I. Find a binary Huffman encoding for:
 a) \(\mathbb{P} = \{ \frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \ldots, \frac{8}{36} \} \).
 b) \(\mathbb{P} = \{ \frac{1}{13}, \frac{1}{13}, \ldots, \frac{1}{13} \} \).

II. Let \(C \) be a code. Denote by \(\ell(C) \) the sequence of codeword lengths in \(C \) arranged in increasing order. For example, if \(C = \{ 01, 111, 10, 101, 0011 \} \) then \(\ell(C) = 2, 2, 3, 3, 4 \).
 a) Give an example of a source \((S, \mathbb{P}) \) with two Huffman encodings \((C_1, f_1), (C_2, f_2) \) such that \(\ell(C_1) \neq \ell(C_2) \).
 b) Which step in Huffman encoding algorithm can lead to \(\ell(C_1) \neq \ell(C_2) \)? Why?

III. Let \((C, f) \) be a binary Huffman encoding for a source \((S, \mathbb{P}) \). Suppose that the codewords in \(C \) have length \(\ell_1, \ldots, \ell_q \) with \(L = \max \{ \ell_i \} \). Prove that:
 a) \(\sum_{i=1}^{q} 1/2^{\ell_i} = 1 \).
 b) \(C \) contains two codewords of length \(L \), which only differ in their last bit.

IV. Fix a source alphabet \(S = \{ s_1, \ldots, s_q \} \). Let \(\mathbb{P} = \{ p_1, \ldots, p_q \} \) be a probability distribution on \(S \). Denote by \(\text{MinACL}(\mathbb{P}) \) the minimum average codeword length over all instantaneous binary encoding schemes for \((S, \mathbb{P}) \). We already know this is achieved with Huffman encodings.
 a) Assume \(q = 2^\ell \) for some \(\ell \geq 1 \) and \(p_i + p_j \geq p_k \) for every \(1 \leq i, j, k \leq q \). Prove that \(\text{MinACL}(\mathbb{P}) = \ell \).
 b) Now consider a general \(q \) (not necessarily a power of 2). What is \(\text{MinACL}(\mathbb{P}) \) if \(\mathbb{P} \) is the uniform distribution?

Bonus: Describe Huffman encoding for an arbitrary base \(r \geq 2 \). Prove that it is optimal. If the source has size \(q \), how many symbols do we pick in the first step?