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1 Notation

� This paper be concerned, almost exclusively, with algebraic geometry over finite fields.
To that end, q will be a prime power pn, Fq the finite field with q elements, and F an
algebraic closure.

� If Y0 is a scheme, sheaf or other object defined over Fq, dropping the 0 subscript and
writing Y will denote the object over F coming from Y0 by extending scalars.

� For Y0 a scheme over Fq, F : Y0 → Y0 is the Frobenius morphism which acts as
the identity on the underlying topological space of Y0 and acts by raising to the qth
power on the structure sheaf of Y0.

We will also use F to denote the extension by scalars to a morphism on Y . Acting on
Y , F is not the identity on the inderlying topological space, and in fact Y F = Y (Fq)

� ` is a prime distinct from p, and Eλ is a finite extension of the field Q`. The etale
cohomology groups we will encounter will be Eλ vector spaces, not complex ones,
and we will frequently, but often not explicitly, use an embedding Eλ ↪→ C to make
sense of statements of the form

”The eigenvalues of F ∗ acting on H i(X,F) have absolute value qi/2”

� For A• a graded vector space and T an endomorphism we abbreviate

Tr(T,A∗) =
∑
i

(−1)i Tr(T,Ai)

This will always be used in the context of Y a scheme over F, F a sheaf of EΛ vector
spaces on Y to abbreviate the sum

Tr(T ∗, H∗(Y,F)) =
∑
i

(−1)i Tr(T ∗, H i(Y,F)

In the above we mean the cohomology of F computed on the etale site of Y , though
we will make use of the same notation for the compactly supported cohomology as
well, when we write H∗c

1



2 Introduction

The notion of a trigonometric sum does not have, or need, a precise definition, but it would
do at the outset to give a general idea of what we will be considering in this paper. As
a preliminary example, and one we will explore in detail, let f be a polynomial in Fp[x].
Consider what can be said about value of

p∑
n=1

e2πif(n)/p

Note first that this is well defined even though f does not properly take values in C because
for an integer y, e2πiy/p depends only on the residue class of y mod p.

Naively, this sum must have absolute value less that p, since it is a sum of p terms
of magnitude 1. However we would hope for the sum to be a great deal smaller. If, for
example f(x) = x, then the above sum would be zero. We shall see what can be said for a
general class of f .

The central trick will be two related results which shall not be proven here but can be
found (along with most of the other material in this paper) in [1].

Theorem 1. Lefschetz Trace Formula For X0 a separated scheme of finite type over
Spec(Fq), and F0 a sheaf of Eλ vector spaces. Then∑

x∈XF

Tr(F ∗x ,F) = Tr(F ∗, H∗c (X,F))

We will use this by finding a scheme X0 and a sheaf F such that the left hand side of
this equation is out ’trigonometric sum’. Then, to bound it we use the following result

Theorem 2. Riemann Hypothesis For X0 an affine smooth scheme over Fq of pure dimen-
sion n and F0 a pure of weight m1 sheaf on X0, the eigenvalues of F ∗ acting on H i

c(X,F
are algebraic integers all of whose complex conjugates have magnitude less than or equal to
qn+m/2

So we can achieve bounds on the trigonometic sums by finding dimH i
c(X,F). These

numbers are very hard to come by in general, but in certain cases are accessible to us.

3 Constructing the correct sheaf

3.1 Torsors

For A an group and X a scheme, an A-torsor on X is a sheaf T on X with a right action
of A such that T is etale locally isomorphic (as sheaves with an A action) to the constant
sheaf A.

1This is a requirement on the eignevalues of F on the stalks of F , which the sheaves we will consider
will satisfy
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One concrete way of presenting a torsor on X is giving an etale cover {Ui → X}i and
identifications TUi ' A. Then we need transition data. The endomorphisms of A as a
right A-set (not as a group) are exactly right multiplipication by elements of A. So our
transition data is a collection of elements of A satisfying cocycle conditions.

This makes it clear that if φ : A → B is a homomorphism of groups, and T an A-
torsor on X we can produce a unique B torsor T ′ and a map φ : T → T ′ such that
φ(ta) = φ(t)φ(a). The construction is to give T ′ the same trivializing cover as T and apply
φ to the transition data.

