example.
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X
v l

l
v =





1 if vehicle travels on link

0 otherwise
(2)

Y
r

r =




1 if commuter is matched

0 otherwise
(3)

The complete formulation of the mathematical problem is provided 
in Equations 4.0 to 4.11.
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A weighted multiobjective approach that maximizes the number 
of participants served (Z1) and minimizes the total vehicle cost (Z2) 

and total commuter cost (Z3), as suggested elsewhere, was used 
(18). Furthermore, an extra term was added to minimize the fleet 
size (Z4). Z1 to Z4 are the first to fourth terms of Equation 4.0, respec-
tively. Given a fixed number of vehicles, those that remain unused 
travel directly on the link of cost zero that connects the supply and 
demand nodes, SO and SD, respectively. Inclusion of this link in the 
maximization of the objective function indirectly minimizes the total 
number of vehicles used. Determination of the optimal fleet size is a 
system design stage decision rather than an operational stage decision 
in which the exact number of vehicles may be known. The cost of 
traveling on link (i, j), ci,j, is estimated by use of the travel time on the 
link. However, any other linear cost structure can be used. The cost 
of vehicles does not account for the idling time at stations, whereas in 
the case of commuters, the idling time is considered a part of the total 
travel time. The objective coefficients βi are selected on the basis of 
the operational goals and the relative scale of each objective.

The constraint sets in Equations 4.1 to 4.5 deal with vehicle rout-
ing. The constraint set in Equation 4.1 imposes flow conservation 
on the vehicles available to the commuters Vr in all stations except 
supply node SO. This forces all vehicles in Vr to depart the supply 
node. The constraints in Equations 4.2 and 4.3 rule out illogical flows 
between SO and SD, enforcing the constraint that vehicles cannot travel 
from SD to any other station except SO and that for every vehicle a link 
connecting SD to SO must exist. The constraint in Equation 4.4 handles 
dummy vehicles, and the constraint in Equation 4.5 enforces transit 
vehicle schedules.

The constraint sets in Equations 4.6 to 4.8 route commuters. The 
constraint in Equation 4.6 performs the vehicle–trip–commuter match-
ing. If the net outflow of any origin station Ok of all trips k ∈ TSr is unity, 
commuter r is matched and all other trips in TSr also need to occur. 
Similarly, if a commuter is matched, all of the destination stations of 
TSr need to be reached. Together, these two constraint sets enforce the 
all-or-nothing matching strategy. Net flow is also used, which means 
that station Ok could be revisited. However, the set of links Lkv includes 
only the feasible links for that particular trip k that are constrained 
by spatiotemporal constraints that limit revisiting. The constraint in 
Equation 4.8 is the transshipment constraint on the commuters.

The constraint sets in Equations 4.9 and 4.10 are connectivity con-
straints between commuters and vehicles. The constraint set in Equa-
tion 4.9 ensures that all vehicles carry at least one commuter, and the 
constraint set in Equation 4.10 guarantees that the vehicle capacities 
are not violated. The formulation presented above did not include a 
constraint on the maximum number of vehicle transfers allowed per 
commuter, as this information is not readily available from the deci-
sion variables and would require introduction of a new set of decision 
variables. Furthermore, a distinction that depends on whether the trip 
includes transit or not needs to be made, given that a transit trip would 
automatically account for at least two vehicle transfers, unless the 
transit station is the workplace.

Any attempt to solve the proposed mathematical problem by the use 
of traditional solvers leads to impractical solution times, even for small 
instances of the problem. As a result, an aggregation–disaggregation 
algorithm is proposed.

Solution appRoaCh

To solve the problem in Equations 4.0 to 4.11, an iterative aggregation– 
disaggregation algorithm is proposed. The underlying idea is to decom-
pose the problem into a master problem and a subproblem. In the mas-
ter problem, the decision variable Xl

kv from the original formulation 
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that takes care of the trip–vehicle–link assignments over v is aggre-
gated and a new variable, Xl

kv, is defined as

X X
k l

l
k

l
kv

v V
∑= =



∈

1 if trip includes traveling on link

0 otherwise
(5)

By use of this aggregation, the number of decision variables and 
constraints in the original problem is reduced, which makes the 
problem more tractable. The aggregation leads to a reduction of 
(|V | − 1) • | L | • | K | in the number of binary variables and (|Vr | − 1) • 
| Lv | + (|V | − 1) • | L | in the number of constraints. In addition, by use 
of this aggregation procedure, the set of feasible links does not pro-
portionally increase with the number of commuters or trips, since it 
is likely that multiple commuters share the same links in their paths.

