I Think This is Related to JNF?

Noah Luntzlara

Oct 12, 2018

We will answer the question "if A is an $n \times n$ matrix, what are the possibilities for the sequence ${\operatorname{rank}(A^k)}_{k=0}^{\infty}$?" For the rest of the worksheet, let A be an $n \times n$ matrix.

- 1. (a) Prove that for all $k \ge 0$, $\ker(A^k) \subseteq \ker(A^{k+1})$.
 - (b) Prove that for all $k \ge 0$, $\operatorname{im}(A^k) \supseteq \operatorname{im}(A^{k+1})$.
 - (c) Conclude that $\{\operatorname{rank}(A^k)\}\$ is a nonincreasing sequence.
- 2. Suppose $\operatorname{rank}(A^2) = n 1$.
 - (a) Prove that rank(A) = n 1.
 - (b) Prove that $\operatorname{rank}(A^j) = n 1$ for all $j \ge 1$.
- 3. Suppose $\operatorname{rank}(A^k) = \operatorname{rank}(A^{k+1})$. Prove that $\operatorname{rank}(A^{k+j}) = \operatorname{rank}(A^k)$ for all $j \ge 0$.
- 4. Consider the sequence $\{\operatorname{rank}(A^k) \operatorname{rank}(A^{k+1})\}_{k=0}^{\infty}$.
 - (a) Prove that $\operatorname{rank}(A^k) \operatorname{rank}(A^{k+1}) = \dim(\ker(A) \cap \operatorname{im}(A^k))$ for all $k \ge 0$.
 - (b) Prove that $\{\operatorname{rank}(A^k) \operatorname{rank}(A^{k+1})\}$ is a non-increasing sequence.
 - (c) Conclude that the sequence $\{\operatorname{rank}(A^k)\}$ is convex; i.e., for $k \ge 1$,

$$\operatorname{rank}(A^k) \le \frac{\operatorname{rank}(A^{k+1}) + \operatorname{rank}(A^{k-1})}{2}$$

- (d) Reprove problems (2) and (3) using the above fact.
- 5. Suppose n = 10. Construct an $n \times n$ matrix such that
 - (a) $\operatorname{rank}(A^k) = 10 k$ for $0 \le k \le 10$.
 - (b) $\operatorname{rank}(A^0) = 10$, $\operatorname{rank}(A^1) = 8$, and $\operatorname{rank}(A^k) = 9 k$ for $1 \le k \le 9$.
 - (c) $\operatorname{rank}(A^0) = 10$, $\operatorname{rank}(A^1) = 6$, $\operatorname{rank}(A^2) = 3$, $\operatorname{rank}(A^3) = 1$, $\operatorname{rank}(A^4) = 0$.
- 6. Show that for any nonincreasing convex sequence of integers $0 \le r_k \le n$, there exists an $n \times n$ matrix A such that $\operatorname{rank}(A^k) = r_k$.