
Web-based Supplementary Materials for

“Smooth” Semiparametric Regression Analysis for

Arbitrarily Censored Time-to-Event Data

Min Zhang∗ and Marie Davidian

Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, U.S.A.

*email: mzhang4@stat.ncsu.edu

Web Appendix A: Properties of the SNP Density Estimator

In this appendix, we give more detail on the SNP density estimator, review work establishing

its properties, and describe what is known about its performance when it has been embedded

in various complex statistical models. We refer the reader to the references cited, especially

Gallant and Nychka (1987) and Fenton and Gallant (1996, 1996b), for technical details and

further developments.

The SNP density estimator is a truncation (or sieve) estimator based on a Hermite series

expansion and was originally introduced by Gallant and Nychka (1987) in the context of

representing the nonparametric part of nonlinear structural models popular in econometric

analysis. These models can be rather complicated and would ordinarily also include a finite-

dimensional parametric component, as in the semiparametric time-to-event regression models

we consider. Since its introduction, the SNP has been used in numerous applications with

great success, where it has been embedded in various complex statistical models involving

possibly numerous additional parameters of interest. These include in econometric models for

stock volatility (Gallant, Hansen, and Tauchen, 1990), as a model for a bivariate distribution

in binary choice models for labor-force participation (Gabler, Laisney, and Lechner, 1993),

as the underpinning of methods for nonlinear time series analysis (Gallant and Tauchen,
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1990; Gallant, Rossi, and Tauchen, 1993), and as a representation of the density of a vector

of random effects in various mixed effects (e.g., Davidian and Gallant, 1992, 1993; Zhang

and Davidian, 2001; Chen, Zhang, and Davidian, 2002) and joint longitudinal-survival data

models (Song, Davidian, and Tsiatis, 2002). In all of these settings, empirical studies suggest

that, via a maximum likelihood approach analogous to that proposed in the main paper for

the semiparametric time-to-event regression, fitting is computationally stable and feasible

and valid inferences may be obtained, as discussed further below.

Gallant and Nychka (1987) considered the general case of a k-variate density in statistical

models where both the density and a finite-dimensional vector of parameters are to be

estimated. They described the class H in which the true density f0 is assumed to lie in

terms of a weighted Sobolev norm, depending on the number of derivatives f0 is assumed

to possess, and they provided a rigorous statement of the conditions under which the SNP

estimators for f0 and other parameters should be consistent in some sense for the true values,

assuming the parametric part of the model is correctly specified. In particular, they showed

that, as long as the truncation rule (choice of K) is such that K = Kn, say, converges to

infinity with n, the SNP density estimator is consistent with respect to Sobolev norm and

that this implies that functionals of the true density, such as the distribution function, as

well as the finite-dimensional parameters in the model, are also estimated consistently. See

Gallant and Nychka (1987) for technical details and discussion and Davidian and Gallant

(1993, Section 3) for a summary. From a practical point of view, a main consideration in

the use of SNP as a representation for the density of a model component is the degree of

smoothness the true density is thought to enjoy as reflected by the degree of differentiability

it is thought to possess, as for other density estimation methods.

Estimation of f0 in the case k = 1, of interest in the main paper, has been studied in some

detail. Fenton and Gallant (1996) specialized the consistency results of Gallant and Nychka
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(1987) to the univariate case when estimation of f0 is to be based on an iid sample from

f0, and they carried out an extensive battery of empirical studies demonstrating the ability

of the SNP density estimator to approximate a wide range of true densities, including some

exhibiting rather extreme behavior. They and other authors mentioned below focused on the

estimator based on the normal base density, as it has been used extensively in econometric

applications. They noted that, for k = 1, the class H of densities defined by Gallant and

Nychka is spanned by

Hn =







fn : fn(z,a) =

(

Kn
∑

j=0

ajz
j

)2

e−z2/2 + ε0ϕ(z)







, (A.1)

where ϕ(z) is the standard normal density as in the main paper, and a are such that

∫

fn(z,a) dz = 1; choices other than e−z2/2 and ϕ(z) are also permitted, as would be the

case in the main paper. In (A.1), ε0 is a small positive number, and Kn depends on n; it

is possible to rewrite (A.1) in terms of Hermite polynomials. As discussed by Gallant and

Nychka (1987) and Davidian and Gallant (1993), the second term in (A.1) acts as a lower

bound that governs tail behavior, ensuring that
∫

log fn(z,a)f0(z) dz exists for all fn ∈ Hn,

required in order to establish the results in Gallant and Nychka (1987); see this paper for

further discussion. The lower bound is usually ignored in practice, as in the main paper,

and vast empirical evidence has shown that this practice leads to reasonable results..

