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1 SL2(Fq)

For what follows, let q be a prime power. The purpose of this talk is to determine the set
of characteristic 0 irreducible representations of SL2(Fq) which I will refer to as G.

SL2(R) for any unital ring R, is the group of two by two matrices with coefficients in
R and determinant 1. For R = Fq, this group has size (q3 − q). When q > 3, the quotient
of G by its center (±I) is simple.

G has q + 4 conjugacy classes, which can be found in [1], so we will need to construct
q + 4 irreducible representations.

It is often useful to think of G not merely as a finite group, but as the set of Fq points
of the affine variety G = SpecFq[a, b, c, d]/(ac− bd− 1)

Denote by B ⊂ G the subgroup of upper triangluar matrices. The B stands for Borel. In
general a Borel subgroup of an algebraic group is a maximal (connected) solvable subgroup,
and one can check that B is indeed maximal solvable in G.

It will be important later to note that G = B tBsB where s is the matrix

[
0 1
−1 0

]
.

Contained in B is the subgroup T of diagonal matrices. T stands for torus, because
there is a containment ι : Gm ⊂ G that identifies

t 7→
[
t 0
0 t−1

]
T as we have defined it is Gm(Fq) for this subgroup. Also notice that T ' F×q ' µq−1, a
cyclic group

There is in another ”special subgroup”. F×
q2

acts on Fq2 in the obvious way. Considering
the latter space as a two dimensional vector space over Fq, this gives us an inclusion
ι′ : Fq2 ↪→ GL2(Fq).

If we choose a Fq basis for Fq2 as 1 and α, where α2 = d ∈ Fq, then the scalar a + bα

is sent to the matrix

[
a db
b a

]
. Note that det(ι′(r)) = NormFq2/Fq(r).
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Then within G, we can identify the subgroup T ′ of matrices

[
a b
db a

]
where (by the

definition of G) a2 − bd2 = 1. We have an isomorphism

T ′ ' {Elements of Fq2 of norm 1} ' µq+1

My notation makes it clear there is an analogy between T and T ′. T ′ is the the Fq
points of the scheme Spec(Fq[a, b]/(a2 − db2 − 1), included in G in the manner described
above.

Spec(Fq[a, b]/(a2 − db2 − 1) is not isomorphic to Gm, as Fq-schemes. However, if you
basechange to k = Fq (or even just to Fq2), the schemes Spec(k[a, b]/(a2 − db2 − 1) and
Spec(k[t, t−1]) are isomorphic

The isomorphism is geometrically obvious (both schemes are genus 0 curves with two
points removed) It can be written explicitly as

(a, b) 7→ a− bα

t 7→
(

1 + t2

2t
,
1− t2

2αt

)
We use the word torus for any group scheme which is isomorphic to (some product of

copies of) Gm when base changed to an algebraically closed field. So T and T ′ are both
the Fq points of torii.

We say T is the split torus, while T ′ is nonsplit

2 Irreducible representations coming from T

The representation theory of T is easy, since T ' µq−1. There are q−1 irreducible complex
representations, all one dimensional.

We can produce, from these representations, representations of G as follows. Let ψ be
a character of T . B contains a normal subgroup U , the unipotent matrices, and B/U ' T .
Given the map B → T , we can ”pull back” irreducble representations of T to representa-
tions of B, which we will call ψ̃.

These ψ produces some (in fact, most) of the irreducible representations of B.
We then define R(ψ) := IndGB(ψ̃) to get a representation of G. It remains to show that

(most of) these representations are irreducible.
We want to understand 〈R(ψ1), R(ψ2)〉G. By frobenius reciprocity this is equal to

〈ψ1,ResGB IndGB ψ̃2〉H . To compute the latter, we use Mackey Theory.
A full proof and short discussion of the theorem can be found in [3]. The result states

that for H,K subgroups of a group L, and ρ a representation of H we have an isomorphism

ResLK IndLH(ρ) '
⊕

s∈H\L/K

IndKs−1Hs∩K ρ
s
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where ρs is the representation of the group s−1Hs with the same underlying vector space
as ρ and action ρs(g) · v = ρ(sgs−1) · v.

