I Think This is Related to JNF?

Noah Luntzlara

Oct 12, 2018

We will answer the question "if A is an $n \times n$ matrix, what are the possibilities for the sequence $\left\{\operatorname{rank}\left(A^{k}\right)\right\}_{k=0}^{\infty}$?" For the rest of the worksheet, let A be an $n \times n$ matrix.

1. (a) Prove that for all $k \geq 0, \operatorname{ker}\left(A^{k}\right) \subseteq \operatorname{ker}\left(A^{k+1}\right)$.
(b) Prove that for all $k \geq 0, \operatorname{im}\left(A^{k}\right) \supseteq \operatorname{im}\left(A^{k+1}\right)$.
(c) Conclude that $\left\{\operatorname{rank}\left(A^{k}\right)\right\}$ is a nonincreasing sequence.
2. Suppose $\operatorname{rank}\left(A^{2}\right)=n-1$.
(a) Prove that $\operatorname{rank}(A)=n-1$.
(b) Prove that $\operatorname{rank}\left(A^{j}\right)=n-1$ for all $j \geq 1$.
3. Suppose $\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right)$. Prove that $\operatorname{rank}\left(A^{k+j}\right)=\operatorname{rank}\left(A^{k}\right)$ for all $j \geq 0$.
4. Consider the sequence $\left\{\operatorname{rank}\left(A^{k}\right)-\operatorname{rank}\left(A^{k+1}\right)\right\}_{k=0}^{\infty}$.
(a) Prove that $\operatorname{rank}\left(A^{k}\right)-\operatorname{rank}\left(A^{k+1}\right)=\operatorname{dim}\left(\operatorname{ker}(A) \cap \operatorname{im}\left(A^{k}\right)\right)$ for all $k \geq 0$.
(b) Prove that $\left\{\operatorname{rank}\left(A^{k}\right)-\operatorname{rank}\left(A^{k+1}\right)\right\}$ is a non-increasing sequence.
(c) Conclude that the sequence $\left\{\operatorname{rank}\left(A^{k}\right)\right\}$ is convex; i.e., for $k \geq 1$,

$$
\operatorname{rank}\left(A^{k}\right) \leq \frac{\operatorname{rank}\left(A^{k+1}\right)+\operatorname{rank}\left(A^{k-1}\right)}{2}
$$

(d) Reprove problems (2) and (3) using the above fact.
5. Suppose $n=10$. Construct an $n \times n$ matrix such that
(a) $\operatorname{rank}\left(A^{k}\right)=10-k$ for $0 \leq k \leq 10$.
(b) $\operatorname{rank}\left(A^{0}\right)=10, \operatorname{rank}\left(A^{1}\right)=8$, and $\operatorname{rank}\left(A^{k}\right)=9-k$ for $1 \leq k \leq 9$.
(c) $\operatorname{rank}\left(A^{0}\right)=10, \operatorname{rank}\left(A^{1}\right)=6, \operatorname{rank}\left(A^{2}\right)=3, \operatorname{rank}\left(A^{3}\right)=1, \operatorname{rank}\left(A^{4}\right)=0$.
6. Show that for any nonincreasing convex sequence of integers $0 \leq r_{k} \leq n$, there exists an $n \times n$ matrix A such that $\operatorname{rank}\left(A^{k}\right)=r_{k}$.