Fenton and Gallant (1996b) established rates of convergence in L1 where Kn = O(nα)

for α > 0. Coppejans and Gallant (2002) derived the convergence rate under the Hellinger

metric and investigated the use of cross-validation as an alternative to information-criterion

based selection of the truncation point. As noted by Kim (2007), an SNP estimator may not

achieve the optimal convergence rate established by Stone (1990) for log-spline density esti-

mators; however, it has several advantages, including computational ease and convenience;

a straightforward means of simultaneous estimation of finite-dimensional parameters when
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the density is part of an overall semiparametric model; and the ability to evaluate whether

or not the parametric model corresponding to the base density is sufficient to represent the

data, as described in our particular context at the end of Section 3 of the main paper. Fenton

and Gallant (1996b, Erratum) note that, while it is not possible to demonstrate that SNP

density estimators have the same convergence rate as kernel density estimators, the extensive

available empirical evidence suggests that they are qualitatively and asymptotically similar

to kernel estimators.

Regarding asymptotic normality of estimators for finite-dimensional parameters and func-

tionals in SNP-based semiparametric models, formal, theoretical results for general semipara-

metric models are not available. As noted by Kim (2007), this is probably because of the fact

that the SNP density estimator is “parametric” for any fixed degree of truncation. There is

extensive empirical evidence in different statistical models (e.g., Gallant and Tauchen, 1990;

Zhang and Davidian, 2001; Song et al., 2002), as well as theoretical evidence in specific set-

tings (e.g., Eastwood and Gallant, 1991; Fan, Zhang, and Zhang, 2001) that, if one treats the

degree of truncation as fixed, so that the model involves a finite-dimensional “parameter,”

as proposed in the main paper, standard errors and confidence intervals may be constructed

using standard parametric asymptotic theory. As shown by Eastwood and Gallant (1991)

in a simpler setting, this requires that the degree of truncation be chosen adaptively; these

authors show that the use of information-criterion-based (so adaptive) truncation rules, as

proposed in the main paper, will result in such inferences being asymptotically correct. As

noted by Coppejans and Gallant (2002) and Kim (2007), the practice of basing inferences on

standard parametric large sample theory following adaptive choice of the truncation point

is widely accepted to yield reasonable inferences in general problems and is standard in

applications in analyses based on SNP.

In summary, two decades of experience suggest that use of SNP to represent ordinarily

4



unspecified or latent components of general complex statistical models, as proposed for the

specific case of semiparametric time-to-event regression models in the main paper, leads to

reliable inferences under conditions similar to those assumed for competing approaches.

As noted in the Discussion of the main paper, a rigorous proof of the theoretical properties

of the SNP approach proposed in the main paper is an open problem. We conjecture that it

should be possible to prove that the SNP-based estimator for β is root-n consistent. For the

PH and PO models, which are members of the linear transformation model class, this is true

when one is completely nonparametric with respect to the unknown baseline distribution and

uses nonparametric maximum likelihood to estimate it in these models. Thus, we expect

that, under appropriate conditions, it is true for the SNP approach as well. Our simulation

results do not contradict this supposition. We conjecture that this is also true for the AFT

model, as it is possible to show such results for, e.g., rank-based methods. This model is a bit

more problematic than the other two in that a fully efficient approach where one is completely

nonparametric about the unknown survival distribution would require the support points of

the distribution to depend on β. We suspect that the undercoverage of Wald confidence

intervals for β we report on in this case for smaller samples may be related to this structural

phenomenon somehow.

Web Appendix B: Parametrization of the SNP Representation

In this appendix, we give a more detailed description of how the “standard” SNP density

representation in Equation (1) of the main paper may be parameterized in terms of φ. See

Zhang and Davidian (2001) for the general case. For fixed K and base density ψ(z), the

representation is

hK(z) = P 2
K(z)ψ(z) = (a0 + a1z + a2z

2 + · · · + aKz
K)2 ψ(z), (B.1)
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subject to constraint

∫

(a0 + a1z + a2z
2 + · · · + aKz

K)2 ψ(z) dz = 1. (B.2)

Let a = (a0, a1, · · · , aK)T of length K+1 as in the main paper, define w = (1, z, z2, . . . , zK),

and define the random vector W = (1, Z, Z2, . . . , ZK)T , where Z is a random variable with

density ψ(z). Then note that we can write the polynomial squared in (B.1) as

(a0 + a1z + a2z
2 + · · · + aKz

K)2 = aT wwT a.

