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For the purposes of the talk, all varieties are assumed to be over C.
The main subject of this talk is Schubert Calculus. Schubert calculus can be produc-

tively thought of as an analog to Bezout’s theorem for Grassmanians, (And isn’t Pn just
the grassmanian of lines in a vector space?), so I will start with a discussion of Bezout’s
Theorem.

1 Bezout’s Theorem and Homology of Projective Space

Bezout’s Theorem is a classic theorem in Algebraic Geometry. It says the following

Theorem 1.1. Let X and Y be subvarieties of Pn such that dimX + dimY = n, and X
and Y meet transversely. Then X and Y meet in a finite number of points, and #(X∩Y ) =
degX · deg Y

Let X and Y be subvarieties of Pn such X and Y meet transversely. Then deg(X∩Y ) =
degX · deg Y

By meet transversely, I mean that at every point in the intersection both X and Y are
smooth, and at each point p in the intersection TpX + TpY ' TpPn.

Remark 1.2. Depending on how you define degree, this is almost a tautology. Also, this
theorem is amenable to generalization, you can drop the transversality requirement if you
are willing to be scheme-y

I want to re-state this in a method that will generalize nicely to the the case of grass-
manians. For any variety X, define Z(X), the group of cycles on X, as the free abelian
group generated by the irreducible subvarieties of X. Note two things:

• Z(X) has a natural grading coming from dimension. I will refer to the subgroup of
dimension i subvarieties as Zi(X)

• I can talk without confusion about reducible subvarieties as also being contained in
Z(X) by writing them as sums
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Pn is naturally a smooth manifold, so we also have the groups H∗(Pn,Z), the singular
homology groups with coefficients in Z. For what follows I will usually omit the Z. Recall
that Hj(Pn) = Z if and only if k is even and 0 ≤ k ≤ 2n, and the groups are 0 for all other
k. Furthermore, H0(Pn) is canonically isomorphic to Z.

Also, since Pn is smooth and compact, we are in a situation where Poincare Duality
applies, so H∗(Pn) gets a ring structure from the (dual of the) cup product. I will abuse
notation and write the product as α ^ β.

The restatement/corrolary of Bezout’s theorem is as follows:

Theorem 1.3. There is a surjection, called the cycle class map clPn : Z(Pn) → H∗(Pn),
such that when X and Y are subvarieties of Pn meeting transversely, clPn(X ∩ Y ) =
clPn(X) ^ clPn(Y ). Moreover, for any hyperplane Pk ⊂ Pn, clPn(Pk) does not depend
on the specific hyperplane and generates the group H2k(Pn).

Proof. This proof goes by induction. The case when n = 0 is clear, P0 is just a point, so
we send the class of the point in Z(P0) to the canonical generator of H0({∗}).

Now assume the theorem is true for n−1. Pick a hyperplane Pn−1 ⊂ Pn. The inclusion
induces the vertical maps in the diagram.

Z(Pn−1) H∗(Pn−1)

Z(Pn) H∗(Pn−1)

clPn−1

Since Pn comes from attaching a (real) 2n-cell to Pn−1, the vertical map on the right is an
isomorphism in grading 2n − 1 and lower. We can use this to define clPn on the image of
Z(Pn−1) inside Z(Pn). This also shows that the class of Pn−1 generates H2n−2(Pn), and
we induct to see this for all Pk with k < n.

We can also define the map on Zn(Pn) = Z[Pn] by sending the cycle Pn to the canonical
generator of Hn(Pn).

For two different hyperplanes P1 and P2, we know that the class of either generates
H2n−2(Pn), but they could differ by a sign. This would be bad, but luckily it doesn’t
happen:

GLn+1(C) acts on Pn, and some g takes P1 to P2. Taking a path from Id to g in
GLn+1(C) defines a homotopy between the map two maps Pn−1 → Pn coming from iden-
tifying Pn−1 with P1 and P2 respectively, so the maps in homology are the same.

Now we have a map out of the subgroup of Z(Pn) spanned by the elements that are
contained in some hyperplane. We can extend this to a map from all of Z(Pn). Given any
irreducible subvariety X ⊂ Pn of dimension k, we know clPn(X) should be d · clPn(Pk) for
some integer d. Finding an n− k-plane that meets X transversely, we see that d = degX.

Now we are done. If X and Y are any two subvarieties that meet transversely, we can
find a hyperplane of complementary dimension to X∩Y which is simultaneously transverse
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to X and Y , and intersecting with this hyperplane and thinking about Bezout’s theorem
tells us exactly that clPn(X ∩ Y ) = clPn(X) ^ clPn(Y ).

