Examples of the Brauer-Manin Obstruction

October 13, 2022

1 Review

For k a field, and X a scheme over k, we have defined $\operatorname{Br}(X)$, a contravariant functor from schemes to abelian groups. Using this contravariance, for any element A in $\operatorname{Br}(X)$ we get a map $\mathrm{ev}_{A}: X(k) \rightarrow \operatorname{Br}(k)^{1}$ by taking the image of A under the map $\operatorname{Br}(X) \rightarrow \operatorname{Br}(k)$ coming from applying the functor Br to the inclusion $\operatorname{Spec}(k) \hookrightarrow X$.

When k is a number field, we write \mathbb{A} for the adelic ring of k and this extends to a commutative diagram

Here, the right vertical map is the sum of the maps $\mathrm{ev}_{A}: X\left(k_{v}\right) \rightarrow \operatorname{Br}\left(k_{v}\right)$.
This is useful to determining k points, because there for all v there are maps inv_{v} : $\operatorname{Br}\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$, which can be summed to get a map inv : $\oplus_{v} \operatorname{Br}\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ making the bottom row exact.

So for any A in $\operatorname{Br}(X)$ any point in $X(\mathbb{A})$ could only lie in the image of $X(k)$ if it lies in the kernel of inv $\circ \mathrm{ev}_{A}$.

We define $X(\mathbb{A})^{\operatorname{Br}}:=\left\{x \in X(\mathbb{A}) \mid \operatorname{inv} \circ \mathrm{ev}_{A}(x)=0\right.$ for all $\left.A \in \operatorname{Br}(X)\right\}$, so clearly $X(k) \subset X(\mathbb{A})^{\mathrm{Br}}$

The goal of this talk will be to show examples and non-examples of this obstruction.

[^0]
2 Brauer-Severi Varieties and Projective Quadrics

Following [2] Chapter 7 A Severi-Brauer Variety over a field k is a variety X such that there exists a field extension K / k with $X \times_{k} K \simeq \mathbb{P}_{K}^{n}$

As twists of \mathbb{P}^{n}, Brauer-Severi varieties are classified up to k-isomorphism by elements of $H^{1}\left(\Gamma_{k}, P G L_{n}\left(k^{s}\right)\right)$ There is a short exact sequence of Γ_{k} modules

$$
1 \longrightarrow\left(k^{s}\right)^{*} \longrightarrow G L_{n}\left(k^{s}\right) \longrightarrow P G L_{n}\left(k^{s}\right) \longrightarrow 1
$$

Considering the corresponding long exact sequence in group cohomology, and recalling Hilbert's Theorem $90\left(\right.$ i.e. $\left.H^{1}\left(\Gamma_{k},\left(k^{s}\right)^{*}\right)=0\right)$ we see that there is an injection

$$
H^{1}\left(\Gamma_{k}, P G L_{n}\left(k^{s}\right)\right) \hookrightarrow H^{2}\left(\Gamma_{k},\left(k^{s}\right)^{*}\right) \simeq \operatorname{Br}(k)
$$

So to every Brauer-Severi variety X we can associate a class $A_{k}(X)$ in the Brauer group of k.

Châtelet's Theorem states that for any Severi-Braeur Variety X over a field $k, X(k) \neq \emptyset$ if and only if $X \simeq \mathbb{P}_{k}^{n}$ if and only if $A_{k}(X)=0$.

This is (mostly) sufficient to see that the local-to-global principle holds for BrauerSeveri varieties. We need to know as well that the map A is compatible with base change. That is, if K is an extension of k

$$
A_{K}\left(X \times_{k} K\right)=\operatorname{Res}_{K / k} A_{k}(X)
$$

Once we know this, the proof is as follows. Let X be a Brauer-Severi variety over a number field k. At a place v of k, if $X \times k_{v}$ has a k_{v}-point, then $A_{k_{v}}\left(X \times k_{v}\right)=0$, by Chatelet. If this is true for all v, then $A_{k}(X)$ is in the kernel of the map

$$
\operatorname{Br}(k) \rightarrow \bigoplus_{v} \operatorname{Br}\left(k_{v}\right)
$$

But this map is an injection, so $A_{k}(X)=0$ and thus X has a k point.
With this established, let's look at our example, a much weaker result
Proposition 1. Brauer-Severi varieties have no Brauer-Manin obstruction to the localglobal principle

We will show this by (partially) computing $\operatorname{Br}(Y)$ for Y any Brauer-Severi variety, and then showing that for all Brauer-Severi Varieties X over a number field k, The BrauerManin set of X is $\prod_{v} X\left(k_{v}\right)$.