Therefore, the constraint (B.2) is equivalent to requiring that

aT Aa = 1, A = E(WW T ).

For ψ(z) either the standard normal or exponential densities, the matrix A is known and

positive definite, so that we can write A = BT B for some positive definite matrix B. Thus,

write aT Aa = aBT Ba, so that with c = Ba, aT Aa = cT c = 1. Thus, c lies on the unit

sphere, which suggests the spherical transformation

c1 = sin(φ1),

c2 = cos(φ1) sin(φ2),

...

cK = cos(φ1) cos(φ2) · · · cos(φK−1) cos(φK),

cK+1 = cos(φ1) cos(φ2) · cos(φK−1) cos(φK),

given in the Section 2 of the main paper, where φ = (φ1, φ2, . . . , φK)T , −π/2 < φj ≤ π/2,

j = 1, . . . , K − 1, 0 ≤ φk ≤ 2π.

To demonstrate how this transformation works, we give two explicit examples. In the

first example, suppose K = 2 and let φ(z) be the standard normal density. In this case,
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c = (c1, c2, c3)
T , and c1 = sin(φ1), c2 = cos(φ1) sin(φ2), c3 = cos(φ1) cos(φ2), so that φ =

(φ1, φ2)
T . It is straightforward to show that

A =















1 0 1

0 1 0

1 0 3















,

in which case

B =















1 0 1

0 1 0

0 0
√

2















and B−1 =















1 0 −1/
√

2

0 1 0

0 0 1/
√

2















.

Now

a = B−1c =















1 0 −1/
√

2

0 1 0

0 0 1/
√

2





























sin(φ1)

cos(φ1) sin(φ2)

cos(φ1) cos(φ2)















. (B.3)

Thus note that we can express the polynomial in (B.1) in terms of φ as a0 + a1z + a2z
2 =

aT (1, z, z2)T , where a is given in (B.3). This may be substituted in (B.1) to give the

representation h2(z; φ) in terms of φ.

As a second example, take again K = 2 but with ψ(z) the standard exponential density.

Again we have a = (a0, a1, a2) = B−1c, where c is as before. It is straightforward to show

that now

A =















1 1 2

1 2 6

2 6 24















, B =















1 1 2

0 1 4

0 0 2















, B−1 =















1 −1 1

0 1 −2

0 0 1/2















.

Web Appendix C: Achieving the Global Maximum/Starting Values

In this appendix, we describe the approaches we have used successfully to obtain starting

values for parameters for maximizing the SNP loglikelihood for each model (AFT, PH, or
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PO) for fixed K and base density. For a given K and base density, the corresponding SNP

likelihood `K(β,θ) involves the parameters β and θ = (µ, σ,φT )T , and maximization requires

starting values for all of these parameters. The SNP loglikelihood typically is quite complex

and is replete with local maxima. Thus, we require a procedure that offers assurance that

the global maximum has been identified. This suggests using “waves” of starting values, as

has been proposed with SNP in other contexts (e.g., Gallant and Tauchen, 1990). We thus

obtain different sets of starting values that hopefully traverse a likely region of the parameter

space where the global maximum lies by fixing φ at each value over a grid of possible values

and then deriving corresponding starting values for the remaining parameters (µ, σ,βT )T

(µ, σ, β) depending on the model (PH, AFT, PO) being fitted, as we describe shortly. For

each set of starting values so obtained, `K(β,θ) is maximized. The maximizing values of

(β,θ) leading to the largest value of `K(β,θ) are assumed to yield to the global maximum

and are taken to be the final estimates. Often, many of the sets of starting values will lead to

the same maximized value of `K(β,θ) and the same estimates, engendering confidence that

the global maximum has indeed been identified. We have found that, although elements

of φ are restricted to certain ranges, as long as the grid of starting values is chosen as

recommended, one may use unconstrained optimization of `K(β,θ) with assurance that the

resulting estimates are such that hK(z; φ) evaluated at the estimates is a valid density.

