395 DISCUSSION SECTION 2

WITH NOAH LUNTZLARA

We start with the problems we didn't get to last time:

- (Ex. 5) Let G be a group. Show that a nonempty set $H \subseteq G$ is a subgroup iff $a, b \in H \Rightarrow ab^{-1} \in H$.
- (Ex. 6) What is the order of a group G generated by two elements x and y subject only to the relations

$$x^3 = y^2 = (xy)^2 = e$$
?

List all the subgroups of G.

The order of a group is simply the size of the set G. The order of an element $g \in G$ is the smallest $i \in \mathbb{N}$ such that $q^i = 0$

(Ex. 7) Show that every finite group with an even order has an element of order 2.

Recall the definition of *nth symmetric group*: $S_n := \{ \text{bijections } \mathbb{N}_n \to \mathbb{N}_n \} \text{ (where } \mathbb{N}_n \text{ denotes the set } \{1, 2, \dots, n\} \}$. Also recall the cycle notation we use to denote elements of S_n ; for example, $(125)(46) \in S_6$ is the map which takes

$$1 \mapsto 2 \mapsto 5 \mapsto 1, \ 3 \mapsto 3, \ 4 \mapsto 6 \mapsto 4.$$

- (Ex. 8) Prove that the cycle decomposition in S_n is unique.
- (Ex. 9) Prove that the order of a permutation $\sigma \in S_n$ is the least common multiple of the cycle lengths.
- (Ex. 10) Bonus: What is the highest order element of S_n in terms of n?

Let G be a group, and $S \subseteq G$ be an arbitrary subset of G. Recall the definitions of the (left and right) cosets of S in G: for each $g \in G$, we define

$$gS := \{gx \mid x \in S\};$$
 respectively, $Sg := \{xg \mid x \in S\}.$

- (Ex. 1) When are right cosets and left cosets the same? When are they different? Give some examples.
- (Ex. 2) Let G be a finite group and $H \subseteq G$ be a subgroup of G

 - (a) Show that $g_1H = g_2H$ iff $g_1g_2^{-1} \in H$ (b) Show that the left cosets of H partition G; i.e., the relation \sim defined by $g_1 \sim g_2$ provided that $g_1H = g_2H$ is an equivalence relation.
 - (c) Show that for any $g_1, g_2 \in G$ there is a bijection $g_1H \to g_2H$, and hence all left cosets of H in G have the same cardinality.
 - (d) The number of left cosets of H in G is called the *index* of H in G, denoted [G:H]. Prove Lagrange's Theorem: $|G| = |H| \cdot [G:H]$.
 - (e) Explain why the order of a subgroup of a finite group must divide the order of the group (this is also called Lagrange's Theorem).
- (Ex. 3) Show that when we do everything above with right cosets instead of left cosets, we get the same number for [G:H].
- (Ex. 4) Classify all groups with no proper nontrivial subgroups (i.e., subgroups that are neither the group itself nor the trivial subgroup $\{e\}$).

A subgroup H of a group G is called normal provided that $gHg^{-1} = H$ for every $g \in G$ (where $gHg^{-1} =$ $\{ghg^{-1} \mid h \in H\}$). If H is a normal subgroup of G, we write $H \subseteq G$.

- (Ex. 5) Show that $H \subseteq G$ iff gH = Hg for every $g \in G$.
- (Ex. 6) (a) Show that for every group $G, G \triangleleft G$ and $\{e\} \triangleleft G$.
 - (b) Exhibit three groups with non-normal subgroups.
 - (c) Exhibit three groups with proper nontrivial normal subgroups.
- (Ex. 7) Show that if $H \subseteq G$ and K is a subgroup of G which contains H, then $H \subseteq K$.
- (Ex. 8) Bonus: Try and fail to prove $H \subseteq K \subseteq G \Rightarrow H \subseteq G$. Then find a group G with subgroups H and K such that $K \subseteq G$ and $H \subseteq K$, but H is not normal in G.

1

- (Ex. 9) Let G be a group and H be an index-2 subgroup, so that [G:H]=2. Show that $H \subseteq G$.
- (Ex. 10) Recall that if $\phi: G \to H$ is a group homomorphism, $\ker(\phi)$ denotes $\phi^{-1}(e_H)$.
 - (a) Show that $\ker(\phi) \subseteq G$.
 - (b) State and prove a converse for the previous statement.

Date: Friday, September 22, 2017.