493 DISCUSSION SECTION 1

WITH NOAH LUNTZLARA

If you are unsure of the precise mathematical definition of any of the following, please look it up. Thanks!

- cyclic group
- abelian group
- $C_n(=\mathbb{Z}/n\mathbb{Z})$
- S_n and cycle notation for elements of S_n
- GL_n

In discussion, we attempted each part of each of the following problems in five minutes or less.

- (Ex. 1) Let G be a group where every element $g \in G$ satisfies $g^2 = e$. Prove that G is abelian.
- (Ex. 2) Let x, y, z be elements of a group such that xyz = e. Does it follow that yzx = e? That yxz = e?
- (Ex. 3) Show that any finite group of even order has an element of order 2.
- (Ex. 4) Let G be a group. Define a new operation \circ on G, $a \circ b = ba$.
 - (a) Prove (G, \circ) is a group. This group is called G^{op} , the opposite group of G.
 - (b) Show $G \cong G^{\text{op}}$.

(Ex. 5) Let G be a group. Define

$\operatorname{Aut}(G) = \{\operatorname{isomorphisms} G \to G\}.$

- (a) Prove (Aut(G), composition) is a group.
- (b) For $g \in G$, define $\phi_g : G \to G : h \mapsto ghg^{-1}$. Show that $\phi_g \in \operatorname{Aut}(G)$.
- (c) Show that $\Phi: G \to \operatorname{Aut}(G): g \mapsto \phi_g$ is a homomorphism.
- (d) Show that if $G = S_3$, then Φ is an isomorphism.
- (e) (Bonus) Show that if $G = S_n$, then Φ is an isomorphism if and only if $n \neq 6$.

1

- order of a group (i.e. |G|)
- order of an elements of a group
- homomorphism
- isomorphism
- automorphism

Date: September 7, 2018.