This will be used primarily in the context that B = GL(V ) for V a finite Eλ vector
space.

Given S a GL(V ) torsor on X, there is a unique sheaf of Eλ-sheaf F , smooth of rank
dim(V ), with an isomorphism Isom(V,F) ' S, by once again giving F the same trivializing
cover as S, and reinterpreting the transition data of S as transition data of an Eλ sheaf.

Putting this together, given an A-torsor T for A an abelian group, and a character
φ : A → E×Λ , we get a rank one line bundle on X. We will call the torsor χ(T ). This
construction will work for any representation and possibly nonabelain A, but in the abelian-
character case there is also a never zero morphism

χ : T → χ(T )

satisfying
χ(ta) = χ(a)χ(t)

For S a scheme and G a connected group scheme over S, we can produce an A-torsor
on G from an extension of group schemes

0 A G′ G 0π

The sheaf of sections of π is an A-torsor.

3.2 The Lang Torsor

For G0 a group scheme over Fq we define the Lang isogeny

L0 : G0 → G0 x 7→ Fxx−1

This map is etale and surjective, and its kernel is G0(Fq).
We define the Lang torsor L0 as the torsor of local sections of this map.
Our computations to come rely heavily on understanding the action of F on the stalks

of L at the points of G(Fq).
We can identify the fiber Lx with L−1(x). If γ ∈ G(Fq) and L(g) = γ, then Fg =

Fgg−1g = γg.
So for x ∈ G(Fq) the map F ∗ : Lx → Lx sends g 7→ gx−1
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Note then that if χ is a character of G0(Fq), then F ∗ acts by multiplication by χ(x−1)
on the fiber of χ(L0)x

Now we can define the line bundles that will be used to determine sums.

Definition 1. For f0 : X0 → G0 a morphism, and χ : G0(Fq) → E×λ a character, we
define

F(χ, f0) := χ−1(f∗0 (L0)) = f∗0χ
−1(L0))

For x ∈ X0(Fq), f∗0 (L0)x = (L0)f0(x), so the trace of F ∗ on L(χ, f0)x is χ−1(f0(x)−1) =
χ(f0(x))

Then we can begin to study the sums in question via the equality∑
x∈X0(Fq)

χ(f0(x)) =
∑

x∈X0(Fq)

Tr(F∗,F(χ, f0)x) = Tr(F ∗H∗c (X,F(χ, f0))

Choose some integer n > 1 and for a group scheme G0 defined over Spec(Fq) denote by
G1 the extension to SpecFqn .

On G1 we have L1, the extension by scalars of the Lang torsor L0 on G0, which is
a G1(Fq) = G0(Fq) torsor. This is the torsor defined by the map L : G1 → G1 taking
g 7→ Fgg−1.

But we can also define a map L(n) : G1 → G1 that takes g 7→ Fng. The torsor of local

sections of Ln is a G1(Fqn) torsor, which we will denote L
(n)
1

We have a map N : G1 → G1 that sends g to
∏n−1
i=0 F

i(g). This induces a group
homomorphism N : G1(Fqn)→ G1(Fq) which as we’ve seen allows us to produce a G1(Fq)
torsor from a G1(Fqn) torsor. The following theorem says however that this construction
gives us nothing new

Theorem 3. L1 and N(L
(n)
1 ) are isomorphic

Proof. Note first that L(n) = L ◦ N , and that for g ∈ G1(Fnq ), Ng =
∏n−1
i=0 F

i(g), so we
have a commutative diagram

0 G1(Fqn) G1 G1 0

0 G1(Fq) G1 G1 0

N

L(n)

N id

L

Thus on any open set the set of sections of L is the same as N applied to the set of sections
of L(n), proving the result.

As an important corollary, for a map f0 : X0 → G0, and χ a character of G0(Fq),
the base change of (F )(χ, f0) to the scheme (X0)Fqn

is isomorphic to the line bundle
F(χ ◦N, (f0)Fqn

).
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4 Trigonometric Sums

4.1 Note on cohomological computations

The crux of nearly every argument to come will be the computation of certain etale coho-
mology groups. Full proofs of these computations are too lengthy for a note of this size,
so they will be reproduced here only as facts, with a sketch of an argument when that can
be done in a succinct and enlightening manner. Full arguments can be found in [?], and
when citing a fact I will endeavor to list its exact location.

