More Linear Algebra Problems

Noah Luntzlara

June 4, 2018

1. Let S and K be $n \times n$ matrices. If S is symmetric and K is skew-symmetric, then $S K$ is \qquad . (Prove your answer.)
2. If the sum of two unit vectors is a unit vector, then what is the angle between them?
3. (a) Find all 1×1 orthogonal matrices.
(b) Show that all 2×2 orthogonal matrices are either a rotation (of the form $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$) or a reflection (of the form $\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ \sin (\theta) & -\cos (\theta)\end{array}\right]$).
4. Consider the 3×3 matrix $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 4 & -1 & 0 \\ 0 & 1 & 0\end{array}\right]$.
(a) Find 3×3 matrices Q and R such that Q is orthogonal, A is upper-triangular, and $A=Q R$.
(b) Find 3×3 matrices \mathcal{O} and P such that \mathcal{O} is orthogonal, P is lower-triangular, and $A=P \mathcal{O}$.
(c) What is $Q \mathcal{O}$?
(d) What is PR?
