395 DISCUSSION SECTION 7 OR SOMETHING

WITH NOAH LUNTZLARA

Recall the definition of a group action: given a group G and a set S, an action of G on S is a map

$$
\begin{aligned}
\cdot: G \times S & \rightarrow S \\
(g, s) & \mapsto g \cdot s
\end{aligned}
$$

which satisfies the properties

- $e \cdot s=s$ for all $s \in S$
- $g \cdot(h \cdot s)=(g h) \cdot s$ for all $g, h \in G, s \in S$.
(We often suppress the "." where unambiguous.)
Suppose for the rest of this worksheet that G is a group, S is a set, and G acts on S.
(Ex. 1) Fix $g \in G$. Show that the induced map

$$
\begin{aligned}
\sigma_{g}: S & \rightarrow S \\
s & \mapsto g s
\end{aligned}
$$

is a bijection.
(Ex. 2) Give four examples of G acting on itself.
(Ex. 3) (a) Prove Cayley's theorem: every finite group G is a subgroup of the symmetric group S_{n} for some $n \in \mathbb{N}$.
(b) Every group acts on the singleton set $\{s\}$. Can your proof in the previous part be strengthened to show every group is a subgroup of the trivial group? If so, fix it.
The orbit of $s \in S$ is the set

$$
\operatorname{Orb}_{G}(s)=\{g s \mid g \in G\} .
$$

Notice that this is a subset of S.
(Ex. 4) (a) Show that the orbits partition S.
(b) Show that when G is finite, the orbits have order dividing $|G|$.
(Ex. 5) Let G act on itself by conjugation: $g \cdot h=g h g^{-1}$. The orbits under this action are called conjugacy classes.
(a) The union of all conjugacy classes with order 1 is called the center of G, denoted $Z(G)$. Show that $g \in Z(G)$ if and only if it commutes with every element of G.
(b) Since the orbits partition G, we can write the order of G as the sum of the orders of its conjugacy classes:

$$
|G|=\sum_{\mathcal{O} \in\left\{\operatorname{Orb}_{G}(s) \mid s \in S\right\}}|\mathcal{O}| .
$$

This is called the class equation for G. Write down the class equation for
(i) $G=\mathbb{Z} / 3 \mathbb{Z}$
(ii) $G=S_{3}$
(iii) $G=D_{4}$

The stabilizer of $s \in S$ is the set

$$
\operatorname{Stab}_{G}(s)=\{g \in G \mid g s=s\} .
$$

Note that this is a subset of G.
(Ex. 6) [D. Copeland] Show that the stabilizer of n in the action of S_{n} on $\{1, \ldots, n\}$ is isomorphic to S_{n-1}.
(Ex. 7) Show that $\operatorname{Stab}_{G}(s)$ is a normal subgroup of G.
(Ex. 8) [D. Copeland] Find the orbits and stabilizers for the following parts of a cube. Notice anything?
(a) a single vertex
(b) an edge
(c) a face
(Ex. 9) State and prove the Orbit-Stabilizer Theorem.

[^0]
[^0]: Date: Friday, October 27, 2017.

