Modular Arithmetic

Noah Luntzlara \& Annie Xu
nluntzla@umich.edu \& wanqiaox@umich.edu

September 16, 2019

In this worksheet we introduce modular arithmetic. So far you have studied arithmetic in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{R}$, and maybe \mathbb{C}. We will look at a new "system of arithmetic", this time working with a finite set. However, it is very related to arithmetic in \mathbb{Z}.

Fix $n \in \mathbb{N}$. Define an equivalence relation on \mathbb{Z} by

$$
a \sim_{n} b \text { provided that } \exists k \in \mathbb{Z} \text { s.t. } a-b=k \cdot n .
$$

Ex. Explain in regular language what this equivalence relation does.
Ex. Prove \sim_{n} is an equivalence relation.
Ex. Prove that if $a \sim_{n} b$ and $c \sim_{n} d$, then $a+c \sim_{n} b+d$.
Ex. Prove that if $a \sim_{n} b$ and $c \sim_{n} d$, then $a \cdot c=b \cdot d$.
For $a \in \mathbb{Z}$, define $[a]_{n}$ to be the equivalence class of a under \sim_{n}, i.e. the set

$$
\left\{z \in \mathbb{Z} \mid a \sim_{n} z\right\}
$$

Define \mathbb{Z}_{n} to be the set of equivalence classes of \sim_{n}, i.e. the set

$$
\left\{[z]_{n} \mid z \in \mathbb{Z}\right\}
$$

Ex. What is $\left|\mathbb{Z}_{n}\right|$?
Define the binary operations $+_{n}$ and \times_{n} on \mathbb{Z}_{n} by

$$
[a]_{n}+_{n}\left[b_{n}\right]:=[a+b]_{n}
$$

and

$$
[a]_{n} \times_{n}\left[b_{n}\right]:=[a b]_{n} .
$$

Ex. Verify that $+_{n}$ and \times_{n} are well-defined binary operations on \mathbb{Z}_{n}. Verify that the left- and rightdistributive properties hold.

Ex. Is there $\mathrm{a}+_{n}$ identity in \mathbb{Z}_{n} ? If so, which elements have $+_{n}$-inverses?
Ex. Is there a \times_{n} identity in \mathbb{Z}_{n} ? If so, which elements have $+_{n}$-inverses?
Ex. For which n is $\left(\mathbb{Z}_{n},+_{n}, \times_{n}\right)$ a field?