For any scheme X over a field k, with structure morphism $\pi: X \rightarrow \operatorname{Spec}(k)$, the Leray Spectral sequence has E^{2} page

$$
H^{p}\left(\Gamma_{k}, H_{e t}^{q}\left(X^{s}, \mathbb{G}_{m}\right)\right) \Rightarrow H_{e t}^{p+q}\left(X, \mathbb{G}_{m}\right)
$$

The (longer) short exact sequence of low degree terms gives

$$
\begin{aligned}
0 & \rightarrow H^{1}\left(\Gamma_{k}, \Gamma\left(X^{s}, \mathcal{O}_{X^{s}}^{*}\right)\right) \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)^{\Gamma_{k}} \\
& \rightarrow H^{2}\left(\Gamma_{k}, \Gamma\left(X^{s}, \mathcal{O}_{X^{s}}^{*}\right)\right) \rightarrow \operatorname{Br}_{1}(X) \rightarrow H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(X^{s}\right)\right)
\end{aligned}
$$

Here, $B r_{1}(X)$ is, following the notation used in Coliot-Thelene and Skorobogatov, $\operatorname{Ker}\left[\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X^{s}\right)\right]$.

For X^{s} connected and projective, the global sections of $\mathcal{O}_{X^{s}}$ are constant functions. We can once more invoke Hilbert's Theorem 90 , as well as recall that $\operatorname{Br}\left(\mathbb{P}_{k^{s}}^{n}\right)=0$ to reduce our sequence to

$$
0 \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)^{\Gamma_{k}} \rightarrow \operatorname{Br}(k) \rightarrow \operatorname{Br}(X) \rightarrow H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(X^{s}\right)\right)
$$

For X a Brauer-Severi variety, $X^{s} \simeq \mathbb{P}^{n}$ and $\operatorname{Pic}\left(X^{s}\right) \simeq \mathbb{Z}$ is generated by the class of a hyperplane. $\operatorname{Pic}\left(X^{s}\right)$ is invariant under the action of Γ^{k}. This means the last term in the sequence is $\operatorname{Hom}_{\text {cont }}\left(\Gamma_{k}, \mathbb{Z}\right)=0$ and we have $\operatorname{Br}(k)$ surjects on to $\operatorname{Br}(X)$.

It turns out, that the kernel of this map is the cyclic subgroup generated by $A_{k}(X)$, but for our purposes, surjection is sufficient.

Now returning to our general diagram for the Brauer-Manin obstruction, we see that any choice of an element α in $\operatorname{Br}(X)$ must lift to some element in $\widetilde{\alpha}$ in $\operatorname{Br}(k)$, so evaluating at α must give a constant map $X(k) \rightarrow \operatorname{Br}(k)$, and therefore the Brauer-Manin set is the entirety of $\Pi X\left(k_{v}\right)$

We see the same phenomenon when Q is a smooth quadric. Once again, the local-toglobal principle for quadric surfaces is established by the Hasse-Minkowski theorem, and we can use surjectivity of the map $\operatorname{Br}(k) \rightarrow \operatorname{Br}(Q)$ to establish by identical reasoning that there is no Brauer-Manin obstruction.