After the aggregate problem is solved and the links on which each 
commuter travels are determined, the vehicle–commuter assignment 
needs to be recovered by solution of another problem, the subprob-
lem. In the master problem, it is ensured that the aggregate capacity 
(i.e., the sum of capacities of all the vehicles that travel on that link) 
of each link is not violated. Since in the subproblem commuters are 
assigned to vehicles, the possibility exists that a solution that respects 
each individual vehicle’s capacity does not exist. In such instances, 
the subproblem can become infeasible and a new master problem 
solution needs to be generated.

The iterative aggregation–disaggregation algorithm steps are shown 
in Figure 2. To start, the master problem is solved and its solution is 
used to solve a linear relaxation of the subproblem. If the subproblem 
is infeasible, a Benders’ feasibility cut is found and added to the master 
problem. If the subproblem is feasible, the integrality of the solution 
is checked. If all variables are binary, the optimal solution is available; 
otherwise, the subproblem is solved with the integrality constraints. 
If the solution is feasible, the optimal solution is available; otherwise, 
a logical constraint is added to the master problem to eliminate this 
noninteger solution from the pool of feasible solutions. Iteration 
is performed until the convergence criteria of the algorithm are met.

Given that a constraint was added to the master problem for iteration, 
the algorithm is finite as the feasible region is shrinking. Therefore, 
either an optimal solution is reached or the entire feasible region is 
eliminated (implying that the problem is infeasible). If the solution to 
the subproblem relaxation is feasible but not binary, the subproblem 
is solved a second time, but this time the integrality constraints are 
enforced. If the solution turns out to be integral, the optimal solution 
is claimed to have been obtained, since the subproblem is a feasibil-
ity problem; that is, it does not have an objective function. There-
fore, any integral solution that can satisfy the set of constraints in 
the subproblem is also optimal to the subproblem.

The following subsections define the master problem, the  
subproblem, and the strategy used to generate feasible links.

Master problem

In the master problem, the decision variable that takes care of the trip–
vehicle–link assignment (Xl

kv) is aggregated over the set of vehicles 
v ∈ V. As a result, the particular vehicle in which each commuter is 
traveling is unknown; rather, it is known that a commuter perform-
ing trip k will be traveling on a link l. The trip–vehicle assignment 
is retrieved in the subproblem, which is detailed in the following 
subsection. Equations 6.0 to 6.11 show the proposed formulation 
for the master problem. As in the original problem, in the master 
problem the four objectives described above are retained. The con-
straints in Equations 6.1 to 6.5 are the same as those for the original 
problem. The constraints in Equations 6.6 to 6.8 are equivalent to 
those in the original problem without the sum over v. The constraint 
sets in Equations 6.9 and 6.10 ensure that a link with trips must 
have vehicles and that the link capacity is not exceeded, respec-
tively. The constraint in Equation 6.10, as in the original problem, 
is defined over every vehicle, enforcing vehicle capacity; here, 
under the aggregation procedure, the aggregate capacity of the link 
is enforced.

FIGURE 2  Aggregation–disaggregation iterative algorithm steps (MP 5 master problem;  
SP 5 subproblem; LP 5 linear problem).
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Subproblem

The subproblem is shown in Equations 7.0 to 7.4. The subproblem is 
a feasibility problem, and the objective function is constant, as all the 
terms in the original objective function can be written in terms of the 
variables defined in the master problem, which thus become constant 

values on the subproblem. The parameters Uk
l = Xl 

k*and Uv
l = Xl 

v*are 
also defined, where Xl 

k* and Xl 
v* are the optimal solutions to the master 

problem.
The constraint in Equation 7.1 retrieves the vehicle–trip assign-

ment. The constraint in Equation 7.2 imposes the condition that the 
vehicles available to the commuters (Vr) cannot ride alone, and the 
constraint in Equation 7.3 is the vehicle capacity constraint.