This helps us immensely! One first notes that G = B t BsB, as discussed earlier. So
if we take the above formula with H = K = B, then B\G/B is a two element set, with
representatives I and s. Furthermore s−1Bs ∩B = T , so we can realize

ResGBR(ψ2) ' IndBB ψ̃2 ⊕ IndBT ψ
s
2

ψs2 = ψ−12 , since for t ∈ T , sts−1 = t−1. So in conclusion

〈R(ψ1), R(ψ2)〉G = 〈IndBT ψ1, IndBT ψ2〉B + 〈IndBT ψ1, IndBT ψ
−1
2 〉B = 〈ψ1, ψ2〉T + 〈ψ1, ψ

−1
2 〉T

If ψ 6= ψ−1, we see immediately that 〈R(ψ), R(ψ)〉G = 1, so R(ψ) is irreducible, and of
degree q + 11. We see furthermore that if ψ1 6= ψ2 and ψ1 6= ψ−12 , then R(ψ1) shares no
irreducible subrepresentations with R(ψ2).

If ψ = ψ−1, then ψ is either trivT or the unique quadratic character. In this case R(ψ)
decomposes as a sum of two irreducible elements.

R(trivT ) decomposes into two irreducible representations, trivG, of degree 1, and a
representation of degree q, called STq, the Steinberg representation.

For ψ the quadratic character, R(ψ) decomposes into two irreducible representations.
One can see that these representations are conjugate under the action of GL2(Fq) via
Clifford’s Theorem.

We have thus produced 2 + 2 + q−3
2 irreducible representations of G. There remain q+3

2
to construct.

As a final note, observe that the map ψ 7→ R(ψ) defines a functor from C[T ] modules
to C[G] modules. This functor admits a very nice characterization.

Define C[G/U ] as the vector space with basis given by the left cosets of G/U . G has a
left action on this vector space, and since T normalizes U , T can act on the right, making
C[G/U ] a (C[G],C[T ]) bimodule.

We have a functor from C[T ] modules to C[G] modules coming from M 7→ C[G]⊗C[T ]M .
It can be seen that the process of ”inflating” a T -representation to B and inducing to G is
exactly given by this tensor.

3 The Drinfeld Curve and irreducible representations com-
ing from T ′

We’d like to reproduce this work for T ′, but there is no analog of B. Inside GFq , the scheme

Spec(Fq[a, b]/(a2−bd2) sits inside a connected solvable subgroup scheme (a Borel), but this

1We call such character in general position
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scheme is not defined over Fq, so we can’t induce a representation from the group of its Fq
points.

Instead we have to look somewhere (seemingly) completely different. Let X be the
affine scheme cut out by the equation xyq − xqy = 1. Some basic facts:

� X is a smooth irreducible plane curve.

� There is an action of G on X given by restricting action of G on A2. To see this note

that for

[
a b
c d

]
in G

(ax+ by)(cx+ dy)q − (ax+ by)q(cx+ dy)

= acxq+1 + adxyq + bcxqy + bdyq+1 − acxq+1 − bcxyq − adxqy − bdyq+1

= (ad− bc)xyq − (ad− bc)xqy

� There is a different action of µq+1 on X, coming from ζ · (x, y) = (ζx, ζy).

� These two actions commute, giving X a G× µq+1 action

� X has many interesting quotients from this action:

– X/G ' A1

– X/U ' A1 − {0}
– X/µq+1 ' P1 − P1(Fq)

Why does this matter? We are close to having a situation siliar to before, where we
used a (G,T ) bimodule to induce representations. X of course doe not have a nice module
structure, but we can use it to produce bimodules via cohomology.

I’m going to say very little about the actual constructions and definitions of etale
cohomology. [4] is a great source for those wanting to learn more, [1] has an appendix with
a clean exposition of the relevant properties.

Given a variety V over a field k, and a choice of prime ` not dividing the characteristic
of k, one can associate to V a sequence of Q` vector spaces H i

c(V,Q`), called the compactly
supported etale cohomology with coefficients in Q`, indexed by nonnegative i, with the
following properties

� Functorality Given a morphism of varieties from V → W we get a map of vector
spaces from H i

c(W,Q`)→ H i
c(V,Q`). In particular, if a group G acts on a variety X,

we also get a G action on each of the cohomology groups.

