Practice problems from textbook (do not submit):
• 1,3,5,6,7,8,9 (p.41)
• 1–15 (p.49, constructions can be done with Huffman codes.)

Due on Tuesday January 29th: Work on the following problems. Each problem is worth 10 points.

I. Decide if each of the following codes is uniquely decipherable and explain why:
 a) \(C = \{0, 10, 110, 1110, 11110, 11111\} \).
 b) \(D = \{0, 10, 110, 1110, 1111, 1101\} \).

II. Prove that if \(C \) is not uniquely decipherable then there are some \(c_1, \ldots, c_n \in C \) and \(c'_1, \ldots, c'_n \in C \) with \(c_1 \ldots c_n = c'_1 \ldots c'_n \) and \(c_i \neq c'_i \) for at least one \(i \).

III. Let \(A \) be a alphabet with at least 2 characters. Let \(C \) be a maximal instantaneous code over \(A \) with codeword lengths \(\ell_1, \ldots, \ell_q \). If \(L = \max\{\ell_i\} \), show that \(C \) must contain at least two codewords of length \(L \).

IV. Let \(C \) be an instantaneous code over an alphabet \(A \). Prove that the following are equivalent:
 a) \(C \) is maximal instantaneous.
 b) Every string \(x_1 \ldots x_n \in A^* \) is a prefix of some string \(c_1 \ldots c_m \) with \(c_1, \ldots, c_m \in C \).

V. (Bonus) Design and prove an algorithm to check if a given code \(C \) is uniquely decipherable. How long is the running time? (Hint: one possible method is to reduce the problem to \textsc{Graph-Reachability}, see \url{https://en.wikipedia.org/wiki/Reachability}.)