Z =min 0 (7.0)SP

where ZSP is Z for the subproblem and Equation 7.0 is subject to
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link Reduction Strategy

Each trip is constrained by the physical location of the origin and 
destination points and such temporal constraints imposed by the 
commuter as the earliest departure time (ED), the latest arrival time 
(LA), and the maximum travel time budget (ttB). Figure 3 depicts the 
definition of the departure and arrival time windows between any 
given pair of nodes si and si+1 and the time windows that are used to 
find feasible links between these two nodes, including travel links 
and lingering links.

For each trip announced, N shortest paths Pk are found such that 
either N is larger than a maximum number of paths allowed, NM (e.g., 
NM = 1,000), or the travel time of the nth path is larger than the travel 
time budget (ttB) defined by the commuter for that particular trip k.

Given a feasible path pn in Pk, for each node si in pn, the earliest 
arrival time EDi and the latest arrival time LAi to that node can be fur-
ther defined on the basis of the minimum travel time between nodes 
and the commuter travel time budget for the entire trip. Within the 
time window in which the commuter can reach a node, the commuter 
may travel to the next node or linger, as long the commuter does not 
violate the time constraints to reach the next node. In a particular case, 
two consecutive nodes, si and si+1, belong to the set St. If this occurs, 
the transit trips between si and si+1 that depart during the available time 
window are added. In addition, the number of nodes visited during a 
trip is limited to maxNodes. This process is repeated for the N paths in 

ED

si si+1

LA

Minimum travel time

Minimum travel time

Departure TW

Arrival TW

FIGURE 3  Time window (TW) definition.
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Pk. The final set of links Lk for trip k is the union of the traveling and 
lingering links. The logic used to generate Lk is shown below.

 1.  for each trip k in TSr:
 2.    find N shortest paths Pk = {p1, . . . , pn, . . . , pN} until  

 N > NM or tt(pn) > ttB

 3.   for each pn in Pk:
 4.    if length(pn) > maxNodes:
 5.     remove pn from Pk

 6.     continue
 7.    else:
 8.     for each node si in pn = {s1, . . . , si, . . . , sM}:
 9.      add travel links L(si, ti (:), si+1, ti+1 (:)) to Lk

10.      add lingering links L(si, ti (:), si, ti (:) + 1) to Lk

The set of links on which vehicles v can travel, denoted by Lv, is the 
union of the set of trip links, Lk, ∀k ∈ K; the set of idling links, Lid 
(which is formed on the basis of the set of nodes that are visited by 
that vehicle); and links LO and LD, which connect supply and demand 
nodes SO and SD together, respectively, and to all other nodes. The 
sets LO and LD are generated by use of the same concepts of avail-
able time windows in which vehicles can reach nodes; an extra link, 
L(SO, t0, SD, t0), was added to account for the unused vehicles. To 
impose transit schedules, for each transit vehicle the set of links corre-
sponding to that transit schedule was defined. Although in the current 
approach the same set of links Lv is assigned to all vehicles in Vr, one 
could heuristically force vehicles in Vr to travel on only a subset of 
links on the basis of the spatial distribution of homes and workplaces. 
For example, following from the example described in Figure 1, the 
range of one vehicle could be reduced to all links that connect nodes 
{1,2,3,4,10,11}.

nuMeRiCal teStS

data

Two different randomly generated scenarios were used. The first 
scenario (SC1) has 10 commuters with two trips each, three work-
places, and two transit stations. Given that each location can be a 
transfer point, this scenario has a total of 15 transfer points. Loca-
tions are GPS coordinates randomly sampled from a region near 
the Santa Ana Metrolink Transit Station and the Irvine Metrolink 
Transit Station, both of which are located in Orange County, Cali-
fornia. Workplaces are located at the station opposite to where 
the commuter resides to simulate the potential of rail transit to 
service commute trips under the proposed system. The travel time 
matrix is computed by use of the great circle distance between 
two coordinates.

