Geometric Satake for G Ly

Andy Gordon

This are notes describing, with minimal assumed background, the geometric Satake
equivalence for GLg. The bulk of the material comes from the excellent survey in [5]

1 Preliminaries

Let K be a nonarchimedian local field with ring of integers O. In fact, we will usually
think of K as k((¢)) and O as k[[t]] for another field k (at some point I might evener require
k finite)

Denote by G the algebraic group G Lo defined over K and G the algebraic group G Lo
defined over C.

This notation makes more sense for classical Satake in more general settings, where H
is a reductive algebraic group over K and H is the complex dual group, the algebraic group
over C constructed from the dual of the root data for H. Since the root data for GLs is
self dual we have the above convention.

Fix a maximal torus T of (G, contained in a borel B, all defined over O We likewise
define T c B c G.

Further, define the character and cocharacter lattices for T’ and 7T

= X*(T) = Hom(T, G,)
= X*(T) = Hom(T', G,,)
X.(T) = Hom(G,y,, T)
X.(T) = Hom(G,,,, T)

Note by definition the isomorphism X*® ~ X.

Finally, define W = Ng(T)/T. In this case W can be identified with the symmetric
group on two letters. I will sometimes use W to denote the Weyl group of G instead, but
this will hopefully be minimally confusing.

Classical Satake gives aring isomorphism

H~C[X W



Here, H is the ring of locally constant compactly supported complex functions on G(K)
which are invariant by multiplication by G(QO) on either side, i.e. f(z) = f(zk) = f(kx)
for k € G(O).

Addition defined in the obvious manner and multiplication defined by a sort of convo-
lution

*xglx) = 1y
f*g(x) /G(K)f(y)g(y )

Geometric Satake is a categorification of the above isomoprhism. The main content is
the existence of categories Satg and R, and an equivalence of categories F' between them
such that the induced map

K(Satg) @ C~ K(R)® C

where K (—) is the grothendieck group of a category, can be identified with the Satake
isomorphism listed earlier.

2 R

The category R is easy to describe. C[X *]W is the ring of complex valued ”polynomial”
functions on 7' that are invariant under the action of W. Such functions can be tautolog-
ically extended to conjugation invariant functions on the space of all 2 x 2 diagonalizable
matrices. And since diagonalizable matrices are dense in GLy(C) there is at most one
extension to the set of continuous, conjugation invariant functions on all of GL2(C), a.k.a
the characters of GLy(C).

This shows that the restriction map C[G]¢ — C[T]" is injective. To show surjectivity,
note that this isa map of algebras. C[T W is generated as a C algebra by the characters

z 0
det.[0 y]b—Mﬂy
z 0
std.[0 y]»—mﬁ—y

both of which are realized as the restrictions of characters on G, of the determinant the
standard representation.

The ring of characters of G can be categorified by realizing it as the grothendieck group
of the category of representations of G. We take this to be the category R.

3 Tannakian Formalism

Satg has a more complicated definition, and it is what we will spend the rest of the talk
attempting to decsribe. I'll start with the full definition



Definition 1. Satg is the category of perverse sheaves on the affine Grassmanian Gr,
equivariant under the action of G(O), with monoidal structure given by convolution product.

(Some of) these things will be given a better definition, but I'll start with a high level
view. Foremostly, what we are doing is constructing a category equivalent to a category of
representations of an affine algebraic group. To do this, we use the following theorem. For
a full account of the definitions and proof, see [1]

Theorem 1. Let (C,®) be a rigid abelian tensor category such that k ~ End(W¥), and let
w : C — Vecy, be an exact faithful k-linear tensor functor. Then,

1. The functor Aut®(w) of k-algebras (which sends R to the set of natural transforma-
tions of the functor w ® R to itself satisfying certain compatibility requirements) is
represented by an affine group scheme G;

2. The functor C — Rep(G) defined by w is an equivalence of tensor categories
So Satg must be

1. an abelian category with

2. a product structure and

3. a functor to C vector-spaces

This will immediately let us recognize it as equivalent to the category of representations of
some group. It is then more work to show that the group is in fact GG, though that point
(among many others!) will be skipped here.

4 The Affine Grassmanian

4.1 As a representation of a functor

Now we begin checking off pieces in the definition. First, we preset two different definitions
for Gr

For R a k-algebra, an R[[t]] lattice in R((t))? is a projective R[[t]] module A C R((t))?
such that A ®@ gy R((2)) = R((t))?

The Affine Grassmanian of G, denoted G, is the ind-projective k:—schem(ﬂ representing
the functor of k-algebras that sends a k-algebra R to the set of R[[t]] lattices of R((t))2.

There is something to prove here, namely that this functor is represented by an ind-
scheme. We don’t give a full proof, but at least describe the argument on k-points:

hot K



Proof. Define A° as the lattice k[[t]]> C k((¢))?. For every lattice A, there is some positive
n such that t"Ag C A C t7"Ag.

