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1 Review

For k a field, and X a scheme over k, we have defined Br(X), a contravariant functor from
schemes to abelian groups. Using this contravariance, for any element A in Br(X) we get
a map evA : X(k) → Br(k)1 by taking the image of A under the map Br(X) → Br(k)
coming from applying the functor Br to the inclusion Spec(k) ↪→ X.

When k is a number field, we write A for the adelic ring of k and this extends to a
commutative diagram

X(k) X(A)

Br(k) ⊕v Br(kv)

evA evA

Here, the right vertical map is the sum of the maps evA : X(kv)→ Br(kv).
This is useful to determining k points, because there for all v there are maps invv :

Br(kv) → Q/Z, which can be summed to get a map inv : ⊕v Br(kv) → Q/Z making the
bottom row exact.

X(k) X(A)

0 Br(k) ⊕v Br(kv) Q/Z 0

evA evA

inv

So for any A in Br(X) any point in X(A) could only lie in the image of X(k) if it lies
in the kernel of inv ◦ evA.

We define X(A)Br := {x ∈ X(A)| inv ◦ evA(x) = 0 for all A ∈ Br(X)}, so clearly
X(k) ⊂ X(A)Br

The goal of this talk will be to show examples and non-examples of this obstruction.

1I will abuse notation and write Br(k) instead of Br(Spec(k))
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2 Brauer-Severi Varieties and Projective Quadrics

Following [2] Chapter 7 A Severi-Brauer Variety over a field k is a variety X such that
there exists a field extension K/k with X ×k K ' PnK

As twists of Pn, Brauer-Severi varieties are classified up to k-isomorphism by elements
of H1(Γk, PGLn(ks)) There is a short exact sequence of Γk modules

1 (ks)∗ GLn(ks) PGLn(ks) 1

Considering the corresponding long exact sequence in group cohomology, and recalling
Hilbert’s Theorem 90 (i.e. H1(Γk, (k

s)∗) = 0) we see that there is an injection

H1(Γk, PGLn(ks)) ↪→ H2(Γk, (k
s)∗) ' Br(k)

So to every Brauer-Severi variety X we can associate a class Ak(X) in the Brauer group
of k.

Châtelet’s Theorem states that for any Severi-Braeur Variety X over a field k, X(k) 6= ∅
if and only if X ' Pnk if and only if Ak(X) = 0.

This is (mostly) sufficient to see that the local-to-global principle holds for Brauer-
Severi varieties. We need to know as well that the map A is compatible with base change.
That is, if K is an extension of k

AK(X ×k K) = ResK/kAk(X)

Once we know this, the proof is as follows. Let X be a Brauer-Severi variety over a
number field k. At a place v of k, if X × kv has a kv-point, then Akv(X × kv) = 0, by
Chatelet. If this is true for all v, then Ak(X) is in the kernel of the map

Br(k)→
⊕
v

Br(kv)

But this map is an injection, so Ak(X) = 0 and thus X has a k point.
With this established, let’s look at our example, a much weaker result

Proposition 1. Brauer-Severi varieties have no Brauer-Manin obstruction to the local-
global principle

We will show this by (partially) computing Br(Y ) for Y any Brauer-Severi variety, and
then showing that for all Brauer-Severi Varieties X over a number field k, The Brauer-
Manin set of X is

∏
vX(kv).

For any scheme X over a field k, with structure morphism π : X → Spec(k), the Leray
Spectral sequence has E2 page

Hp(Γk, H
q
et(X

s,Gm))⇒ Hp+q
et (X,Gm)
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The (longer) short exact sequence of low degree terms gives

0→ H1(Γk,Γ(Xs,O∗Xs))→ Pic(X)→ Pic(X)Γk

→ H2(Γk,Γ(Xs,O∗Xs))→ Br1(X)→ H1(Γk, P ic(X
s))

Here, Br1(X) is, following the notation used in Coliot-Thelene and Skorobogatov,
Ker[Br(X)→ Br(Xs)].

