Nithiwadee Thaicharoen

Physics department
University of Michigan
450 Church Street
Ann Arbor, MI 48109-1040

Office | 4218 Randall (734-647-9030)
Lab | SB149 Randall (734-763-2544)
E-mail | nithi[at]umich.edu

Google scholar LinkedIn

Research Interest

Rydberg atom, quantum information, atom-based sensors, precision measurement, imaging techniques, algorithms and machine learning.

Patent

  1. Atom-based electromagnetic radiation electric-field and power sensor
    David A. Anderson, Georg A. Raithel, Nithiwadee Thaicharoen, Stephanie A. Miller, Andrew Schwarzkopf
    US Patent US9970973B2

Publications

  1. Floquet Hamiltonian engineering of an isolated many-body spin system
    Sebastian Geier, Nithiwadee Thaicharoen, Clément Hainaut, Titus Franz, Andre Salzinger, Annika Tebben, David Grimshandl, Gerhard Zürn, Matthias Weidemüller
    Science 374 (6571), 1149-1152 (2021)
  2. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system
    N. Thaicharoen, K. R. Moore, D. A. Anderson, R. C. Powel, E. Peterson, and G. Raithel
    Phys. Rev. A 100, 063427 (2019)
  3. Expansion behavior and pair correlations in continuously excited Rydberg systems
    N. Thaicharoen, S. A. Miller, and G. Raithel
    Phys. Rev. A 98, 023402 (2018)
  4. Control of spatial correlations between Rydberg excitations using rotary echo
    N. Thaicharoen, A. Schwarzkopf, and G. Raithel
    Phys. Rev. Lett. 118, 133401 (2017)
  5. Motion of Rydberg atoms with strong permanent-electric-dipole interactions
    L.F. Gonçalves, N. Thaicharoen, G. Raithel
    J. Phys. B: At. Mol. Opt. Phys. 49 154005 (2016)
  6. Atom-pair kinetics with strong electric-dipole interactions
    N. Thaicharoen, L.F. Gonçalves, G. Raithel
    Phys. Rev. Lett. 116, 213002 (2016)
  7. Measurement of van-der-Waals interaction by atom trajectory imaging
    Editors' Suggestion and Rapid Communication
    N. Thaicharoen, A. Schwarzkopf, and G. Raithel
    Phys. Rev. A, 92, 040701(R) (2015).
  8. Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable, Self-Calibrated Measurements
    Christopher L. Holloway, Joshua A. Gordon, Steven Jefferts, Andrew Schwarzkopf, David A. Anderson, Stephanie A. Miller, Nithiwadee Thaicharoen, and Georg Raithel
    Antennas and Propagation, IEEE Transactions on , vol.62, no.12, pp.6169,6182, Dec. 2014.
  9. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas
    D. A. Anderson, A. Schwarzkopf, S. A. Miller, N. Thaicharoen, G. Raithel, J. A. Gordon, and C. L. Holloway
    Phys. Rev. A 90, 043419 (2014).
  10. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms
    Joshua A. Gordon, Christopher L. Holloway,Andrew Schwarzkopf, David A. Anderson, Stephanie A. Miller, Nithiwadee Thaicharoen, and Georg Raithel
    Appl. Phys. Lett. 105, 024104 (2014).
  11. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms
    Christopher L. Holloway, Joshua A. Gordon, Andrew Schwarzkopf, David A. Anderson, Stephanie A. Miller, Nithiwadee Thaicharoen, and Georg Raithel
    Appl. Phys. Lett. 104, 244102 (2014).
  12. Spatial correlations between Rydberg atoms in an optical dipole trap
    Editors' Suggestion and Rapid Communication
    A. Schwarzkopf, D. A. Anderson, N. Thaicharoen, and G. Raithel
    Phys. Rev. A, 88, 061406(R) (2013).