In the examples below we will be computing H i
c(C,F) for C a smooth conntected affine

curve. Our general result will always be that, with some hypotheses on F , these groups
will be 0 for i 6= 1 and the rank of H i

c(C,F) can be computed directly via formula.
If C ↪→ C is a compactification with C a smooth projective curve of genus g. We define

the euler characteristic χ(C) = 2 − 2g − #S where S := X − X2. It is possibly familiar
that

χ(C) =
∑
i

(−1)i dim(H i
c(C,EΛ))

This fact generalizes. For F an Eλ sheaf on C we also define

χ(F) =
∑
i

(−1)i dim(H i
c(C,F))

Fact 1.
χ(F) = Rk(F)χ(C)−

∑
s∈S

Sws(F)

where Sws(F) is the Swan conductor of F , a measure of wild ramification.

Since3 H i
c(C,F) = 0 for i out of the range [0, 2], all that remains is the computation of

the 0th and 2nd cohomology groups.
H0
c (C,F) is the group of sections of F with compact support, which can easily be seen

to be 0 when C is noncomplete.

Fact 2. Poincare Duality, Sommes Trigonométriques 1.18c: For F smooth, the vector
spaces H i

c(C,F and H2−i(C,F∨) are dual, up to a twist

Fact 3. For F = F(ψ, f) for f : C → G nonconstant and ψ a nontrivial character of
G(Fq), H i

c(CF) ' H i(C,F)

The above two facts let us conclude that H2
c (C,F) is 0 if H0

c (C,F) is, so the rank of
H1
c (C,F) is determined by the euler characteristic.

2Note by my lack of subscript the assumption that the field of definition of C is algebraically closed
3another fact
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4.2 Gauss Sums

For χ : F×q → C× and ψ : Fq → C× characters we define the gauss sum

τ(χ, ψ) = −
∑
x∈F∗

q

ψ(x)χ−1(x)

We can get characters of F×qn and Fqn by precomposing χ or ψ with the norm map
and trace map to Fq, respectively. Note that this is exactly the homomorphism N :
Gm ×Ga(Fqn)→ Gm ×Ga(Fq)

As a first application

Theorem 4. Hasse-Davenport, 1935

τ(χ ◦Nm,ψ ◦ Tr) = τ(χ, ψ)n

Proof. To prove this, We use the following result

Fact 4. Sommes Trigonométriques 4.2 For ι : Gm → Gm × Ga the diagonal embedding,
H i
c(Gm,F(χ−1ψ, ι)) is a one dimensional vector space when i = 1, and 0 otherwise, for chi

and ψ not both trivial.

Hasse and Davenport were working with complex characters, but since the values of χ
and ψ are algebraic, we can assume they are contained in some number field E, and prove
the equality in the completion Eλ at some place of E of characteristic `.

Assuming the fact, then

τ(χ, ψ) = −
∑
x∈F∗

q

ψ(x)χ−1(x) = −
∑

x∈Gm(Fq)

Tr(F ∗,F(χ−1ψ, ι)x) = Tr
(
F ∗, H1

c (Gm,F(χ−1ψ, ι)
)

We denote the eigenvalue of the action of F ∗ on the one diemnsional spaceH1
c (Gm,F(χ−1ψ, ι)

as γ.
But then, using the last results of the previous section

τ(χ◦Nm,ψ◦Tr) = −
∑

x∈Gm(Fn
q )

Tr((F ∗)n,F((χ−1ψ)◦N, ι)x) = Tr
(
(F ∗)n, H1

c (Gm,F(χ−1ψ, ι)
)

= γn

To prove the fact, we use the arguement outlined in the preceding section. All that
remains is the computation of

Rk(F)χ(C)−
∑
s∈S

Sws(F)

F(χ−1ψ), ι) is unramified away from 0 and ∞. Its swan conductor at 0 is 0, and at ∞ it is
1. So the euler characteristic is