� Vanishing For d > 2 dim(V ), Hd
c (V,Q`) = 0. If V is affine, then Hd

c (V,Q`) = 0 for
d < dim(V ) as well.
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� Euler Characteristic We can consider the virtual vector spaceH∗c (V,Q`) :=
∑

i≥0(−1)iH i
c(V,Q`).

Given an automorphism f of V , we define Tr∗V as

Tr∗V (f) =
∑
i≥0

Tr(γ,H i
c(V,Q`))

This value is actually rational and independent of choice of `.

If f has finite order, i.e. if f is the action of some element in a finite group G acting
on V , f is in fact an integer. If V is defined over Fq and f = F is the associated
frobenius then Tr∗V (F ) = #V (Fq).

This technology will help us in the following way. Given the previously described group
action, H∗c (V,Q`) is a virtual (Q`[G],Q`[T

′]) bimodule, with the T ′ action being thought
of as a right action. It will take the role of C[G/U ] in the previous construction. Given
a Q`[T

′] module (an `-adic T ′ representation) M , we produce a (virtual) Q`[G] module
representation by considering H∗c (V,Q`)⊗Q`[T ′] M .

FOr the rest of this paper I will write this as H∗c (V,Q`)⊗M Please note that this is a
tensor product of right and left Q`[T

′] modules, not a tensor product of T ′ representations.
As noted above Tr∗V (g) is an integer invariant of `. So though the representations we

will be producing technically depend on `, their characters will not. Though our previous
representations were over C, the actual field is immaterial. In fact, ` won’t really show up
any more, so I will assume the choice and write H i

c(V )
Here are two facts that will help us do computations.

1. For a group H acting on a variety V , H i
c(V )H ' H i

c(V/H). If H ⊂ H ′ is a normal
subgroup with H ′ extending the action of H, then this is an isomorphism of H/H ′

representations.

2. If V is irreducible, then H2d
c (V ) is one dimensional, and the action of any group on

V yields a finite action on the top cohomology

For θ a character of T ′, we define the Deligne-Lusztig Induction of θ as

R′(θ)−
∑
i≥0

(−1)iH i
c(X)⊗ Vθ

Where Vθ is the one dimensional representation of T ′ coming from θ.
Notice that by dimensional vanishing, this is just H1

c (X)⊗ Vθ −H2
c (X)⊗ Vθ.

Furthermore, since X is connected, H2
c (X) ' Vtriv, so for nontrivial θ, R′(θ) is the

(nonvirtual) representation H1
c (X)⊗ Vθ.
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Looking first at the trivial case we have

R′(triv) = H1
c (X)⊗ Vtriv −H2

c (X)⊗ Vtriv
= H1

c (X)T
′ − Vtriv

= H1
c (X/T ′)− Vtriv

= H1
c (P1 − P1(Fq))− Vtriv

It is a not very hard exercise in etale cohomology to compute that H1
c (P1−P1(Fq)) has di-

mension q. Slightly harder (and possibly in next week’s talk??) is that, as a representation
of G, this is Stq. I will omit the argument for this.

Now we can begin studying the induction of the nontrivial characters. There are a few
main results that give us what we want. I will outline the proofs of some, but not all of
them. My goal is to highlight how we can use the geometry of X to aid in representation
theoretic computations.

Theorem 1. For θ a character of T ′, R′(θ) = R′(θ−1)

Proof. This is obvious if θ = triv. For the others, it is sufficient to show that H1
c (X)⊗Vθ '

H1
c (X)⊗ Vθ−1 .

Denote by H̃1
c (X) the right T ′ module with underlying space H1

c (X) but with the

normal action of T ′ twisted by inversion. If we show H̃1
c (X) ' H1

c (X), that would prove
the proposition.

But the frobenius map F : X → X defines an automorphism of H1
c (X). For ζ ∈ T ′,

F ◦ ζ = ζ−1 ◦F , so F gives us the identification of the cohomology group and its twist.

