Unofficial Practice Questions for Linear Algebra Exam 1

Noah Luntzlara

May 24, 2018

- 1. For each of the following (italicized) terms,
 - Give two different, equivalent, precise mathematical characterizations for it; and
 - State which one of your characterizations is the definition.
 - (a) The dimension of a linear subspace $V \subseteq \mathbb{R}^n$.
 - (b) A system of equations is *inconsistent*.
 - (c) The vectors $(\vec{v}_1, \ldots, \vec{v}_k)$ form a *basis* for \mathbb{R}^n .
 - (d) The linear transformation $T: V \to W$ is *injective*.

- 2. State whether each statement is True or False, and provide either a short, one or two line proof, or else a counterexample.
 - (a) If $(\vec{v}_1, \ldots, \vec{v}_k)$ are linearly *dependent* in \mathbb{R}^n , then for any linear transformation $T : \mathbb{R}^n \to W$, the vectors $(T\vec{v}_1, \ldots, T\vec{v}_k)$ are linearly dependent in W.
 - (b) Let A be an $n \times m$ matrix and $\vec{b} \in \mathbb{R}^n$ such that the equation $A\vec{x} = \vec{b}$ has at least one solution. Then the set $\{\vec{x} \in \mathbb{R}^m : A\vec{x} = \vec{b}\}$ is a subspace of \mathbb{R}^m .
 - (c) If A is an $n \times m$ matrix such that ker $(A) = \{0\}$ and A is surjective, then n = m.
 - (d) If $T: U \to V$ and $S: V \to W$ are linear transformations such that $S \circ T = 0$, then $\ker(S) \subseteq \operatorname{im}(T)$.
 - (e) If A is a 2×2 matrix such that rank $(A) \ge 1$, then for any $n \in \mathbb{N}$, $A^n \ne 0$.
 - (f) (Extra credit) If $X \subseteq \mathbb{R}^n$ is a set such that:
 - $\vec{0} \in X$,
 - for all $\vec{x} \in X$ and $a \in \mathbb{R}$, $a\vec{x} \in X$,

then for all $\vec{x}, \vec{y} \in X, \vec{x} + \vec{y} \in X$, and hence X is a subspace of \mathbb{R}^n .

- 3. (a) Let $A = \begin{bmatrix} 1 & 0 & 1 & 24 \\ 4 & 6 & 5 & 0 \end{bmatrix}$. Find a basis for ker(A).
 - (b) Find a 4×2 matrix B such that im(B) = ker(A).
 - (c) Which has larger rank, AB or BA?
- 4. Let \mathcal{P}_2 be the vector space consisting of all polynomials of degree at most 2 in the variable x.
 - (a) Find a basis \mathfrak{B} for \mathcal{P}_2 such that $[x^2]_{\mathfrak{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $[x]_{\mathfrak{B}} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $[1]_{\mathfrak{B}} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.
 - (b) Consider the linear transformation

$$T: \mathcal{P}_2 \to \mathcal{P}_2$$
$$f(x) \mapsto f'(x).$$

Find the matrix of T with respect to your basis \mathfrak{B} .

- (c) Find a basis for ker(T), and express it with respect to \mathfrak{B} .
- (d) Find a basis for im(T), and express it with respect to \mathfrak{B} .
- 5. Consider the augmented matrix $C = \begin{bmatrix} 9 & -4 & -1 & j \\ 7 & 2 & 0 & k \\ -1 & 5 & 1 & \ell \end{bmatrix}$ for the system of equations $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 9 & -4 & -1 \\ 7 & 2 & 0 \\ -1 & 5 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} j \\ k \\ \ell \end{bmatrix}$$

- (a) Show that if \vec{x}, \vec{y} are two solutions to this equation, then $\vec{x} \vec{y} \in \ker(A)$.
- (b) For which values of j, k, ℓ is the set $\{\vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{b}\}$ a subspace of \mathbb{R}^3 ?
- 6. A matrix A is said to have a square root provided that there is some matrix B such that $B^2 = A$. We then write $B = \sqrt{A}$.
 - (a) Show that if A is invertible and $A = \sqrt{A}$, then A = I.
 - (b) Show that it is possible for a matrix to have more than one square root, by exhibiting two square roots for $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (c) Find a matrix which has no square roots.
 - (d) Show that $\ker(\sqrt{A}) \subseteq \ker(A)$.