Now fix n, define Gr(™ C Gr as the space of lattices A for which the above containment
holds. Note G ¢ G"+1) ...

A/t A is a subspace of t7"Ag/t" Ay, a 4n dimensional vector space over k. So there is
a map

p:Gr™ = Gr(t™" Ao /t"Ao) = L;Gr(i, 7" Ag/t"Ag)

This map is injective, but not surjective. Multiplication by ¢ defines a nilpotent operator
on t~"Ag/t" A, and subspaces in the image of p must be preserved under this operator.
This imposes a closed condition on the grassmanian so each Gr(n) is a projective scheme.
It is also clear that Gr(™ c Gr(™t1) is a closed embedding. O

We can now directly study the geometry of these Gr(™.
Gr(® is a point, but Gr(Y) is alread interesting. We can take (1,0), (0,1), (¢~1,0), (0,
as a basis for t~'Ag/tAg so the operator ¢ becomes

o O O O
o O O O
o O O
O O = O

and then study the preserved subspaces by dimension
e There is a single 0 dimensional subspace

e The one dimensional subspaces preserved by ¢ are those in the kernel. The kernel is
two dimensional, so we have a P! of such spaces

e A two dimensional subspace preserved by t is either ker(t), or spanned by v and tv
for some vector v. tv C ker(t) so the space of choices for tv is P'. For a given tv there
is an A! of choices of v generating distinct subspaces. So the scheme in question is a
cone over P!, with the singular point the space corresponding to Ag, corresponding
to the inclusion Gr(® < Gr(*)

e A three dimensional subspace preserved by ¢t must contain ker(t). there are a Plof
such subspaces.

e There is a unique four dimensional subspace preserved by ¢

4.2 As a quotient

For a second definition, notice that GLy(K) acts transitively on the space of lattices and
the stabilizer of Ay is GL2(O), so an alternate definition of Gr could be (brushing past
intricacies in the definition of a quotient) G L2 (K)/GL2(O)



We have the decomposition

0

ta
GLy(K) = | | GLx(0) [0 b
a<beZ

} GLy(0)

So to understand Gr we can study the quotients

t(l

GLy(0) [ .

0
o] cra0)/Gra0)
For any G C H and h € H there is a bijection GhG/G ~ G /(G N hGh~'). We realize

this by sending the class represented by ¢g1hgs in GhG/G to the class represented by g1 in
G/(GNhGh™1). Note that

g1hg2 = (g3hga)g
is equivalent to
g1 = g3(hgaggy 'h™")
So for various integer a and b we need to study schemes of the form

Su0 = GL0)/CLa0)n ) pl e %))

Note that S, is distinct from, but isomorphic to Sy for any constant ¢, so for the
purposes of studying the varieties, we can assume a = 0 and b > 0. Then we have

GLy(0)") = GLg(O)ﬁ[tg t?,] GLy(0) [’i th] _ [g tzﬂ

So when taking the quotient G Lo(O)/GLa(O)®) we can first quotient by powers of t°
and realize it as G La(Ry)/B(Ry) where Ry is the ring k[t]/t® and B is the group of upper
triangular matrices.

This quotient is, unsurprisingly, extremely similar to the spaces we have already seen.

An element of GLy(Ry) can be written as A + Zg;ll t'B; for A € GLs(k) and B €
Matgxg(k‘).

If V is the standard representation of G Ly(k) then we define an action of GLy(Rp) on
V& where A € GLo(k) acts by A®® and t acts as defined earlier.

If W is the subspace of V' preserved by B(k), then B(Ry) is the stabilizer of the b dimen-
sional, t-stable space W and G(R;) acts transitively on the space of all b-dimensional
t-stable subspaces of Vb so this realizes the quotient as a (possibly no longer closed)
subvariety of a grassmanian.

In our earlier language, Sq 4 is the set of lattices A such that t*Ag C A C t*Ag, and the
quantity b — a is minimal for A.

Once can also show that the closure of a strata S, is US4 p—; for 0 <i < %|b —al

The important quality brought to light by this defintion is that Gr is stratified by
varieties corresponding to (positive) cocharacters of the torus ' C G



4.3 Convolution

Finally, we define the " twisted product GrxGr as a quotient of G(K) x G(K)/G(O) where
(y,A) (z,A) if yA = zA.

There is a "multiplication” map m : Gr x Gr — Gr sending (y, A) — yA, with the fiber
of a lattice A isomorphic to G(K)/Stab(A), so the fibers are pointwise isomorphic to Gr,
but the sturcture isn’t actually a product.

5 Intersection Cohomology and Perverse Sheaves

5.1 Definitions

Given a real or complex "manifold” X with singularities that admits a stratification X —
LX, with each X, a smooth manifold. Suppose further that X is the closure of a single
strata Xy. Intersection homology is a tool for capturing information about X similar to
simplicial homology, but more sensitive to the stratification and singularities.