The same sequence above used for Q instead of X is very similar.

$$
\begin{aligned}
0 & \rightarrow H^{1}\left(\Gamma_{k}, \Gamma\left(Q^{s}, \mathcal{O}_{Q^{s}}^{*}\right)\right) \rightarrow \operatorname{Pic}(Q) \rightarrow \operatorname{Pic}(Q)^{\Gamma_{k}} \\
& \rightarrow H^{2}\left(\Gamma_{k}, \Gamma\left(Q^{s}, \mathcal{O}_{Q^{s}}^{*}\right)\right) \rightarrow \operatorname{Br}_{1}(Q) \rightarrow H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(X^{s}\right)\right.
\end{aligned}
$$

Since Q^{s} is projective and connected, we can use Hilbert's Theorem 90 once more, and since X^{s} is birational to \mathbb{P}^{n}, and the Brauer group is a birational invariant, $\operatorname{Br}\left(X^{s}\right)=0$, so we once more have

$$
0 \rightarrow \operatorname{Pic}(Q) \rightarrow \operatorname{Pic}(Q)^{\Gamma_{k}} \rightarrow \operatorname{Br}(k) \rightarrow \operatorname{Br}(Q) \rightarrow H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(Q^{s}\right)\right)
$$

If $\operatorname{Dim}(Q)=1$ then Q is a Brauer-Severi variety and we have already seen that $\operatorname{Br}(k)$ surjects onto $\operatorname{Br}(Q)$. In this case it is also not hard to see that the kernel is the class $A(Q)$ in $\operatorname{Br}(k)$.
$A(Q)$ is the kernel of the map $\operatorname{Br}(k) \rightarrow \operatorname{Br}(K(Q))$, which factors through the injection $\operatorname{Br}(Q) \rightarrow \operatorname{Br}\left(K(Q)\right.$, so $A(Q)$ lies in the kernel. Meanwhile, the map $\operatorname{Pic}(Q) \rightarrow \operatorname{Pic}(Q)^{\Gamma_{k}}$ contains $2 \mathbb{Z}$ in its image, by considering the image of the canonical class of Q in $\operatorname{Pic}(Q)$.

When $n=\operatorname{Dim}(\mathbb{Q})>2$ then $\operatorname{Pic}\left(Q^{s}\right) \simeq \operatorname{Pic}\left(\mathbb{P}^{n}\right)$ so $H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(Q^{s}\right)\right)$ is trivial, and in fact we have an isomorphism $\operatorname{Br}(k) \simeq \operatorname{Br}(Q)$

When $n=2 \operatorname{Pic}\left(Q^{s}\right) \simeq \mathbb{Z} \times \mathbb{Z}$ generated by the two rulings of the quadric surface. The action of Γ_{k} is either trivial, or permutes these two rulings, and in either case $H^{1}\left(\Gamma_{k}, \operatorname{Pic}\left(Q^{s}\right)\right)=0$. The same argument before concerning the surjectivity of $\operatorname{Br}(k)$ onto $\operatorname{Br}(Q)$

3 Iskovskikh's conic bundle

Following [1] Chapter 8.2
A conic over a field is the zero locus in \mathbb{P}^{2} of a nonzero degree 2 homogenous polynomial. Another way of saying this is that it is a nonzero element of $\operatorname{Sym}^{2}\left(k^{3}\right)$.

To generalize to a variety X, take a rank 3 vector bundle \mathcal{E} with a nowhere vanishing section $s \in \Gamma\left(X, \operatorname{Sym}^{2} \mathcal{E}\right)$ The zero locus of s in $\operatorname{Proj}(\operatorname{Sym} \mathcal{E})$ is called a conic bundle on X. Note that the fibers over a closed point are all conics in the sense above.

A Châtelet Surface is a further specialization above. We take

- $X=\mathbb{P}_{k}^{1}$ for $\operatorname{char}(k) \neq 2$, defined in the variables x and w
- $\mathcal{E}=\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(2)$
- $s=(1, a,-F(x, w))$ for $a \in k^{*}$ and $F(x, w) \in \Gamma\left(\mathbb{P}^{1}, \mathcal{O}(4)\right)$ a separable degree 4 homogenous polynomial.

The result is a (generically?) smooth, projective, geometrically integral surface S. It contains as an open the affine surface

$$
y^{2}-a z^{2}=f(x)
$$

Where $f(x)=F(x, 1)$.
S comes with a map $S \rightarrow \mathbb{P}^{1}$, and the fibers of this map are smooth conics except where F is zero, in which case they are (geometrically) two intersecting lines.