Our recommended grid points become less dense as K increases owing to the increasing

computational cost of repeated maximizations. For K = 0, there is no φ, and starting

values for (µ, σ,βT )T may be found as described below, where E(Z) and var(Z) are known

constants. Because forK > 0 each element of φ must satisfy −π/2 < φj ≤ π/2, j = 1, . . . , K,

for K = 1 we choose the grid to be the 16 values in (−1.5,−1.3,−1.1, · · · , 1.3, 1.5). For

K = 2, we fix φ = (φ1, φ2) over 16 values of (−1.5,−0.5, 0.5, 1.5) × (−1.5,−0.5, 0.5, 1.5).

We have demonstrated in our simulations and applications that choosing the grid points in
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this way yields reliable results (i.e., plausible estimates that appear to represent the global

maximum) with feasible computation times.

Indeed, computation times are entirely manageable. For example, the typical time to

fit all three models (PH, AFT, PO) to one data set with n = 200 and 25% right censoring

using our SAS implementation, where maximizations are carried out using the SAS IML

optimizer nlpqn, including maximization at each set of starting values for each K-base

density combination for each model followed by selection of the preferred model-K-base

density combination using HQ, is 100 seconds on a 1.73 GHz PC.

AFT Model

As in Equation (7) of the main paper, the AFT model is

log(Ti) = XT
i β + ei, ei iid. (C.1)

The SNP approach represents the AFT model (C.1) as

log(Ti) = XT
i β + ei = XT

i β + µ+ σZi, (C.2)

where ei and Zi are iid, and the density of Zi may be well-approximated by the two SNP

formulations described in main paper. To get a rough estimate of (µ, σ,β) for each fixed φ,

we pretend that the ei follows a normal distribution and fit (C.2) using SAS proc lifereg

to obtain estimates of β and the mean and variance of ei, which we denote by βe, µe, and

σ2
e , respectively. We use βe as the starting value for β and obtain starting values of µ and

σ by solving the equations

µe = µ+ σE(Z)

σ2
e = σ2var(Z),

for µ and σ. Here, E(Z) and var(Z) are functions of φ for each K-base density combination

(K > 0) and hence for a given φ grid point are fixed constants. E.g., for the standard normal
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base density and K = 2, E(Z) = 2a0a1 + 6a1a2 and var(z) = a2
0 + 3(2a0a2 + a2

1) + 15a2
2 −

{E(Z)}2, where a is a function of φ as in Web Appendix B and hence is fixed once φ is

fixed.

When K = 0, there is no φ. To obtain multiple starting values, we solve for µ and σ as

above, where E(Z) and var(Z) are known constants for both base densities. We use three

sets of starting values: the solution (µ, σ) so determined, (µ− σ/2, σ), and (µ+ σ/2, σ).

PH Model

To obtain a starting value for β, we use Cox’s partial likelihood method implemented in

SAS proc phreg. The procedure proc phreg also gives an estimate of the baseline survival

function S0(t). To obtain starting values for µ and σ for a fixed φ, we pretend that log(T0)

in Equation (2) of the main paper is normally distributed, so that T0 is lognormal. Now

E(T0) =
∫∞

0
S0(t)dt and E(T 2

0 ) =
∫∞

0
2tS0(t)dt, and by substituting the estimated baseline

survival function into these expressions, we obtain estimates of E(T0) and E(T 2
0 ). This

calculation is simple, as the estimated baseline survival function is a step function and thus

the two integrals reduce to summations. If we denote the mean and variance of log(T0) as

µe and σ2
e , using the relationships E(Tm

0 ) = exp(mµe + m2σ2
e/2), m = 1, 2, we may obtain

rough estimates of µe and σ2
e by solving two equations. Once these are obtained, we may

proceed as described before for the AFT model to find starting values for µ and σ for each

K ≥ 0.