The second scenario (SC2) has 25 commuters with two trips 
each, four workplaces, and two transit stations. This scenario has 
50 requests and 31 transfer points. A larger instance that could also 
be solved to optimality, SC3-1, was also tested. SC3-1 has 30 users 
(60 requests), but transit was not considered.

For each scenario, different instances with various values of the 
system parameters were tested. Transit speed, transit frequency, 
commuter distribution, and overlapping trips were modified. The list 
of parameters is provided in Table 1, in which the first value listed is 
the default value. To encourage transit use, a higher average speed 
of 25 mph was set on transit links, whereas 15 mph was assumed 
for regular vehicles. Two trips were defined for each user: home to 

work and work to home. The travel time budget was assumed to be 
either 10% or 20% more than the travel time of the shortest path.

Two different parameters were also introduced to measure the 
impact of the spatial distribution of homes and the temporal distribu-
tion of trips. Setting of balanced requests to unity indicates that the 
overlap of all commuter trips according to departure time windows 
was perfect. Otherwise, when balanced requests were set to zero, 
the trip departure times were randomly set within a predefined time 
window. Setting of the commuter distribution to clustered means 
that all commuters that work at the same workplace are near the 
same transit station. If it is set to random, commuters are randomly 
assigned to workplaces.

In the setting of the utility coefficients (βi), a strategy that prioritizes 
the matching of users rather than the cost and vehicle usage minimiza-
tion was used. The underlying idea is to set β1 larger than the upper 
bound (UB) on the commuters’ and vehicles’ travel time objective.

Results

Initial data inputs were built by the use of MATLAB, and for the 
iterative algorithm, AMPL with Gurobi as a solver was used.

Table 2 summarizes the results of various instances for each sce-
nario. The number of vehicles was fixed to four for SC1 and to 10 for 
SC2. These values correspond to 40% of the total number of commut-
ers. The introduction of the transit network reduced the total vehicle 
cost and increased the number of matched users. For example, in SC2, 
the number of matched users increased from 14 to 18, an increase that 
was achieved even with the suboptimal solution obtained when transit 
was considered. In terms of the transit frequency, in SC1 an increase 
in transit frequency did not affect commuter travel times. For CPU 
time, the use of transit increased the computational time by a factor 
of 4 for SC1, and computational time was also affected by transit fre-

TABLE 1  Parameter Settings

Parameter Values Units

Time interval (dt) 5 Minutes

Maximum number of paths  
 allowed (NM)

1,000 

Maximum number of nodes in 
  path (maxNodes)

10 

Travel time budget (ttB) 1.1, 1.2

Commuter vehicle speed 15 Miles per hour

Transit vehicle speed 25, 5 Miles per hour

Transit frequency 5, 15 Minutes

Balanced requests 1, 0

Commuter vehicle capacity (Cv) 5

Transit vehicle capacity (Cv) 100

Commuter distribution Clustered, random

β1 3 • ceil(UB/100) • 100

β2 1

β3 1, 0

β4 0, β1/2

Gurobi setting: mipgap Default

Gurobi setting: mipgapabs Default

Solver setting: timelim 9,000 Seconds
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quency. This increase was due to the increase in the number of links 
and the fact that every transit trip added a new vehicle into the prob-
lem, which increased the number of decision variables. For SC2-2 
and SC2-4, both of which included transit trips, an optimal solution 
could not be found in less than 9,000 s, but the solutions found after 
9,000 s were better than the equivalent alternative with no transit.

Another important factor to consider is the travel time budget. 
If the travel time budget is set to a larger value, the solution time 
increases. This increase is due to the larger number of feasible links. 
A general pattern that can be observed in the solutions involving 
transit is for a vehicle to pick up commuters, drop them at the transit 
station, and wait for the incoming commuters to bring them to the 
desired workplace. This represents an ideal scenario in which all 
commuters have the same schedule and are grouped together by 
workplace.