To do this, we choose a perversity, a function p from the set of strata of X to the
integers. Intersection homology is computed similarly to singular homology, by taking
groups of chains and quotienting the cycles by the boundaries, but we require that the
chains be closed in Xy, and that for each strata X, C X\Xp, the chains of dimension i
meet X, in a space of dimension at most ¢ — codim(X,) + p(X,), with boundary meeting
X, in dimension at most i — 1 — codim (X, ) + p(X4)

The groups of i-cycles modulo i-boundaries are denoted P1C;(X).

Not that if we choose the zero perversity, this is just the requirement that all chains be
transverse to the singular strata, and increasing the perversity is a way of allowing more
chains and types of intersections. See [2] for examples of interesting computations.

The most interesting perversity seems to be the so called middle perversity, p(X,) =
wdm(#. This cannot be achieved for every stratification, obviously, but will be achiev-
able for us.

Some notes: The above description can be modified just like singular cohomology, to
have the chains take values in a local system, rather than constant coefficients. Also,
intersection cohomology can be defined by having the cochains be functionals on allowable
chains.

5.2 IC sheaves

The above definition only makes sense in some topologies, the zariski topology is too coarse
to get interesting singular homology groups. But there is an analog with a more algebraic
definition.

Given a local system £ on Xy, and a perversity p there is a complex of constructible



sheaves on X, unique up to quasi-isomorphism, denoted PZC4(X, ) such that
H (X PICe(X,E)) =P H(X,E)

See [3] for a construction, due to Deligne.

For a quasi-projective scheme X, a perverse sheaf is a complex of constructible sheaves
on X satisfying certain properties I won’t recount here. This is relevant to the earlier
discussion because

1. The category of perverse sheaves on X is a full subcategory of the derived category
of constructible sheaves on X, and moreover is abelian.

2. Let i,Z — X is a closed embedding and choose a stratfication for Z so that it is
the closure of a single strata, and a local system £ on Zy. Then if p is the middle
perversity on Z, i.(PZCe(Z,E) is a perverse sheaf on X.

3. The category of perverse sheafs on X is artinian, every element admits a finite length
decomposition series into irreducibles. Moreover, the irreducible elements are exactly
the perverse sheaves defined in 2

6 Finally, Satake

6.1 Saty as tannakian

We can now define Satg. I'll repeat the definition

Definition 2. Satg is the category of perverse sheaves on the affine Grassmanian Gr,
equivariant under the action of G(k[[t]]), with monoidal structure given by convolution
product.

The action of GLa(k[[t]]) on Gr has orbits parametirzed by cocharacters, as we have
seen. So requiring equivariance means that the allowable Z < X are the % — Gr.

If 1 is a (positive) cocharacter, we can take the constant local system on S, extend it
to a perverse sheaf on STL and push forward along the inclusion to get a perverse sheaf on
Gr, which we will denote IC),.

This category has a functor to C-vector spaces by taking a perverse sheaf F* to H(F®) =
@;H(F*®).

We also have a product structure. Given two perverse sheaves.A and B on Gr, we can
take a twisted product to get a perverse sheaf AXBon GrxGr, though the details, and the
proof that the construction is perverse, will be omitted. We then define

Ax B =m(AXB)



This is the structure needed to apply the tannakian formalism. A corollary of this
should be that when X is a cone over BP! stratified at the singular point, and p is the
middle perversity (which in this case sends the point to 2) @&”TH?(X) should be an irre-
ducible representation of GL2(C)? I couldn’t see this from the computation, or understand
the GL2(C) action.

We will now take on faith that the tannakian formalism yields an isomorphism between

Satg and R.

6.2 Sats sees the Hecke algebra

Given a complex of constructible sheaves F* on Gr we get a function Gr(k) — C fr

fr(x) =Y (=1)! Tr(ow, HL(F*))

i

Where 7 is a geometric point over x and o, € Gal(Z/z) is the geometric frobenius.

When The sheaves in Satg are left G(k[[t]]) invariant, and compactly supported, so
when the sheaf-function correspondence is applied they can be thought of as functions in
H(G) & C.

Note that for x € Gr(k), m~!(x) can be identified with pairs (y,y 'z) for y €
G(K)/G(0)

Then

fA*fB($):/G(K)fA(y)fB)(yl )= > fafslytz)= D Tr(oz,AXB) = faus

G(F)/G(0) zem~1(z)(k)

The cheaf function correspondence factors through the grothendieck group, and we in
fact have an isomorphism of algebras K (Satg) ® C ~ H ® C

To actually see what functions the sheaves IC), give, we need several results from [4],
which I will try to list.

1.
dim HY PP 10, = apn;

p is the sum of all positive roots and A < u, and
aa(@) =) ap '
i

is a Kazhdan Lusztig polynomial.

2. The cohomology sheaves H'(I C’;) are zero is ¢ is odd, and when i is even the eignen-
values of frobenius are equal to ¢%/2



which lets us show

fro, =cut+ Y aunlg)en

AZp
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