For Xs connected and projective, the global sections of OXs are constant functions. We
can once more invoke Hilbert’s Theorem 90, as well as recall that Br(Pnks) = 0 to reduce
our sequence to

0→ Pic(X)→ Pic(X)Γk → Br(k)→ Br(X)→ H1(Γk,Pic(Xs))

For X a Brauer-Severi variety, Xs ' Pn and Pic(Xs) ' Z is generated by the class of a
hyperplane. Pic(Xs) is invariant under the action of Γk. This means the last term in the
sequence is Homcont(Γk,Z) = 0 and we have Br(k) surjects on to Br(X).

It turns out, that the kernel of this map is the cyclic subgroup generated by Ak(X),
but for our purposes, surjection is sufficient.

Now returning to our general diagram for the Brauer-Manin obstruction, we see that
any choice of an element α in Br(X) must lift to some element in α̃ in Br(k), so evaluating
at α must give a constant map X(k) → Br(k), and therefore the Brauer-Manin set is the
entirety of

∏
X(kv)

We see the same phenomenon when Q is a smooth quadric. Once again, the local-to-
global principle for quadric surfaces is established by the Hasse-Minkowski theorem, and
we can use surjectivity of the map Br(k)→ Br(Q) to establish by identical reasoning that
there is no Brauer-Manin obstruction.

The same sequence above used for Q instead of X is very similar.

0→ H1(Γk,Γ(Qs,O∗Qs))→ Pic(Q)→ Pic(Q)Γk

→ H2(Γk,Γ(Qs,O∗Qs))→ Br1(Q)→ H1(Γk,Pic(Xs)

Since Qs is projective and connected, we can use Hilbert’s Theorem 90 once more, and
since Xs is birational to Pn, and the Brauer group is a birational invariant, Br(Xs) = 0,
so we once more have

0→ Pic(Q)→ Pic(Q)Γk → Br(k)→ Br(Q)→ H1(Γk,Pic(Qs))

If Dim(Q) = 1 then Q is a Brauer-Severi variety and we have already seen that Br(k)
surjects onto Br(Q). In this case it is also not hard to see that the kernel is the class A(Q)
in Br(k).
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A(Q) is the kernel of the map Br(k)→ Br(K(Q)), which factors through the injection
Br(Q) → Br(K(Q), so A(Q) lies in the kernel. Meanwhile, the map Pic(Q) → Pic(Q)Γk

contains 2Z in its image, by considering the image of the canonical class of Q in Pic(Q).
When n = Dim(Q) > 2 then Pic(Qs) ' Pic(Pn) so H1(Γk,Pic(Qs)) is trivial, and in

fact we have an isomorphism Br(k) ' Br(Q)
When n = 2 Pic(Qs) ' Z × Z generated by the two rulings of the quadric sur-

face. The action of Γk is either trivial, or permutes these two rulings, and in either case
H1(Γk,Pic(Qs)) = 0. The same argument before concerning the surjectivity of Br(k) onto
Br(Q)

3 Iskovskikh’s conic bundle

Following [1] Chapter 8.2
A conic over a field is the zero locus in P2 of a nonzero degree 2 homogenous polynomial.

Another way of saying this is that it is a nonzero element of Sym2(k3).
To generalize to a variety X, take a rank 3 vector bundle E with a nowhere vanishing

section s ∈ Γ(X,Sym2 E) The zero locus of s in Proj(Sym E) is called a conic bundle on
X. Note that the fibers over a closed point are all conics in the sense above.

A Châtelet Surface is a further specialization above. We take

� X = P1
k for char(k) 6= 2, defined in the variables x and w

� E = O ⊕O ⊕O(2)

� s = (1, a,−F (x,w)) for a ∈ k∗ and F (x,w) ∈ Γ(P1,O(4)) a separable degree 4
homogenous polynomial.

The result is a (generically?) smooth, projective, geometrically integral surface S. It
contains as an open the affine surface

y2 − az2 = f(x)

Where f(x) = F (x, 1).
S comes with a map S → P1, and the fibers of this map are smooth conics except where

F is zero, in which case they are (geometrically) two intersecting lines.
Iskovsikh’s example is the surface S where k = Q, a = 1 and f(x) = (3− x2)(x2 − 2).

