Modular Arithmetic

Noah Luntzlara & Annie Xu nluntzla@umich.edu & wanqiaox@umich.edu

September 16, 2019

In this worksheet we introduce *modular arithmetic*. So far you have studied arithmetic in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{R}^{n}$ and maybe \mathbb{C} . We will look at a new "system of arithmetic", this time working with a finite set. However, it is very related to arithmetic in \mathbb{Z} .

Fix $n \in \mathbb{N}$. Define an equivalence relation on \mathbb{Z} by

 $a \sim_n b$ provided that $\exists k \in \mathbb{Z}$ s.t. $a - b = k \cdot n$.

Ex. Explain in regular language what this equivalence relation does.

Ex. Prove \sim_n is an equivalence relation.

Ex. Prove that if $a \sim_n b$ and $c \sim_n d$, then $a + c \sim_n b + d$.

Ex. Prove that if $a \sim_n b$ and $c \sim_n d$, then $a \cdot c = b \cdot d$.

For $a \in \mathbb{Z}$, define $[a]_n$ to be the equivalence class of a under \sim_n , i.e. the set

 $\{z \in \mathbb{Z} \mid a \sim_n z\}.$

Define \mathbb{Z}_n to be the set of equivalence classes of \sim_n , i.e. the set

 $\{[z]_n \mid z \in \mathbb{Z}\}.$

Ex. What is $|\mathbb{Z}_n|$?

Define the binary operations $+_n$ and \times_n on \mathbb{Z}_n by

$$[a]_n +_n [b_n] := [a+b]_n$$

and

$$[a]_n \times_n [b_n] := [ab]_n.$$

Ex. Verify that $+_n$ and \times_n are well-defined binary operations on \mathbb{Z}_n . Verify that the left- and right-distributive properties hold.

Ex. Is there a $+_n$ identity in \mathbb{Z}_n ? If so, which elements have $+_n$ -inverses? **Ex.** Is there a \times_n identity in \mathbb{Z}_n ? If so, which elements have $+_n$ -inverses?

Ex. For which n is $(\mathbb{Z}_n, +_n, \times_n)$ a field?