493 DISCUSSION SECTION 3

WITH NOAH LUNTZLARA

If you are unsure of the precise mathematical definition of any of the following, please look it up. Thanks!

- cyclic group
- abelian group
- order of a group (i.e. |G|)
- order of an element of a group
- homomorphism, isomorphism

- subgroup
- image of homomorphism
- kernel of homomorphism
- normal subgroup (⊴)
- simple group

In discussion, we attempted each part of each of the following problems in five minutes or less.

- (Ex. 1) Show every subgroup of an abelian group is normal.
- (Ex. 2) Let G be a group and $H \subseteq G$ be a subgroup.
 - (a) Show that there exists a group L and a homomorphism $\psi: L \to G$ such that $H = \operatorname{im}(\psi)$.
 - (b) Suppose there is a group K and a homomorphism $\phi:G\to K$ such that $H=\ker(\phi)$. Show that $H\unlhd G$.
- (Ex. 3) Show that if G is simple and $\phi: G \to H$ is a group homomorphism, then either $\operatorname{im}(\phi)$ is trivial, or it is isomorphic to G. (Or both, of course.)
- (Ex. 4) Show $G \subseteq G$ and $\{e\} \subseteq G$.
- (Ex. 5) (a) Show that all simple abelian groups are cyclic.
 - (b) Show that all simple abelian groups are finite.
 - (c) Classify simple abelian groups.

Date: September 21, 2018.

1