Iskovsikh's example is the surface S where $k=\mathbb{Q}, a=1$ and $f(x)=\left(3-x^{2}\right)\left(x^{2}-2\right)$.
Proposition 2. S has a Brauer-Manin obstruction to having rational points
Proof. First note that S has points everywhere locally. I'll refrain from handling the places of bad reduction. To handle finite places where S is smooth, note that every integer n is a sum of two squares mod p for any p. At the real place, if $2<x^{2}<3$ then there are come y and z to find a real point.

Now we need to choose a Brauer class on S. Set $K=k(S)$ By purity, an element of $\operatorname{Br}(K)$ that has no residues at any divisor restricts to an element of $\operatorname{Br}(S)$. That is to say, we pick an element A of $\operatorname{Br}(K)$ and open sets U_{i} that cover S such that A extends to an element of $\operatorname{Br}\left(U_{i}\right)$ for all i.

Define $\alpha=\left(3-x^{2},-1\right), \beta=\left(x^{2}-2,-1\right)$ and $\gamma=\left(3 / x^{2}-1,-1\right)$.
Recall that, in the Brauer group $(a, b)+(c, b)=(a c, b)$. Then

$$
\alpha+\beta=\left(y^{2}+z^{2},-1\right)
$$

This is a split algebra because $y^{2}+z^{2}$ is the norm of $y+\sqrt{-1} z$ in $K(\sqrt{-1})$. Since quaternion algebras are order 2 , this proves $\alpha=\beta$ in $\operatorname{Br}(K)$.

Similarly, $\alpha-\gamma=(1,-1)$ which is trivial.
α is defined everywhere away from the zeroes and poles of $3-x^{2}$. β is defined on an open set containing the zeroes, γ is defined on an open set containing the poles, so we have a well defined element of $\operatorname{Br}(S)$, which we will call A.

Now we need to understand $\operatorname{inv}_{v}(A(P))$ for $P \in S\left(\mathbb{Q}_{v}\right)$ for all places v.
Case I Suppose $v=p \notin\{2, \infty\}$. set $x=x(P) \in \mathbb{Q}_{p} \cup \infty$. If $x=\infty$ or $v_{p}(x)<0$ then $3 / x^{2}-1 \in \mathbb{Z}_{p}^{\times}$. Otherwise either $3-x^{2}$ or $x^{2}-2$ is in \mathbb{Z}^{\times}since the two expressions sum to 1 .

In any case, we can write $A=\left(u_{1}, u_{2}\right)$ for $u_{i} \in \mathbb{Z}_{p}^{\times}$. Since $p \neq 2$, this means A extends a Azumaya algebra over \mathbb{Z}_{p}. But we know $\operatorname{Br}\left(\mathbb{Z}_{p}\right)=0$, so $A(P)=0$

Case II For $v=\infty S(\mathbb{R})$ contains no points with $x(P)=\infty$, since $-x^{4}$ cannot be a sum of squares. Either $3-x^{2}$ or $x^{2}-2$ must be positive, so A can be written as $(n,-1)$ with $n>0$, so A is trivial.

Case III For $v=2$ then

$$
\begin{array}{r}
v(x)>0 \Rightarrow 3-x^{2} \equiv-1(\bmod 4) \\
v(x)=0 \Rightarrow x^{2}-2 \equiv-1(\bmod 4) \\
v(x)<0 \Rightarrow 3 / x^{2}-1 \equiv-1(\bmod 4)
\end{array}
$$

But for $a \equiv-1 \bmod 4, a$ is not a norm of $\mathbb{Q}_{2}[\sqrt{-1}]$, so in this case A is not trivial.
We then have that for any point s of $S(\mathbb{A}), \operatorname{inv}\left(A(s)=\frac{1}{2}\right.$. Therefore $S(\mathbb{A})^{B r}=\emptyset$.
Apparently, Iskovskikh constructed this example to demonstrate a case where BMO could not be used to show a lack of rational points, and only later was it demonstrated that in fact the Brauer-Manin set is empty in this case.

It is a result of Colliot-Thélène, Sansuc, and Swinnerton-Dyer that for Chatelet surfaces, the Brauer-Manin obstruction is the only obstruction to the Hasse-Principle, and furthermore $S(k)$ is dense in $S(\mathbb{A})^{B r}$.