PO Model

Similar to the procedure for the AFT model, we first assume a parametric model for the

baseline event time to estimate β. In order to use a standard SAS procedure to fit a PO

model, we exploit the fact that when the “errors” in an AFT model, ei, i = 1, . . . , n, are iid
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with a logistic distribution, this model is also a PO model. That is, by letting ei in (C.2)

be iid with a logistic distribution, we are equivalently specifying a PO model with baseline

event time T0 from a log-logistic distribution. Thus, we may use SAS proc lifereg to

obtain estimates we denote as βaft, µl and σl, where the subscript “aft” indicates that

the fitted coefficient is with respect to the AFT model, and subscript l indicates µl and σl

are parameters characterizing a logistic distribution. Obtaining estimates of the mean and

variance of ei, denoted by µe and σe as before, is straightforward by using the relationships

µe = µl and σ2
e = π2σ2

l /3. Starting values for for µ and σ may be obtained in the same

way as described previously for K ≥ 0. As for the starting value for β, the coefficient the

coefficient corresponding to the PO model, one can easily derive that β is equal to −βaft/σl,

and thus the obvious approach is to substitute the fitted values from proc lifereg into this

expression.

Web Appendix D: Extension of the AFT Model to “Heteroscedastic Errors”

For transformed event-time models such as (C.1), a standard assumption is that the devia-

tions ei are iid, made in virtually all studies of these models (a recent exception is Huang,

Ma, and Xie, 2005). Stare, Heinzl, and Harrell (2000) discuss the potential for biased infer-

ence on β if this is violated. The SNP approach readily handles so-called “heteroscedastic

errors” and provides a mechanism for testing departures from the iid assumption, which may

be difficult to detect graphically (Stare et al., 2000).

In (C.2), the SNP representation implies that E{log(Ti)|X i} = {µ + σE(Zi)} + XT β

and var{log(Ti)|X i} = σ2var(Zi), where E(Zi) and var(Zi) are calculated assuming either Z

or Z∗ = eZ has density h ∈ H, so that under a fixed K-base density combination are known

functions of the corresponding φ. This suggests an equivalent formulation with “centered

errors;” i.e., writing (2) in the main paper instead as log(T0) = µ + σ{Z − E(Z)} and
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again taking ei = log(T0i) in (C.2) yields log(Ti) = XT
i β + µ+ σ{Zi −E(Zi)}, so the mean

is reparameterized as E{log(Ti)|X i} = µ + XT
i β while still var{log(Ti)|X i} = σ2var(Zi).

Viewing {Zi − E(Zi)} as a mean-zero deviation, then, permits the immediate extension of

(C.2) given by

log(Ti) = XT β + ei, ei = µ+ σv(X i,α){Zi − E(Zi)}, (C.1)

where v(x,α) > 0 for all x is a parametric variance function such that v(x,α) ≡ 1 if x = 0

or α = 0, so that var{log(Ti)|X i} = σ2var(Zi)v
2(X i,α). Although it may not be possible

to postulate a “correct” model v(x,α), a parsimonious, flexible variance function may be a

useful way to capture at least the predominant features of potential heterogeneity (Carroll

and Ruppert, 1988, Ch. 3). E.g., a model popular in ordinary regression for this purpose

is v(x,α) = exp(xT α) (or similar form depending on a subset of x). Again assuming Z

or Z∗ = eZ has density h ∈ H, it is straightforward to derive SNP approximations to the

conditional survival and density functions of T |X based on (C.1), as we now show.

In what follows, we present the conditional survival and density functions of T given X,

suppressing the subscript i. Considering the case where Zi in (C.1) is taken to have the

standard normal base density SNP representation, letting

r =
log(t) − XT β − µ

σv(X,α)
+ E(Z),

the conditional density and survival distribution are given by

fK(t |X; β,α,θ) = {tσv(X,α)}−1P 2
K(r)ϕ(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z)ϕ(z) dz.

(C.2)

The integral in (C.2) may be calculated straightforwardly using the recursive formulæ given

after Equation (3) in the main paper. The term E(Z) may written as a function of φ as

before.
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For the SNP representation using the standard exponential base density, we assume that

the density of Z∗ = eZ may be approximated by this representation. That is, the density of

Z∗ is represented as hK(z∗) = P 2
K(z∗)E(z∗) = (a0 + a1z

∗ + · · · + aKz
∗K)2e−z∗ . Let

r = exp

{

log(t) − XT β − µ

σv(X,α)
+ E(Z)

}

.

It may then be shown that the conditional density and survival function of T |X are

fK(t |X; β,α,θ) = {tσv(X,α)}−1rP 2
K(r)E(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z) E(z) dz.

(C.3)

Again, the integral in (C.3) is calculable by the recursion described in the main paper.