Proposition 2. S has a Brauer-Manin obstruction to having rational points

Proof. First note that S has points everywhere locally. I’ll refrain from handling the places
of bad reduction. To handle finite places where S is smooth, note that every integer n is a
sum of two squares mod p for any p. At the real place, if 2 < x2 < 3 then there are come
y and z to find a real point.
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Now we need to choose a Brauer class on S. Set K = k(S) By purity, an element of
Br(K) that has no residues at any divisor restricts to an element of Br(S). That is to say,
we pick an element A of Br(K) and open sets Ui that cover S such that A extends to an
element of Br(Ui) for all i.

Define α = (3− x2,−1), β = (x2 − 2,−1) and γ = (3/x2 − 1,−1).
Recall that, in the Brauer group (a, b) + (c, b) = (ac, b). Then

α+ β = (y2 + z2,−1)

This is a split algebra because y2+z2 is the norm of y+
√
−1z in K(

√
−1). Since quaternion

algebras are order 2, this proves α = β in Br(K).
Similarly, α− γ = (1,−1) which is trivial.
α is defined everywhere away from the zeroes and poles of 3 − x2. β is defined on an

open set containing the zeroes, γ is defined on an open set containing the poles, so we have
a well defined element of Br(S), which we will call A.

Now we need to understand invv(A(P )) for P ∈ S(Qv) for all places v.
Case I Suppose v = p 6∈ {2,∞}. set x = x(P ) ∈ Qp ∪∞. If x = ∞ or vp(x) < 0 then

3/x2 − 1 ∈ Z×p . Otherwise either 3 − x2 or x2 − 2 is in Z× since the two expressions sum
to 1.

In any case, we can write A = (u1, u2) for ui ∈ Z×p . Since p 6= 2, this means A extends
a Azumaya algebra over Zp. But we know Br(Zp) = 0, so A(P ) = 0

Case II For v = ∞ S(R) contains no points with x(P ) = ∞, since −x4 cannot be a
sum of squares. Either 3 − x2 or x2 − 2 must be positive, so A can be written as (n,−1)
with n > 0, so A is trivial.

Case III For v = 2 then

v(x) > 0⇒ 3− x2 ≡ −1(mod 4)

v(x) = 0⇒ x2 − 2 ≡ −1(mod 4)

v(x) < 0⇒ 3/x2 − 1 ≡ −1(mod 4)

But for a ≡ −1 mod 4, a is not a norm of Q2[
√
−1], so in this case A is not trivial.

We then have that for any point s of S(A), inv(A(s) = 1
2 . Therefore S(A)Br = ∅.

Apparently, Iskovskikh constructed this example to demonstrate a case where BMO
could not be used to show a lack of rational points, and only later was it demonstrated
that in fact the Brauer-Manin set is empty in this case.

It is a result of Colliot-Thélène, Sansuc, and Swinnerton-Dyer that for Chatelet sur-
faces, the Brauer-Manin obstruction is the only obstruction to the Hasse-Principle, and
furthermore S(k) is dense in S(A)Br.

This has been extended to conic bundles over P1 with 5 singular fibers, and is conjec-
tured to hold for any number of singular fibers.
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4 Weak Approximation

A variety X satisfies weak approximation if X(k) is dense in X(A). Since X(k) ⊂ X(A)Br

and X(A)Br is closed in X(A), then whenever X(A)Br 6= X(A) we know immediately that
X does not satisfy weak approximation.

Proposition 3. Let X be a scheme over a number field k such that there is an element
A ∈ Br(X) and a place w of k such that the map evA : X(kw)→ Br(kw) is non-constant.
Then X does not satisfy weak approximation

Proof. If X does not have a k-point it does not satisfy weak approximation, so assume
P ∈ X(k) is a k-point. Then the image of P under the inclusion X(k) ↪→ X(A) is an adelic
point, which we will denote (Pv)v

By assumption, there is a point Q in X(kw) such that evA(Q) 6= evA(Pw). Then we
can construct a new adelic point (P ′v)v such that for v 6= w P ′v = Pv and P ′w = Q. Then

inv evA(P ′) = invw(evA(Q))− invw(evA(Pw)) 6= 0

Therefore X(A)Br 6= X(A) and weak approximation fails.

