Definition 1. A graph \(H \) is a minor of a graph \(G \) if it can be obtained from \(G \) by a sequence of edge contractions, edge deletions and vertex deletions.

Example 1. The Petersen graph contains \(K_{3,3} \) as a minor, shown with red/blue vertices and bold edges below:

![Diagram of Petersen graph containing \(K_{3,3} \)]

It also contains \(K_5 \) as a minor, as seen by contracting the bold green edges shown below:

![Diagram of Petersen graph containing \(K_5 \) by contracting green edges]

Definition 2. A graph \(H' \) is a subdivision of a graph \(H \) if it can be obtained from \(H \) by a sequence of edge subdivisions:

\[
\begin{array}{c}
\quad u \quad v \\
\quad \quad \rightarrow \\
\quad \quad u \quad w \quad v
\end{array}
\]
Example 2. The Petersen graph contains a subdivision of $K_{3,3}$, shown with red/blue vertices and bold edges below:

However, it does not contain any subdivision of K_5, simply because all the vertices have degree less than 4.

Theorem 1 (Wagner). A graph G is non-planar if and only if it contains K_5 or $K_{3,3}$ as a minor.

Theorem 2 (Kuratowski). A graph G is non-planar if and only if it contains some subdivision of K_5 or $K_{3,3}$.

In a sense, Kuratowski’s theorem is stronger. The existence of a subgraph H which is a subdivision of K_5 or $K_{3,3}$ automatically implies that G contains K_5 or $K_{3,3}$ as a minor (simply contract the subdivided edges in H).

The two main ingredients to prove Kuratowski’s theorem are:

Argument 1: If G has no subdivisions of K_5 and $K_{3,3}$, and e is an edge, then the contraction G/e produces no subdivisions of K_5 and $K_{3,3}$.

Argument 2: (Inductive) Assume G has n vertices with no subdivision of K_5 and $K_{3,3}$, and xy is an edge. Contract x and y into a single vertex z. Then contracted graph G' with $n - 1$ vertices can be drawn in the plane. If we know that z lies within a cycle in this, then we can replace z by x and y without creating any crossing.

For full details, see Lemma 6.2.10 and Theorem 6.2.11 in West’s book.