As r involves E(Z) = E{log(Z∗)}, we present explicitly this calculation for K = 0, 1, 2,

where as before a0, a1, a2 are the coefficient in the polynomial PK(z), which are in turn

expressed in terms of φ. With Euler’s constant γ = 0.57721566490153286060, defining

H1 = −γ, H2 = 1 − γ,H3 = 3 − 2γ, H4 = 11 − 6γ, H5 = 50 − 24γ, we have for K = 0,

E(Z) = −γ = H1; for K = 1, E(Z) = a2
0H1 + 2a0a1H2 + a2

1H3; and for K = 2, E(Z) =

a2
0H1 + 2a0a1H2 + (2a0a2 + a2

1)H3 + 2a1a2H4 + a2
2H5.

In fitting this model, one may include α as an additional parameter to be estimated;

typically, α will be of low dimension (1 or 2). As noted by Stare et al. (2000), graphical

displays that are standard diagnostic tools for detecting heteroscedasticity in ordinary un-

censored regression (Carroll and Ruppert, 1988) can be misleading, so it is not prudent to

rely on such techniques to suggest starting values. As we propose “working” variance models

such as the exponential model for which α = 0 corresponds to no heterogeneity, we suggest

using α = 0 as the starting value in the “wave” of fits across the grid of φ. Upon inspection

of the results, a second “wave” may be undertaken using a new starting value for α. This

process may be iterated until the analyst feels confident that the procedure has “zeroed in”

on a reasonable fit.
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Of course, (C.1) no longer has the usual AFT property that time is simply rescaled relative

to baseline by a function of covariates. See Hsieh (1996) for an interpretation of (C.1) when

X is a vector of treatment indicators and v(x,α) = exp(xT α), allowing different location

and scale for each treatment, and the goal is to test for homogeneity of scale, corresponding

here to α = 0. More generally, the SNP-based model offers a convenient framework for

detecting heterogeneity, alerting the analyst that standard methods may be inappropriate.

We carried out a small simulation (100 data sets for each scenario) to demonstrate its

value for accommodating and detecting heterogeneity of the “errors” in the AFT model

using (C.1). For each data set with n = 200, iid Zi were generated from the (bimodal)

normal mixture 0.3N (0.21, 0.36) + 0.7N (−0.9, 0.36); Xi were generated as uniform on (0, 1)

as in Section 4 of the main paper; and Ti were generated from either (C.1) or (C.1) with

µ = −0.9 and β = 2.0, subject to independent uniform 30% right censoring. In scenario I, Ti

were generated from the usual AFT model (C.1) with σ = 1, and (C.1) was fitted via SNP.

Scenario II was the same as I, except we fitted (C.1) with v(x, α) = exp(xα). In scenarios

III and IV, data were generated from (C.1) with σ = 0.4 and v(x, α) = exp(x) (α = 1.0);

(C.1) was fitted in III and (C.1) with v(x, α) = exp(xα) was fitted in IV. In scenario V, Ti

were from (C.1) with σ = 1 and v(x,α) = α1 + α2x, α = (0.4, 0.7)T , but (C.1) was fitted

with v(x, α) = exp(xα) as in IV, so misspecifying v. In II, IV, and V, α was estimated along

with β and θ. Table D.1 shows the results. I and IV show that the SNP method yields

reliable performance when the correct model is fitted, while II shows that departures from

homogeneity may be detected. III shows that failure to take account of heterogeneity has

dire consequences, and V demonstrates that the exponential model can detect heterogeneity

even if the working variance model is not of the correct functional form.
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Table D.1: Simulation results based on 100 Monte Carlo data sets under different scenarios

involving possible “heteroscedastic” errors in the AFT model (C.1). Scenarios I–V are de-

scribed in the text; table entries are as described in the tables in the main paper for estimation

of each of the parameters µ, β, α.