This has been extended to conic bundles over \mathbb{P}^{1} with 5 singular fibers, and is conjectured to hold for any number of singular fibers.

4 Weak Approximation

A variety X satisfies weak approximation if $X(k)$ is dense in $X(\mathbb{A})$. Since $X(k) \subset X(\mathbb{A})^{B r}$ and $X(\mathbb{A})^{B r}$ is closed in $X(\mathbb{A})$, then whenever $X(\mathbb{A})^{B r} \neq X(\mathbb{A})$ we know immediately that X does not satisfy weak approximation.

Proposition 3. Let X be a scheme over a number field k such that there is an element $A \in \operatorname{Br}(X)$ and a place w of k such that the map $\mathrm{ev}_{A}: X\left(k_{w}\right) \rightarrow \operatorname{Br}\left(k_{w}\right)$ is non-constant. Then X does not satisfy weak approximation

Proof. If X does not have a k-point it does not satisfy weak approximation, so assume $P \in X(k)$ is a k-point. Then the image of P under the inclusion $X(k) \hookrightarrow X(\mathbb{A})$ is an adelic point, which we will denote $\left(P_{v}\right)_{v}$

By assumption, there is a point Q in $X\left(k_{w}\right)$ such that $\operatorname{ev}_{A}(Q) \neq \operatorname{ev}_{A}\left(P_{w}\right)$. Then we can construct a new adelic point $\left(P_{v}^{\prime}\right)_{v}$ such that for $v \neq w P_{v}^{\prime}=P_{v}$ and $P_{w}^{\prime}=Q$. Then

$$
i n v \operatorname{ev}_{A}\left(P^{\prime}\right)=i n v_{w}\left(\operatorname{ev}_{A}(Q)\right)-i n v_{w}\left(\operatorname{ev}_{A}\left(P_{w}\right)\right) \neq 0
$$

Therefore $X(\mathbb{A})^{B r} \neq X(\mathbb{A})$ and weak approximation fails.
In fact, if X is proper and there is a finite set S of places v where A is not identically 0 on $X\left(k_{v}\right) . X(k)$ is not even dense in $\prod_{S} X\left(k_{v}\right)$.

This example is due to Swinnerton-Dyer. Let U be the affine surface

$$
y^{2}+z^{2}=(4 x-7)\left(x^{2}-2\right) \neq 0
$$

This is another conic bundle over \mathbb{P}^{1}. Take X to be its compactification. A similar argument to the eariler example shows that $A=(4 x-7,-1)$ gives a well defined class in $\operatorname{Br}(X)$. See [2] 6.3.1 for a more general principle for the construction of some quaternion algebras on conic bundles of this form.

We can similarly argue that for p not 2 or $\infty, \mathrm{ev}_{A}: X\left(\mathbb{Q}_{p}\right) \rightarrow \operatorname{Br}\left(\mathbb{Q}_{p}\right)$ is the zero map. In this case however, the map is zero on $X\left(\mathbb{Q}_{2}\right)$ as well.
$U(\mathbb{R})$ has two connected components, corresponding to $-\sqrt{2}<x<\sqrt{2}$ and $x>7 / 4$. On the first component, evaluating real points at A will produce a non-trivial of $\operatorname{Br}(\mathbb{R})$, but on the second the resulting quaternion algebra will be \mathbb{R}-split. We conclude that \mathbb{Q} points can only occur on one of the connected real components.

5 Insufficiency of Brauer-Manin Obstruction

Following [2] chapter 14 Say we have the following

- k is a number field with a real place v
- C is a nice curve over k such that $C(k)$ consists of a single element P
- $\Pi \subset C\left(k_{v}\right)$ is an open interval containing P
- $f: C \rightarrow \mathbb{P}^{1}$ is a map chosen so that
$-f(P)=\infty$ and f is unramified at P
- f is unramified over 0
- $a>0$ in k (we use v to define being positive) is such that f is unramified over $t=a$ and $a \in f(\Pi)$
- $Q\left(x_{0}, x_{1}, x_{2}\right)$ is a quadratic homogenous form over k that represents 0 at all places of k except v and one other place w. We may assume Q is positive definite at v.
- $n \in k$ with $n>0$ and $-n Q(1,0,0) \in k_{w}^{2}$