This isn’t very new, but it highlights a key point. We can use the decomposition
Pn = An ∪ Pn−1 to understand the homology of Pn in terms of the homology of Pn−1.

2 The cycle map and homology for G(1, 3)

The goal of this talk is to answer questions like the following:

Given 4 lines in P3, with no two coplanar, how many lines are there meeting all 4 lines?

Bezout’s theorem can be interpreted (if you squint) as a theorem about counting points.
We do this by studying the space that parametrizes the points in Pn (also known as Pn).
So, it stands to reason, that if we want to know about lines in P3 we should study G(1, 3).
Recall the grassmanian is a smooth, variety of dimension 4.

We want, just like in the case of Pn to understand the homology of the grassmanian by
giving it a CW-structure with only even dimensional (real) cells. The good news is we can
do that!

Fix the following

• q is a point in P3

• ` is a line in P3 containing q

• P is a plane in P3 containing `.

Then we have the following closed subvarieties in G(1, 3), called the Schubert Cycles

• Σ` the subvariety of all lines meeting `

• Σq, the subvariety of lines containing q

• ΣP the subvariety of lines contained in P

• Σq,P the subvariety of lines containing q and contained in P

• {`}, the point in G(1, 3) corresponding to the line `.
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It is very helpful to arrange these subvarieties according to dimension and containment

G(1, 3)

Σ`

Σq ΣP

Σq,P

{`}

The theorem we wish to prove is that these classes once again freely generate the structure
of homology

Theorem 2.1. There is an surjection clG(1,3) : Z(G(1, 3)) → H∗(G(1, 3)), such that the
classes of the Schubert Cycles in the above diagram freely generate H∗(G(1, 3)) as an ad-
ditive group. Furthermore, the classes of the schubert cycles are unchanged if you vary q,
` or P .

Moreover, whenever X and Y are subvarieties of G(1, 3) meeting transversely, clG(1,3)(X∩
Y ) = clG(1,3)(X) ^ clG(1,3)(Y ).

Proof. First, we prove the additive structure. Analogous to the case for Pn this will follow
from the following claims.

• G(1, 3) comes from attaching an even dimensional (real) cell to Σ`

• Σ` comes from attaching an even dimensional (real) cell to ΣP ∪ Σq

• ΣP ∪ Σq comes from attaching two even dimensional (real) cells to Σq,P

• Σq,P is isomorphic to P1

We will address the claims in reverse order. The fourth claim is obvious.
For the third claim, note first that ΣP ∩ Σq = Σq,P . Then observe that ΣP and Σq

are both isomorphic to P2, so their union is obtained from Σq,P by attaching A2 twice.
The argument that Z2(G(1, 3)) is isomorphic to the homology of a union of two projective
planes meeting in a projective line is slightly more compilcated, but follows easily from
Mayer-Vietoris.

Pick a plane H containing p but not `. Then we get a map

Σ`\ΣP ∪ Σq → (`\{q})× (H\(P ∩H)) ' A1 × A2
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This map sends a line `′ to (`′ ∩ `, `′ ∩H). It is not hard to see it is an isomorphism.
Finally, choosing H1 and H2 to be two planes containing ` we get a map

G(1, 3)\Σ` → (H1\`)× (H2\`) ' A2 ∩ A2

By sending a line `′ to (`′ ∩H1, `
′ ∩H2).

This shows that the classes of the schubert cycles generate homology additively. We
can make a similar argument to before, that the class of a schubert cycle does not depend
on the choice of q, ` or P . Here is the argument for Σ`, the other cases are identical: Pick
two lines ` and `′. The group GL4(C) acts on G(1, 3) and contains an element g that brings
the class Σ` onto Σ`′ . This shows the two subvarieties are isomorphic, and a path from Id
to g defines a homotopy and shows the equivalence of the classes in homology.

Now we need to show that the multiplicative structure captures transverse intersections,
and can be extended to all subvarieties of G(1, 3).

We need the following claim

Lemma 2.2. Let X be any subvariety in G(1, 3), then there exist some q, ` and P such
that the corresponding Schubert Cycles are transverse to X. In fact, for a general choice
of q, ` , and P , the schubert cycles are transverse

Proof. Letting X be any subvariety of G(1, 3) and C any schubert cycle. Saying C and X
intersect transversely is the same as saying that C ∩X1 is smooth, and of the ”expected”
dimension. Consider the variety

Γ = {(c, x, g) ⊂ C ×X ×GL4(C)|g · c = x}

GL4(C) acts transitively on G(1, 3), so the projection Γ→ C×X is surjectve. The fiber of
a point (c, x) is the stabilizer of c in GL4(C), so the fiber has dimension 3, so the dimension
of Γ is dim(C) + dim(X) + 3.

