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Summary. A general framework for regression analysis of time-to-event data subject to arbi-

trary patterns of censoring is proposed. The approach is relevant when the analyst is willing

to assume that distributions governing model components that are ordinarily left unspecified

in popular semiparametric regression models, such as the baseline hazard function in the pro-

portional hazards model, have densities satisfying mild “smoothness” conditions. Densities

are approximated by a truncated series expansion that, for fixed degree of truncation, re-

sults in a “parametric” representation, which makes likelihood-based inference coupled with

adaptive choice of the degree of truncation, and hence flexibility of the model, computation-

ally and conceptually straightforward with data subject to any pattern of censoring. The

formulation allows popular models, such as the proportional hazards, proportional odds, and

accelerated failure time models, to be placed in a common framework; provides a principled

basis for choosing among them; and renders useful extensions of the models straightfor-

ward. The utility and performance of the methods are demonstrated via simulations and by

application to data from time-to-event studies.
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1. Introduction

Regression analysis of censored time-to-event data is of central interest in health sciences

research, and the most widely used approaches are based on semiparametric models. While

representing some feature of the relationship between time-to-event and covariates by a

parametric form, these models leave other aspects of their distribution unspecified.

Among such models, Cox’s proportional hazards model (PH) (Cox, 1972) is unquestion-

ably the most popular and is used almost by default in practice when data are right-censored,

owing to straightforward, widely-available implementation. The hazard given covariates is

represented as a parametric form modifying multiplicatively an unspecified baseline hazard

function. This proportional hazards assumption is often not checked; however, effects of

prognostic covariates often do not exhibit proportional hazards (e.g., Gray, 2000). Accord-

ingly, there is considerable interest in alternative semiparametric regression models.

The accelerated failure time model (AFT) (Kalbfleisch and Prentice, 2002, sec. 2.2.3),

in contrast to the PH model, where survival time and covariate effects are modeled indi-

rectly through the hazard, represents the logarithm of event time directly by a parametric

function of covariates plus a deviation with unspecified distribution, lending it practical ap-

peal. However, this and similar models are used infrequently, likely due to computational

challenges that undoubtedly dictate lack of commercially-available software. Although the

iterative fitting method of Buckley and James (1979) (see also, e.g., Lin and Wei, 1992)

for right-censored data is simple to program, it can exhibit problematic behavior, such as

oscillation between two “solutions” (Jin, Lin, and Ying, 2006). Competing approaches based

on rank tests (e.g., Tsiatis, 1990; Wei, Ying, and Lin, 1990; Jin et al., 2003) may also admit

multiple solutions (or have no solutions at all), can be computationally intensive (Lin and

Geyer, 1992), and/or can involve rather complicated estimation of sampling variance.

The proportional odds (PO) model (Murphy, Rossini, and van der Vaart, 1997; Yang and
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Prentice, 1999) instead represents the logarithm of the ratio of the odds of survival given

covariates to the baseline odds as a parametric function of covariates, where the associated

baseline survival function is left unspecified. Despite its pleasing interpretation, the PO

model is rarely used, again likely due to difficulty of implementation.

Hence, although the regression parameters in all of these models have intuitive interpreta-

tions, and although one model may be more suitable for representing the data than another,

only the PH model is widely used. The PH and PO models are special cases of the linear

transformation model (Cheng, Wei, and Ying, 1995; Chen, Jin, and Ying, 2002); Cheng, Wei,

and Ying (1997) and Scharfstein, Gilbert, and Tsiatis (1998) also discuss a general class of

models that includes both. The AFT and PH models are cases of the “extended” hazards

model of Chen and Jewell (2001), including the “accelerated hazards” model of Chen and

Wang (2000). However, there is no accessible framework that includes all three models and,

indeed, further competitors, in which selection among them may be conveniently placed.