We now construct a quadric bundle Y over \mathbb{P}^{1}. Over $\mathbb{P}^{1} \backslash \infty$ we take the bundle defined by

$$
Q\left(x_{0}, x_{1}, x_{2}\right)+n t(t-a) x_{3}^{2}=0
$$

Here t is the coordinate on $\mathbb{A}^{1}=\mathbb{P}^{1} \backslash \infty$
Over $\mathbb{P}^{1} \backslash 0$ we take the bundle defined by

$$
Q\left(x_{0}, x_{1}, x_{2}\right)+n(1-a T) X_{3}^{2}=0
$$

Over $\mathbb{P}^{1} \backslash\{0, \infty\}$ we glue the two bundles together by taking $t=T^{-1}$ and $X_{3}=t x_{3}$. This produces a smooth quadric bundle Y with degenerate fibers only over $t=0$ and $t=a$.

Now take $X=Y \times_{\mathbb{P}^{1}} C . p: X \rightarrow C$ is a smooth "quadric bundle".
We first observe that $X(k)=\emptyset$. SInce $C(k)=\{P\}$, any k-points of X must lie in X_{P}, the fiber over P. But this is the conic

$$
Q\left(x_{0}, x_{1}, x_{2}\right)+n X_{3}^{2}=0
$$

And this quadric has no k_{v} points since Q is k_{v} positive definite.
By assumption, X_{P} has k_{η} points for all η not equal to v or w, since Q represents 0 at those places. Since $-n Q(1,0,0)$ is a square in k_{w}, X_{P} has a k_{w} point.

We can find a k_{v} point of X by taking Q to be a point of C lying above $a . X_{Q}$ is a quadric cone, and its singular point is a k_{v} point. We can take all of these points together to produce a point of $x \in X(\mathbb{A})$.

The idea is then to show that π is always 0 when paired with an element of $\operatorname{Br}(X)$. From [] we have

Proposition 4. Let $f: X \rightarrow Y$ be a proper surjective morphism of smooth geometrically integral varieties over a field k of characteristic zero such that the generic fibre X_{K} is a smooth quadric of dimension at least 1. Suppose that either all the fibres over points of codimension 1 in Y are split, or $\operatorname{dim}\left(X_{K}\right) \geq 3$. Then the map $f^{*}: \operatorname{Br}(Y) \rightarrow \operatorname{Br}(X)$ is surjective

This show that $\operatorname{Br}(C)$ surjects onto $\operatorname{Br}(X)$. So for any point x in $X\left(k_{\eta}\right)$ we can evaluate it with a Brauer class $A \in \operatorname{Br}(X)$ by taking a lift of A to $\operatorname{Br}(C)$ and pairing it with the image of x in $C\left(k_{\eta}\right)$.
$x_{\eta} \in\left(X_{\eta}\right)_{P}$ for $\eta \neq v$, and $P \in C(k)$ so for any $A \in \operatorname{Br}(X) e v_{A}\left(x_{\eta}\right)=e v_{A}(P)$.
Furthermore, $p\left(x_{v}\right)$ lies in Π, so it lies in the same connected component of $C\left(k_{v}\right)$ as P does, so $e v_{A}\left(\pi_{v}\right)=e v_{A}(P)$ So then

$$
\operatorname{inv}\left(e v_{A}(x)\right)=\sum_{\eta} \operatorname{inv}\left(A\left(x_{\eta}\right)\right)=\sum_{\eta} \operatorname{inv}(A(P))=0
$$

This shows that x is contained in $X(\mathbb{A})^{B r}$.

References

[1] Bjorn Poonen Rational Points on Varieties
[2] Jean-Louis Colliot-Thélène Alexei N. Skorobogatov The Brauer-Grothendieck Group

[^0]: ${ }^{1} \mathrm{I}$ will abuse notation and write $\operatorname{Br}(k)$ instead of $\operatorname{Br}(\operatorname{Spec}(k))$