ConCluSionS and futuRe WoRk

Building on the concept of shared mobility, the authors have proposed 
a new mobility system that has as its main goal the connection of com-
muters with workplaces and a guarantee of a trip home and that is inte-
grated with the existing transit network. It differs from the traditional 
dynamic ridesharing approaches because of the focus on nonrecurring 
trips and the automated all-or-nothing matching strategy.

A formulation of the problem was presented as a pure binary prob-
lem that is solved by use of an aggregation–disaggregation algorithm 
that renders optimal solutions. The original problem was decomposed 
into a master problem and a subproblem, in which in the master prob-
lem the variable that assigns trips–vehicles–links was aggregated over 
the vehicles, which reduced the number of decision variables and 
constraints. To recover the initial solution, a feasibility problem was 
solved. With this approach, various instances of the problem could 
be solved in a reasonable amount of time. The numerical results indi-
cate that integration of transit increases the matching rate and reduces 
vehicle costs. Even though in some larger instances in which transit 
was considered an optimal solution could not be found in less than 
9,000 s, the suboptimal solution was better than the optimal solution 
obtained without consideration of the transit network.

Future efforts should focus on a reduction of solution times and 
simulation of the mobility impacts of a large-scale implementation 
of the concept. A heuristic could be proposed to solve the master 
problem, or, in a preprocessing step, vehicles could be preassigned to 
commuters, which would fix some of the decision variables. Transfer 
points could be limited to a subset of the stations, such as workplaces 
or transit stations only. For a large-scale implementation of the con-
cept, on the basis of observations from the numerical tests, a cluster 
first, route second approach, in which commuters are grouped on the 
basis of spatiotemporal proximity before the optimization problem 
is solved, could be proposed.

aCknoWledgMentS

This research has been made possible, in part, by grants from the Uni-
versity of California Transportation Center, the Balsells-Generalitat 
de Catalunya Fellowship, and the Fundación Caja Madrid Fellowship. 
Their support is gratefully acknowledged.

RefeRenCeS

 1. Shaheen, S. A., and N. Chan. Mobility and the Sharing Economy: Impacts 
Synopsis. Transportation Sustainability Research Center, University of 
California, Berkeley, 2015.

 2. Terdiman, D. Lyft CEO Says Lyft Line Now Accounts for Majority of Rides 
in San Francisco. VentureBeat, 2015. http://venturebeat.com/2015/03/16 
/lyft-ceo-says-lyft-line-now-accounts-for-majority-of-rides-in-san 
-francisco/. Accessed March 2015.

 3. Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. Optimization for 
Dynamic Ride-Sharing: A Review. European Journal of Operational 
Research, Vol. 223, No. 2, 2012, pp. 295–303.

 4. Irvine Transportation Network. City of Irvine, Irvine, Calif. http://www 
.cityofirvine.org/cityhall/pw/itn_new/transit/routes/irvine.asp. Accessed 
June 2014.

 5. Masoud, N., and R. Jayakrishnan. A Decomposition Algorithm to Solve 
the Multi-Hop Peer-to-Peer Ride-Matching Problem. Presented at 
94th Annual Meeting of the Transportation Research Board, Washington, 
D.C., 2015.

 6. Shang, J. S., and C. K. Cuff. Multicriteria Pickup and Delivery Problem 
with Transfer Opportunity. Computers & Industrial Engineering, Vol. 30, 
No. 4, 1996, pp. 631–645.

TABLE 2  Experimental Results

Instance
Balanced 
Requestsa

Commuter 
Distribution

Transit 
Usea

Transit 
Frequency ttB

CPU 
Time

Number of 
Vehicles 
Used

Number of 
Matched 
Users

Number  
of Links Z1 Z2 Z3 Z4

SC1-1 1 Clustered 1  5 1.1 123  4 10  4,503 −8,762 −9,000  41 197
SC1-2 1 Clustered 0  5 1.1 32  4 10  4,382 −8,686 −9,000  82 232
SC1-3 1 Clustered 1 15 1.1 36  4 10  4,439 −8,764 −9,000  38 198
SC1-4 0 Clustered 1 15 1.1 737  4 10  6,076 −8,741 −9,000  54 205

