WITH NOAH LUNTZLARA

We start with the problems we didn't get to last time:
(Ex. 5) Let G be a group. Show that a nonempty set $H \subseteq G$ is a subgroup iff $a, b \in H \Rightarrow a b^{-1} \in H$.
(Ex. 6) What is the order of a group G generated by two elements x and y subject only to the relations

$$
x^{3}=y^{2}=(x y)^{2}=e ?
$$

List all the subgroups of G.
The order of a group is simply the size of the set G. The order of an element $g \in G$ is the smallest $i \in \mathbb{N}$ such that $g^{i}=0$
(Ex. 7) Show that every finite group with an even order has an element of order 2.
Recall the definition of nth symmetric group: $S_{n}:=\left\{\right.$ bijections $\left.\mathbb{N}_{n} \rightarrow \mathbb{N}_{n}\right\}$ (where \mathbb{N}_{n} denotes the set $\{1,2, \ldots, n\}$). Also recall the cycle notation we use to denote elements of S_{n}; for example, (125)(46) $\in S_{6}$ is the map which takes

$$
1 \mapsto 2 \mapsto 5 \mapsto 1,3 \mapsto 3,4 \mapsto 6 \mapsto 4
$$

(Ex. 8) Prove that the cycle decomposition in S_{n} is unique.
(Ex. 9) Prove that the order of a permutation $\sigma \in S_{n}$ is the least common multiple of the cycle lengths.
(Ex. 10) Bonus: What is the highest order element of S_{n} in terms of n ?
Let G be a group, and $S \subseteq G$ be an arbitrary subset of G. Recall the definitions of the (left and right) cosets of S in G : for each $g \in G$, we define

$$
g S:=\{g x \mid x \in S\} ; \quad \text { respectively, } \quad S g:=\{x g \mid x \in S\}
$$

(Ex. 1) When are right cosets and left cosets the same? When are they different? Give some examples.
(Ex. 2) Let G be a finite group and $H \subseteq G$ be a subgroup of G
(a) Show that $g_{1} H=g_{2} H$ iff $g_{1} g_{2}^{-1} \in H$
(b) Show that the left cosets of H partition G; i.e., the relation \sim defined by $g_{1} \sim g_{2}$ provided that $g_{1} H=g_{2} H$ is an equivalence relation.
(c) Show that for any $g_{1}, g_{2} \in G$ there is a bijection $g_{1} H \rightarrow g_{2} H$, and hence all left cosets of H in G have the same cardinality.
(d) The number of left cosets of H in G is called the index of H in G, denoted $[G: H]$. Prove Lagrange's Theorem: $|G|=|H| \cdot[G: H]$.
(e) Explain why the order of a subgroup of a finite group must divide the order of the group (this is also called Lagrange's Theorem).
(Ex. 3) Show that when we do everything above with right cosets instead of left cosets, we get the same number for $[G: H]$.
(Ex. 4) Classify all groups with no proper nontrivial subgroups (i.e., subgroups that are neither the group itself nor the trivial subgroup $\{e\}$).
A subgroup H of a group G is called normal provided that $g H g^{-1}=H$ for every $g \in G$ (where $g H g^{-1}=$ $\left\{g h g^{-1} \mid h \in H\right\}$). If H is a normal subgroup of G, we write $H \unlhd G$.
(Ex. 5) Show that $H \unlhd G$ iff $g H=H g$ for every $g \in G$.
(Ex. 6) (a) Show that for every group $G, G \unlhd G$ and $\{e\} \unlhd G$.
(b) Exhibit three groups with non-normal subgroups.
(c) Exhibit three groups with proper nontrivial normal subgroups.
(Ex. 7) Show that if $H \unlhd G$ and K is a subgroup of G which contains H, then $H \unlhd K$.
(Ex. 8) Bonus: Try and fail to prove $H \unlhd K \unlhd G \Rightarrow H \unlhd G$. Then find a group G with subgroups H and K such that $K \unlhd G$ and $H \unlhd K$, but H is not normal in G.
(Ex. 9) Let G be a group and H be an index-2 subgroup, so that $[G: H]=2$. Show that $H \unlhd G$.
(Ex. 10) Recall that if $\phi: G \rightarrow H$ is a group homomorphism, $\operatorname{ker}(\phi)$ denotes $\phi^{-1}\left(e_{H}\right)$.
(a) Show that $\operatorname{ker}(\phi) \unlhd G$.
(b) State and prove a converse for the previous statement.

[^0]
[^0]: Date: Friday, September 22, 2017.