[TODO: generalize this to orbit of character under weil group?]

Theorem 2. For θ a character of T ′, and ψ a character of T , 〈R(ψ), R′(θ)〉G = 0.

Proof. This is true by direct computation for θ = triv (The only nontrivial case is 〈R(triv), R′(triv)〉G,
and the terms cancel)

Now consider nontrivial θ. It is enough to verify the result for 〈R(regT ), R′(θ)〉G. The
left term is equivalent to

R(regT ) = IndGB RegT = IndGB IndBU trivU = IndGU trivU

Then via Frobenius reciprocity, we see we are trying to compute 〈trivU ,ResGU R
′(θ)〉 =

dim(H1
c (X)U ⊗ Vθ) as a vector space.

But H1
c (X)U ' H1

c (X/U) = H1
c (A\0). This is (cohomology fact!) a one dimensional

trivial representation of the group T ′, so H1
c (X)U ⊗ Vθ = 0.
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This shows that Deligne-Lusztig induction produces new characters compared to what
we have done before. WHY ARE THEY CALLED CUSPIDAL?

To understand the dimension of the curpidal characters, we cite a theorem of [?] that for
ζ ∈ T ′ nontrivial, Tr∗X(ζ) = Tr∗Xζ (1). But Xζ = ∅. This implies that, as a character of T ′,
H∗c (X) is a multiple of the character of regT ′ . This means for any two characters θ and θ′

dim(H∗c (X)⊗Vθ) = dim(H∗c (X)⊗Vθ′). Since dim(H∗c (X)⊗Vtriv) = dim(Stq)−dim(triv) =
q − 1, this means R′(θ) is always degree q − 1.

Finally, we show an analog of Mackey theory, which will allow us to show that the
representations we have induced are disntinct and (in all but one case) irreducible.

Theorem 3. For θ1 and θ2 characters of T ′, we have

〈R′(θ1), R′(θ2)〉G = 〈θ1, θ2〉T ′ + 〈θ1, θ−12 〉T ′

Not that this immediately implies that for θ in general position, R′(θ) is irreducible.
For θ′ the unique nontrivial character of order 2, R′(θ′) decomposes into two distinct,
irreducible representations. Thus, from the characters of T ′, we have added q−1

2 + 2 new

ones. This, added to our previous 4+ q−3
2 , brings us to a total of q+4, which is the number

we needed!
The proof of this theorem will be omitted. It involves understanding H∗c ((Y × Y )/G)

as a T ′ × T ′ module, interpreting the inner product above as the dimension of a subspace
of H∗c ((Y × Y )/G) where T ′ × T ′ acts in a specific way. For a full write up, see [1]

4 The Bigger Picture

Now, let G be any reductive algebraic group over an algebraically closed field of charac-
teristic p, obtained by extension of scalars from a group G0 over Fq. So the frobenius
F : G→ G is well defined.

We choose a maximal, F -stable torus T ⊂ G an F -stable Borel subgroup B containing
T , and a unipotent radical ⊂ B.

Define W = N(T0)/T0 the Weyl group. Up to isomorphism, these schemes/groups are
independent of choice of T . We will refer to an element w ∈W as if it were an element of
G, by choosing an arbitrary lift.

Then define Y (w) := {gU ∈ G/U |g−1F (g) ∈ UwU}
Define TwF (a finite abelian group) as the subgroup of T fixed by ad(w) ◦ F .
In the case of SL2, we choose T as the group of diagonal matrices, and U the group of

upper triangular matrices with 1 along the diagonal.

The weyl group has two elements, the identity and

[
0 1
−1 0

]
In the first case Y (w) turns

out to be a finite set, in fact, this set is exactly G/U??
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For the other case, we are solving[
d −a
b −d

] [
dq cq

bq aq

]
=

[
1 x
0 1

] [
0 1
−1 0

] [
1 y
0 1

]
[

∗ ∗
acq − caq ∗

]
=

[
−x 1− xy
−1 −y

]
So a and c have to satisfy exactly the equations of the Drinfeld curve (the other entries

pose no additional requirements)
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