µ (true=-0.9) β (true=2.0) α

Mean SD Ave SE CP Mean SD Ave SE CP Mean SD Ave SE CP

I -0.92 0.15 0.14 0.95 2.03 0.18 0.18 0.94

II -0.91 0.14 0.15 0.94 2.01 0.22 0.23 0.96 -0.03 0.18 0.17 0.95

III -0.75 0.11 0.09 0.66 1.51 0.22 0.12 0.08

IV -0.90 0.06 0.07 0.96 2.01 0.15 0.16 0.93 0.97 0.15 0.16 0.94

V -0.91 0.06 0.07 0.97 2.03 0.16 0.18 0.95 0.99 0.16 0.17

Web Appendix E: Extension of the AFT Model to Time-Dependent Covariates

Time-to-event regression analyses involving time-dependent covariates are commonplace in

practice; see Kalbfleisch and Prentice (2002, sec. 6.3) for a discussion of the care that must

be taken in this setting. Due to ease of implementation, analysts routinely default to the Cox

model (which no longer has proportional hazards); however, alternative models are available,

but are rarely used. Cox and Oakes (1984, sec. 5.2) define an AFT model in this case, which

we describe for scalar such covariate X(t); see also Robins and Tsiatis (1992). For a subject

with covariate X(t) and event time T , the model assumes that time evolves relative to the

time T0 the subject would have had if X(t) ≡ 0 according to a monotone transformation

T0 =
∫ T

0
exp{βX(u)}du = Ψ{X(T ), β}, where X(t) = {X(s), 0 ≤ s ≤ t} is the covariate

history to t, assumed independent of T0. If T0 has survival function S0(t) with density f0(t)

and hazard function λ0(t), it is conventional to express the model in terms of the hazard for

T given the covariate history, which we denote in obvious notation as

λ{t|X(t)} = λ0[Ψ{X(t), β}]Ψ̇{X(t), β} = λ0

[∫ t

0

exp{βX(u)}du
]

exp{βX(t)}, (E.1)
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where Ψ̇(u, β) = dΨ(u, β)/du. Ordinarily, λ0(t) is left completely unspecified (e.g., Robins

and Tsiatis, 1992; Lin and Ying, 1995). If the analyst is willing to assume f0(t) is “smooth,”

so that it and S0(t) may be represented by SNP as in (3) or (4) of the main paper, it

should be clear that the conditional hazard in (E.1) may be approximated by λ0,K(t; θ) =

f0,K(t; θ)/S0,K(t; θ). In the case of right-censored data, then, where now L is a right-

censoring time if ∆ = 0 and an event time if ∆ = 1, with iid data {Li,∆i, X i(Li)},

i =, 1, . . . , n, the loglikelihood for fixed K and base density, `K(β,θ), for (β,θ) conditional

on covariate history satisfies

exp{`K(β,θ)} =
n
∏

i=1

(

λ0,K [Ψ{X i(Vi), β}; θ]Ψ̇i{X i(Vi), β}
)∆i

exp

{

−
∫ Ψ{Xi(Vi),β}

0

λ0,K(u; θ) du

}

.

(E.2)

Extension to multivariate X(t) and time-independent covariates Z; i.e., Ψ{XT (T ),Z,β, δ} =

∫ T

0
exp{XT (u)β+ZT δ}du, is straightforward. A similar formulation holds for the PH model.

To illustrate the feasibility of implementing of the AFT model with time-dependent co-

variates using the SNP approach, we conducted a simulation with 1000 MC data sets and

n = 200 generated to mimic a heart transplant scenario (e.g., Lin and Ying, 1995). For

each i, a U(0, 600) waiting time Wi was generated, and T0i was generated independently

from a gamma distribution with shape 10 and scale 40. With Xi(t) = 0 for t < Wi and

Xi(t) = 1 for t ≥ Wi, the event time Ti was computed according to the transformation

T0i =
∫ Ti

0
exp{βXi(u)}du with β = −1.0 and was possibly right censored by an indepen-

dently generated U(0, 600) censoring time, yielding about 30% censoring. Maximizing the

SNP-based loglikelihood (E.2) yielded MC mean estimated β of −1.00, with MC standard

deviation and average of estimated delta method standard errors both equal to 0.08, and

MC coverage of the nominal 95% Wald interval for β of 93.0%.

It is worth noting that other models, e.g. for interval censored data with time dependent

covariates (Sparling, Younes, and Lachin, 2006) may also be placed in the SNP framework.
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Web Appendix F: More Complex Models

At the end of Section 4 of the main paper, we report on simulations involving several covari-

ates for which the AFT model is the true model. These show that, although the estimator for

β is approximately unbiased, the use of delta method standard errors and associated Wald

confidence intervals may be suspect in some cases and that a nonparametric bootstrap may

be used to compute alternative, more reliable standard errors and Wald intervals. Here, we

show results of two representative, analogous simulations when the true model is the PH or

PO model. Each is based on 1000 MC data sets with n = 200 and 25% independent uniform

right censoring. In each case, X = (X1, X2, X3)
T were generated as in the main paper.