In fact, if X is proper and there is a finite set S of places v where A is not identically
0 on X(kv). X(k) is not even dense in

∏
S X(kv).

This example is due to Swinnerton-Dyer. Let U be the affine surface

y2 + z2 = (4x− 7)(x2 − 2) 6= 0

This is another conic bundle over P1. TakeX to be its compactification. A similar argument
to the eariler example shows that A = (4x− 7,−1) gives a well defined class in Br(X). See
[2] 6.3.1 for a more general principle for the construction of some quaternion algebras on
conic bundles of this form.

We can similarly argue that for p not 2 or ∞, evA : X(Qp)→ Br(Qp) is the zero map.
In this case however, the map is zero on X(Q2) as well.

U(R) has two connected components, corresponding to −
√

2 < x <
√

2 and x > 7/4.
On the first component, evaluating real points at A will produce a non-trivial of Br(R),
but on the second the resulting quaternion algebra will be R-split. We conclude that Q
points can only occur on one of the connected real components.

5 Insufficiency of Brauer-Manin Obstruction

Following [2] chapter 14 Say we have the following

� k is a number field with a real place v

� C is a nice curve over k such that C(k) consists of a single element P
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� Π ⊂ C(kv) is an open interval containing P

� f : C → P1 is a map chosen so that

– f(P ) =∞ and f is unramified at P

– f is unramified over 0

� a > 0 in k (we use v to define being positive) is such that f is unramified over t = a
and a ∈ f(Π)

� Q(x0, x1, x2) is a quadratic homogenous form over k that represents 0 at all places of
k except v and one other place w. We may assume Q is positive definite at v.

� n ∈ k with n > 0 and −nQ(1, 0, 0) ∈ k2
w

We now construct a quadric bundle Y over P1. Over P1\∞ we take the bundle defined
by

Q(x0, x1, x2) + nt(t− a)x2
3 = 0

Here t is the coordinate on A1 = P1\∞
Over P1\0 we take the bundle defined by

Q(x0, x1, x2) + n(1− aT )X2
3 = 0

Over P1\{0,∞} we glue the two bundles together by taking t = T−1 and X3 = tx3. This
produces a smooth quadric bundle Y with degenerate fibers only over t = 0 and t = a.

Now take X = Y ×P1 C. p : X → C is a smooth ”quadric bundle”.
We first observe that X(k) = ∅. SInce C(k) = {P}, any k-points of X must lie in XP ,

the fiber over P . But this is the conic

Q(x0, x1, x2) + nX2
3 = 0

And this quadric has no kv points since Q is kv positive definite.
By assumption, XP has kη points for all η not equal to v or w, since Q represents 0 at

those places. Since −nQ(1, 0, 0) is a square in kw, XP has a kw point.
We can find a kv point of X by taking Q to be a point of C lying above a. XQ is a

quadric cone, and its singular point is a kv point. We can take all of these points together
to produce a point of x ∈ X(A).

The idea is then to show that π is always 0 when paired with an element of Br(X).
From [] we have

Proposition 4. Let f : X → Y be a proper surjective morphism of smooth geometrically
integral varieties over a field k of characteristic zero such that the generic fibre XK is a
smooth quadric of dimension at least 1. Suppose that either all the fibres over points of
codimension 1 in Y are split, or dim(XK) ≥ 3. Then the map f∗ : Br(Y ) → Br(X) is
surjective
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This show that Br(C) surjects onto Br(X). So for any point x in X(kη) we can evaluate
it with a Brauer class A ∈ Br(X) by taking a lift of A to Br(C) and pairing it with the
image of x in C(kη).

xη ∈ (Xη)P for η 6= v, and P ∈ C(k) so for any A ∈ Br(X) evA(xη) = evA(P ).
Furthermore, p(xv) lies in Π, so it lies in the same connected component of C(kv) as P

does, so evA(πv) = evA(P ) So then

inv(evA(x)) =
∑
η

inv(A(xη)) =
∑
η

inv(A(P )) = 0

This shows that x is contained in X(A)Br.
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