On the other hand we have a projection map Γ→ GL4(C). The fiber over a point g is
isomorphic to gC ∩X. Moreover the general fiber is of dimension dim(C) + dim(X) − 4,
which is the correct ”expected” dimension of the intersection.

Finally, since we are over characteristic 0, the map (Γ\Γsing) → G is smooth over an
open subset of G, so for the genreal fiber is smooth and of the correct dimension.

Now, we can see what clG(1,3)(X) ^ clG(1,3)(Y ) should be for X and Y Schubert cycles,
by making two different choices for q ⊂ ` ⊂ P and q′ ⊂ `′ ⊂ P ′ and counting lines in the
intersection. This turns out to be tractable! Here are the computations.

Note that we can canonically identify H0(G(1, 3)) with Z, and we can also have a
canonical map, the degree map deg : Z0(X)→ Z, that sends a zero cycle

∑
ni[qi]→

∑
ni.

The degree map factors through the cycle class map. Because of this, I will frequently refer
to elements of H0(G(1, 3)) as simply an integer.

1This needs to be the scheme theoretic intersection
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• clG(1,3)(Σq)
2 = clG(1,3)(ΣP )2 should be 1, since there is exactly one line containing in

2 points, or contained in 1 plane

• clG(1,3)(Σq) ^ clG(1,3)(ΣP ) should be 0, since for a general point q and plane P ′ there
there are no lines that simultaneously contain q and are contained in P ′, since q will
not be contained in P ′.

• clG(1,3)(Σ`) ^ clG(1,3)(q, P ) should be 1. Given a general point q, a general plane P
containing q, and a general line `′, there is only one line containing q, contianed in
P and meeting `′.

• clG(1,3)(Σ`)
2 is an element of H2(G(1, 3)) so it can be written as αclG(1,3)(Σq) +

βclG(1,3)(ΣP ) for some integers α and β. Thinking about clG(1,3)(Σ`)
2 ^ clG(1,3)(Σq)

and clG(1,3)(Σ`)
2 ^ clG(1,3)(ΣP ) shows that α and β should both be 1

• clG(1,3)(Σ`) ^ clG(1,3)(Σq) and clG(1,3)(Σ`) ^ clG(1,3)(ΣP ) should both be clG(1, 3)(Σq,P )
by the same reasoning as in the previous point.

Now (and this is the part where you’re going to have to take my word for it), the homol-
ogy ring for G(1, 3) turns out to look exactly like this! That is, it has one generator in
dimensions 0, 2, 6 and 8, two generators in dimension 4, and the generators satisfy exactly
the multiplicative properties outlined above.

It remains to extend the map to every subvariety in G(1, 3). If X is an irreducible
subvariety of dimension d, then by intersecting X with transverse schubert cycles in codi-
mension d, and counting points, we can determine uniquely what the class of X should
be. This will make it so that when X and Y are transverse, their intersection is precisely
the product of their classes.

3 Actual Computations

It’s been a while since we stated it, but we can now answer the question posed earlier. The
number of lines meeting four general lines, can be determined by computing

clG(1,3)(Σ`)
4 = (clG(1,3)(Σq) + clG(1,3)(ΣP ))2 = clG(1,3)(Σq)

2 + clG(1,3)(ΣP )2 = 2

This seems like a lot of work for a small result (Indeed, a result you could prove
classically, if you first prove the result that three general lines in P3 are contained in a
unique quadric surface). But it trivializes a great deal of problems concerning lines in Pn,
and generalizes to describe a structure on Z(G(k, n)) for other grassmanians. Here are
some questions you are now equipped to answer with little difficulty:

• If C1, C2, C3 and C4 are four general curves of degree d1, ..d4, how many lines meet
all 4 curves?

6



• If C1 and C2 are two general twisted cubics, how many lines are simultaneously chords
of both C1 and C2?

• If S1, S2, S3 and S4 are surfaces in P3 of degree d1 − d4, how many lines are simulta-
neously tangent to all 4?

There is not a chance that I get here in a talk, but this construction is also used to prove
there are 27 lines on a smooth cubic surface, though it takes significantly more work to
realize the cycle ”Lines on a smooth cubic surface” as an intersection of other subvarieties
in the grassmanian.
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