In the first scenario, data were generated from the PH model in (5) of the main paper

with β = (1.2, 1.0, 0.2)T and with true λ0(t) corresponding to a gamma with with shape

2.0 and scale 6.0. In the second scenario, data were generated from the PO model in (9)

of the main paper with β = (1.2,−1.0, 0.2)T and with true f0(t) a log-mixture of normals

0.3N (10, , 0.6) + 0.7N (8, 0.6). Table D.2 shows the results, where the PH model was also

fitted using PL, which are qualitatively similar to those with a single covariate reported in

Section 4 of the main paper for these models.

As noted in Section 5.1 of the main paper, for demonstration of analysis under a more

complex model in practice, we fit PH, PO, and AFT models to the CALGB 8541 data involv-

ing a linear predictor in several covariates X. As the primary analysis found no difference

between the high and moderate doses of CAF, with both superior to the low dose, we con-

sidered the treatment indicator X1 = 1 if high-moderate dose and 0 if low dose. We also

included X2 = 1 if the woman was ER-positive, = 0 otherwise; X3 = 1 if the woman was

post-menopausal, = 0 otherwise; X4 = tumor size (cm); and X5 = number of histologically

positive lymph nodes found. Letting X = (X1, X2, X3, X4, X5)
T , we fit the SNP-based PH,

PO, and AFT models to the data from the 1429 subjects for whom all five covariates are
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Table D.2: Simulation results based on 1000 Monte Carlo data sets when the true model is

PH or PO. Table entries are as described in the tables in the main paper for estimation of

β (3 × 1).

f0(t) n Cens. rate Method True β Mean SD SE CP

PH model

gamma 200 25% SNP 1.2 1.24 0.31 0.30 94.7

1.0 1.05 0.18 0.18 94.2

0.2 0.21 0.09 0.09 94.9

(N0 = 137, N1 = 8, N2 = 31, E0 = 681, E1 = 115, E2 = 28)

PL 1.2 1.22 0.31 0.30 94.8

1.0 1.03 0.18 0.18 95.0

0.2 0.21 0.09 0.09 95.4

PO model

log-mixture 200 25% SNP 1.2 1.24 0.24 0.23 95.4

-1.0 -1.02 0.27 0.27 95.3

0.2 0.21 0.13 0.13 95.4

(N0 = 5, N1 = 125, N2 = 850, E0 = 0, E1 = 0, E2 = 20)
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Table D.3: Fits to the CALGB data. Base density-K shows the combination chosen by the

HQ criterion for the indicated model, and HQ gives the value of the criterion for the preferred

choice. Est denotes the estimate of the corresponding component of β, and SE denotes either

delta method (SNP) or usual (PL, likelihood) standard errors.

Model Method Base density-K HQ X1 X2 X3 X4 X5

PH SNP normal-1 10033 Est −0.234 −0.269 −0.104 0.181 0.058

SE 0.091 0.090 0.089 0.036 0.006

PL Est −0.239 −0.271 −0.111 0.182 0.057

SE 0.091 0.090 0.089 0.036 0.006

PO SNP normal-0 10016 Est −0.303 −0.402 −0.177 0.231 0.090

SE 0.114 0.113 0.111 0.046 0.010

AFT SNP normal-1 10019 Est 0.185 0.339 0.146 −0.140 −0.058

SE 0.074 0.072 0.071 0.030 0.007

lognormal ML Est 0.206 0.292 0.116 −0.148 −0.057

SE 0.076 0.074 0.073 0.031 0.007

available; for comparison, we also fit the PH model via PL using SAS proc phreg, and the

AFT model assuming f0(t) is lognormal using SAS proc lifereg. The results are shown

in Table D.3. Note that for the AFT model, HQ chooses the normal base density but with

K = 1, suggesting that, if one assumes this model, the parametric lognormal model is not

appropriate. Estimates and standard errors for the SNP-based (via the delta method) and

traditional fits of the PH and AFT models are comparable. Looking across models, the HQ

criterion indicates support for the PO model, with normal baseline density f0(t), over the

other two models.
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