395 DISCUSSION SECTION 1

WITH NOAH LUNTZLARA

Recall that a group is an ordered pair $(G, *)$ consisiting of a set G and an associative binary operator $*: G \times G \rightarrow G$ with identity and inverses. We often use G to refer to the group, rather than the set. Where unambiguous, we also write $a b$ for the image of the ordered pair (a, b) under $*$.
(Ex. 1) Give ten examples of groups, each more interesting than the previous.
(Ex. 2) Show that the cancellation law $a b=a c \Rightarrow b=c$ is equivalent to the existence of inverses.
A group is called abelian provided that the binary operator is commutative; i.e., $a b=b a$ for all $a, b, \in G$.
(Ex. 3) Let G be a group where every element $g \in G$ satisfies $g^{2}=e$. Prove that G is abelian.
(Ex. 4) Find (with justification) the smallest non-abelian group.
A subgroup of a group G is a subset $H \subseteq G$ which forms a group with respect to the inherited binary operation.
(Ex. 5) Let G be a group. Show that a nonempty set $H \subseteq G$ is a subgroup iff $a, b \in H \Rightarrow a b^{-1} \in H$.
(Ex. 6) What is the order of a group G generated by two elements x and y subject only to the relations

$$
x^{3}=y^{2}=(x y)^{2}=e ?
$$

List all the subgroups of G.
The order of a group is simply the size of the set G. The order of an element $g \in G$ is the smallest $i \in \mathbb{N}$ such that $g^{i}=0$
(Ex. 7) Show that every finite group with an even order has an element of order 2.
Recall the definition of nth symmetric group: $S_{n}:=\left\{\right.$ bijections $\left.\mathbb{N}_{n} \rightarrow \mathbb{N}_{n}\right\}$ (where \mathbb{N}_{n} denotes the set $\{1,2, \ldots, n\}$). Also recall the cycle notation we use to denote elements of S_{n}; for example, (125)(46) $\in S_{6}$ is the map which takes

$$
1 \mapsto 2 \mapsto 5 \mapsto 1,3 \mapsto 3,4 \mapsto 6 \mapsto 4
$$

(Ex. 8) Prove that the cycle decomposition in S_{n} is unique.
(Ex. 9) Prove that the order of a permutation $\sigma \in S_{n}$ is the least common multiple of the cycle lengths.
(Ex. 10) Bonus: What is the highest order element of S_{n} in terms of n ?

[^0]
[^0]: Date: September 15, 2017.