(1)(2)− 0− 1 = 1
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When χ is nontrivial Poincare Duality for etale sheaves gives a perfect pairingH1
c (Gm,F(χ−1ψ, ι))

and H1
c (G,F(χψ−1)), valued in the tate twist Eλ(−1). We know that F ∗ acts on Eλ(−1)

by multiplication by q, so considering F ∗ equivariance of the pairing

H1
c (Gm,F(χ−1ψ, ι))×H1

c (G,F(χψ−1))→ Eλ(−1)

we discover a new proof of the statement that |τ(χ, ψ)| = q

5 Single variable sums

For a character ψ : Fq → Eλ, and X0 a smooth connected curve and f0 a morphism
X0 → P1, i.e. a rational function on X0, we can consider the sum

S′f =
∑

x∈X0(Fq),f0(x 6=∞

ψ(f0(x))

Note that S′f = 0 if f = gq − g for some rational function g, and that S′f is unchanged
if we add a function of the form gq − g to f .

For every point where it is defined, ψ(f0(x)) = ψ(f(x)+gp(x)−g(x)). We define vx(f) to
be the order of the pole of f at x (so zero for f(x) 6=∞) and then v∗x(f) = infg v(f+gq−g).
Then we can modify our sum S′f to

Sf =
∑

x∈X0(Fq),v∗x(f)6=0

ψ(f(x))

Here, ψ(f(x)) is shorthhand for ψ(f(x) + gp(x) − g(x)) for some g that makes this value
make sense. Our goal then will be to prove the following

Theorem 5. Let ψ be a nontrivial character, and f a rational function not of the form
gp − g + C for g a rational function and C a constant

|Sf | ≤

2− 2g +
∑

v∗x(f) 6=0

[k(x) : Fq](1 + v∗x(f))

 q1/2

Proof. The reason for expanding the sum is that Sf is related to a nice sheaf. If j : U ↪→ X
is the inclusion of the open set where f 6=∞ then

Sf =
∑

x∈X0(Fq)

Tr(F ∗, j∗F(ψ, f)x) = Tr(F ∗, H∗(X, j∗F(ψ, f))

If vx(f) = 0, then it is clear that Tr(F ∗, j∗F(ψ, f)x) = ψ(f(x)).
Suppose vx(f) 6= 0 but v∗x(f) = 0. Let g be such that f+gp−g has no pole at x. Then,

on the open subset k : V ↪→ U where f and g are both regular, the torsor (f + gp − g)∗L
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is equal to the sum (in H1(Fq,Aut(X))) of the torsors f∗L and (gp − g)∗L, but the latter
torsor is trivial. Therefore (ψ, f) and (ψ, f + gp − g) are isomorphic on V . Then

j∗(F )(ψ, f) ' j∗k∗(F )(ψ, f + gp − g)

so it is clear that for v∗x(f) = 0, Tr(F ∗, j∗F(ψ, f)x) = ψ(f(x)). Finally, it turns out to
be the case that if v∗x(f) 6= 0 then j∗F(ψ, f)x = 0, though the proof involves ramification
theory and will not be given here. See [2] for more details.

Once again we observe, or take on faith, that the groups H i(X, j∗F(ψ, f)) are 0 unless
i = 1

Then the sum Sf is the trace of F ∗ on the vector space H1(X, j∗F(ψ, f)). By the
Riemann Hypothesis, all eigenvalues of F ∗ have absolute value q1/2. In this particular case
we can compute Swx(f) = [k(x) : Fq](1 + v∗x(f)) and the formula follows

5.1 Example: Simple Kloosterman sum

As an example, consider

Ka(ψ) :=
∑
x∈F×

q

ψ(x+
a

x
)

for ψ a nontrivial character of Fq. Then if we define f : Gm → Ga by sending x 7→ x + a
x

the above sum is exactly Sf for the character ψ.
f is ramified at 0 and ∞, with swan conductor 1 in both places. So the euler charac-

teristic is
2− 2g +

∑
v∗x(f)6=0

[k(x) : Fq](1 + v∗x(f)) = −2

This implies |Ka(ψ)| ≤ 2
√
q.

However, we can do even better

Fact 5. Sommes Trigonométriques 3.6 If X has an involfution σ such that f(σ(x)) =
−f(x) then if α is an eigenvalue of F ∗ on H1

c (X,F(ψ, f) so is q
α

Putting this together with work in the previous sections we have∑
x∈F×

qn

ψ(x+
a

x
) = αn +

( q
α

)n
for some |α| = √q
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