Unofficial Practice Questions for Linear Algebra Exam 1

Noah Luntzlara

May 24, 2018

1. For each of the following (italicized) terms,

- Give two different, equivalent, precise mathematical characterizations for it; and
- State which one of your characterizations is the definition.
(a) The dimension of a linear subspace $V \subseteq \mathbb{R}^{n}$.
(b) A system of equations is inconsistent.
(c) The vectors $\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ form a basis for \mathbb{R}^{n}.
(d) The linear transformation $T: V \rightarrow W$ is injective.

2. State whether each statement is True or False, and provide either a short, one or two line proof, or else a counterexample.
(a) If $\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ are linearly dependent in \mathbb{R}^{n}, then for any linear transformation $T: \mathbb{R}^{n} \rightarrow W$, the vectors $\left(T \vec{v}_{1}, \ldots, T \vec{v}_{k}\right)$ are linearly dependent in W.
(b) Let A be an $n \times m$ matrix and $\vec{b} \in \mathbb{R}^{n}$ such that the equation $A \vec{x}=\vec{b}$ has at least one solution. Then the set $\left\{\vec{x} \in \mathbb{R}^{m}: A \vec{x}=\vec{b}\right\}$ is a subspace of \mathbb{R}^{m}.
(c) If A is an $n \times m$ matrix such that $\operatorname{ker}(A)=\{0\}$ and A is surjective, then $n=m$.
(d) If $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations such that $S \circ T=0$, then $\operatorname{ker}(S) \subseteq \operatorname{im}(T)$.
(e) If A is a 2×2 matrix such that $\operatorname{rank}(A) \geq 1$, then for any $n \in \mathbb{N}, A^{n} \neq 0$.
(f) (Extra credit) If $X \subseteq \mathbb{R}^{n}$ is a set such that:

- $\overrightarrow{0} \in X$,
- for all $\vec{x} \in X$ and $a \in \mathbb{R}, a \vec{x} \in X$,
then for all $\vec{x}, \vec{y} \in X, \vec{x}+\vec{y} \in X$, and hence X is a subspace of \mathbb{R}^{n}.

3. (a) Let $A=\left[\begin{array}{cccc}1 & 0 & 1 & 24 \\ 4 & 6 & 5 & 0\end{array}\right]$. Find a basis for $\operatorname{ker}(A)$.
(b) Find a 4×2 matrix B such that $\operatorname{im}(B)=\operatorname{ker}(A)$.
(c) Which has larger rank, $A B$ or $B A$?
4. Let \mathcal{P}_{2} be the vector space consisting of all polynomials of degree at most 2 in the variable x.
(a) Find a basis \mathfrak{B} for \mathcal{P}_{2} such that $\left[x^{2}\right]_{\mathfrak{B}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],[x]_{\mathfrak{B}}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and $[1]_{\mathfrak{B}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(b) Consider the linear transformation

$$
\begin{aligned}
T: \mathcal{P}_{2} & \rightarrow \mathcal{P}_{2} \\
f(x) & \mapsto f^{\prime}(x)
\end{aligned}
$$

Find the matrix of T with respect to your basis \mathfrak{B}.
(c) Find a basis for $\operatorname{ker}(T)$, and express it with respect to \mathfrak{B}.
(d) Find a basis for $\operatorname{im}(T)$, and express it with respect to \mathfrak{B}.
5. Consider the augmented matrix $C=\left[\begin{array}{ccc|c}9 & -4 & -1 & j \\ 7 & 2 & 0 & k \\ -1 & 5 & 1 & \ell\end{array}\right]$ for the system of equations $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
9 & -4 & -1 \\
7 & 2 & 0 \\
-1 & 5 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
j \\
k \\
\ell
\end{array}\right]
$$

(a) Show that if \vec{x}, \vec{y} are two solutions to this equation, then $\vec{x}-\vec{y} \in \operatorname{ker}(A)$.
(b) For which values of j, k, ℓ is the set $\left\{\vec{x} \in \mathbb{R}^{3}: A \vec{x}=\vec{b}\right\}$ a subspace of \mathbb{R}^{3} ?
6. A matrix A is said to have a square root provided that there is some matrix B such that $B^{2}=A$. We then write $B=\sqrt{A}$.
(a) Show that if A is invertible and $A=\sqrt{A}$, then $A=I$.
(b) Show that it is possible for a matrix to have more than one square root, by exhibiting two square roots for $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(c) Find a matrix which has no square roots.
(d) Show that $\operatorname{ker}(\sqrt{A}) \subseteq \operatorname{ker}(A)$.