SC2-1 0 Random 0  5 1.1 5,329 10 14  7,270 −20,694 −21,000 139 167
SC2-2 0 Random 1  5 1.1 9,060b 10 18  7,370 −26,620 −27,000 109 271
SC2-3 0 Clustered 0  5 1.1 545 10 13  8,598 −15,305 −15,600 134 161
SC2-4 0 Clustered 1  5 1.1 9,063b 10 18  8,696 −21,241 −21,600 111 248
SC2-5 1 Clustered 0 15 1.1 1,044 10 14  6,514 −16,511 −16,800 105 184
SC2-6 1 Random 0 15 1.1 9,042b 10 15  6,054 −22,107 −22,500 167 226

SC3-1 0 Clustered 0  5 1.1 863 10 14 10,947 −20,744 −21,000 110 146

Note: Z1 = number of participants; Z2 = time; Z3 = time; Z4 = number of vehicles.
a1 = true, 0 = false.
bThe optimal solution was not found.



110 Transportation Research Record 2542

 7. Cortés, C. E., M. Matamala, and C. Contardo. The Pickup and Delivery 
Problem with Transfers: Formulation and a Branch-and-Cut Solution 
Method. European Journal of Operational Research, Vol. 200, No. 3, 
2010, pp. 711–724.

 8. Masson, R., F. Lehuede, and O. Peton. An Adaptive Large Neighborhood 
Search for the Pickup and Delivery Problem with Transfers. Transportation 
Science, Vol. 47, No. 3, 2013, pp. 344–355.

 9. Masson, R., F. Lehuede, and O. Peton. The Dial-a-Ride Problem 
with Transfers. Computers & Operations Research, Vol. 41, 2014, 
pp. 12–23.

10. Benders, J. F. Partitioning Procedures for Solving Mixed-Variables 
Programming Problems. Numerische Mathematik, Vol. 4, No. 1, 1962, 
pp. 238–252.

11. Codato, G., and M. Fischetti. Combinatorial Benders’ Cuts for Mixed-
Integer Linear Programming. Operations Research, Vol. 54, No. 4, 2006, 
pp. 756–766.

12. Quadrifoglio, L., M. M. Dessouky, and F. Ordóñez. Mobility Allowance 
Shuttle Transit (MAST) Services: MIP Formulation and Strengthening 
with Logic Constraints. European Journal of Transportation and Infra-
structure Research, Vol. 185, No. 2, 2008, pp. 387–391.

13. Li, X., and L. Quadrifoglio. Feeder Transit Services: Choosing Between 
Fixed and Demand Responsive Policy. Transportation Research Part C, 
Vol. 18, No. 5, 2010, pp. 770–780.

14. Qiu, F., W. Li, and J. Zhang. A Dynamic Station Strategy to Improve the 
Performance of Flex-Route Transit Services. Transportation Research 
Part C, Vol. 48, 2014, pp. 229–240.

15. Lee, K.-T., D.-J. Lin, and P.-J. Wu. Planning and Design of a Taxipool-
ing Dispatching System. In Transportation Research Record: Journal of 
the Transportation Research Board, No. 1903, Transportation Research 
Board of the National Academies, Washington, D.C., 2005, pp. 86–95.

16. Cortés, C. E., and R. Jayakrishnan. Design and Operational Concepts of 
High-Coverage Point-to-Point Transit System. In Transportation Research 
Record: Journal of the Transportation Research Board, No. 1783, Trans-
portation Research Board of the National Academies, Washington, D.C., 
2002, pp. 178–187.

17. Herbawi, W., and M. Weber. Modeling the Multihop Ridematching 
Problem with Time Windows and Solving It Using Genetic Algorithms. 
Presented at 2012 IEEE 24th International Conference on Tools with 
Artificial Intelligence, Athens, Greece, 2012.

18. Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. Sustainable Pas-
senger Transportation: Dynamic Ride-Sharing. ERIM Report Series 
Research in Management. Erasmus Research Institute of Management, 
Rotterdam, Netherlands, 2010.

The Standing Committee on Emerging and Innovative Public Transport and 
Technologies peer-reviewed this paper.


