493 ADDITIONAL EXERCISE SET 1

NOAH LUNTZLARA

1. Review of Quotients

In this section, do all the problems and be prepared to discuss at least the ones with a \star .

- (1) Let G be a finite group and $H \subseteq G$ be a subgroup of G
 - (a) Show that $g_1H = g_2H$ iff $g_1^{-1}g_2 \in H$
 - (b) Show that the left cosets $\{gH : g \in G\}$ of H partition G; i.e., the relation \sim defined by $g_1 \sim g_2$ provided that $g_1H = g_2H$ is an equivalence relation.
 - (c) Show that for any $g_1, g_2 \in G$ there is a bijection $g_1H \to g_2H$, and hence all left cosets of H in G have the same cardinality.
 - * (d) The number of left cosets of H in G is called the *index* of H in G, denoted [G:H]. Prove Lagrange's Theorem: $|G| = |H| \cdot [G:H]$.
 - \star (e) Explain why the order of a subgroup of a finite group must divide the order of the group (this is also called Lagrange's Theorem).
- (2) Show that $H \leq G$ if and only if the left cosets of H are the same as the right cosets, i.e. gH = Hg for all $g \in G$.
- (3) Let G/H denote the set $\{gH : g \in G\}$ of left cosets of H in G, and let H G denote the set $\{Hg : g \in G\}$ of right cosets.
 - (a) Show that $H \leq G$ if and only if gH = Hg for all $g \in G$.
 - \star (b) Show that the binary operation

$$(G/H) \times (G/H) \to G/H$$

 $(gH, hH) \mapsto (gh)H$

is well defined if and only if $H \leq G$. [Hint: use (1a).]

 \star (c) Show that in the case $H \leq G$, the map

$$\begin{array}{rcl} \pi & : & G \to G/H \\ & g \mapsto gH \end{array}$$

is a group homomorphism, and hence G/H is a group. (Wait, what?)

- (d) Construct an isomorphism $\phi : H \to \ker(\pi)$.
- (4) Let G be a group. For $x, y \in G$, define $[x, y] = xyx^{-1}y^{-1}$. Now let

$$[G,G] = \{ [x,y] \mid x,y \in G \}.$$

- (a) Prove that $[G, G] \leq G$.
- (b) Prove that G/[G,G] is abelian.
- * (c) Prove that if H is an abelian group and $\phi: G \to H$ is a group homomorphism, then there exists a unique homomorphism $\overline{\phi}: G/[G,G] \to H$ such that

$$\bar{\phi} \circ \pi = \phi$$

Date: September 30, 2018.

NOAH LUNTZLARA

2. The First Isomorphism Theorem

Be prepared to discuss your solution to *all* of the following problems.

- (1) Let G and H be groups, and let $\phi: G \to H$ be a homomorphism. Show that
 - (a) $\ker(\phi) \leq G$,
 - (b) $\operatorname{im}(\phi) \subseteq H$ (here " \subseteq " means "subgroup"),
 - (c) $\operatorname{im}(\phi) \cong G/\ker(\phi)$,
 - (d) If ϕ is surjective, then $H \cong G/\ker(\phi)$.

Exercise (1c) is called the First Isomorphism Theorem.

- (2) Let G be a finite group of order 21 and let K be a finite group of order 49. Suppose that G does not have a normal subgroup of order 3. Then determine all group homomorphisms from G to K.
- (3) Let G be a finite group and let N be a normal abelian subgroup of G. Let $\operatorname{Aut}(N)$ be the group of automorphisms of N. Suppose that the orders of groups G/N and $\operatorname{Aut}(N)$ are relatively prime. Then prove that N is contained in the center of G.