Moreover, the majority of developments for semiparametric time-to-event regression have

been for right-censored (independently given covariates) event times. Fitting the PH model is

straightforward under these conditions, but with interval censoring, specialized methods are

required (Finkelstein, 1986; Satten, Datta, and Williamson, 1998; Goetghebeur and Ryan,

2000; Pan, 2000; Betensky et al., 2002), as they are for alternative models (e.g., Betensky,

Rabinowitz, and Tsiatis, 2001; Sun, 2006). This requires the analyst to seek out specialized,

distinct techniques for different censoring patterns, even for the familiar PH model.

In this paper, we propose a general framework for semiparametric regression analysis of

censored time-to-event data that (i) provides a foundation for selection among competing

models; (ii) unifies handling of different patterns of censoring, obviating the need for spe-

cialized techniques; and (iii) is computationally tractable regardless of model or censoring

pattern. To achieve simultaneously (i)–(iii), we sacrifice a bit of generality relative to tradi-
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tional semiparametric methods by making the unrestrictive assumption that the distribution

associated with unspecified model components has a density satisfying mild “smoothness”

assumptions. Indeed, large sample theory for traditional methods requires similar assump-

tions (e.g., Ritov, 1990; Tsiatis, 1990; Jin et al., 2006). We assume that densities lie in a

broad class whose elements may be approximated by the “SemiNonParametric” (SNP) den-

sity estimator of Gallant and Nychka (1987), tailored to provide an excellent approximation

to virtually any plausible survival density. Many authors have used smoothing techniques

in time-to-event regression (e.g., Kooperberg and Clarkson, 1997; Joly, Commenges, and

Letenneur, 1998; Cai and Betensky, 2003; Komárek, Lesaffre, and Hilton, 2005). Our SNP

approach endows likelihood-based inference for any of these models with “parametric-like”

features and a virtually closed-form objective function under arbitrary censoring patterns

that admits tractable implementation with standard optimization software. Competing mod-

els may be placed in a unified likelihood-based framework, providing a convenient, defensible

basis for choosing among them via standard model selection techniques.

In Section 2, we review the SNP representation and describe its use in approximating any

plausible survival density. We discuss SNP-based semiparametric time-to-event regression

analysis with arbitrary censoring in Section 3. Simulation studies in Section 4 demonstrate

performance. In Section 5, we apply the methods to two well-known data sets.

2. SNP Representation of a Survival Density

Gallant and Nychka (1987) gave a mathematical description of a class H of k-dimensional

“smooth” densities that are sufficiently differentiable to rule out “unusual” features such as

jumps or oscillations but that may be skewed, multi-modal, or fat- or thin-tailed. When

k = 1, H includes almost any density that is a realistic model for a (possibly transformed),

continuous time-to-event random variable and excludes implausible candidates. For k = 1,

densities h ∈ H may be expressed as an infinite Hermite series h(z) = P 2
∞

(z)ψ(z) plus a
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lower bound on the tails, where P∞(z) = a0 + a1z + a2z
2 + · · · is an infinite-dimensional

polynomial; ψ(z) is the “standardized” form of a known density with a moment generating

function, the “base density;” and h(z) has the same support as ψ(z). The base density is

almost always taken as N (0, 1), but need not be (see below). For practical use, the lower

bound is ignored and the polynomial is truncated, yielding the so-called SNP representation

hK(z) = P 2
K(z)ψ(z), PK(z) = a0 + a1z + a2z

2 + · · · + aKz
K , a = (a0, a1, . . . , aK)T , (1)

With a such that
∫
hK(z) dz = 1 and K suitably chosen, hK(z) provides a basis for esti-

mation of h(z). The SNP representation has been widely used, particularly in econometric

applications. Web Appendix A gives more detail on the SNP and its properties.

Zhang and Davidian (2001) noted that requiring
∫
hK(z) dz =

∫
P 2

K(z)ψ(z) dz = 1

is equivalent to requiring E{P 2
K(U)} = aT Aa = 1, where U has density ψ, and A is

a known positive definite matrix easily calculated for given ψ. Thus, aT Aa = cT c =

1, suggesting the spherical transformation c1 = sin(φ1), c2 = cos(φ1) sin(φ2), . . . , cK =

cos(φ1) cos(φ2) · · · cos(φK−1) sin(φK), cK+1 = cos(φ1) cos(φ2) · · · cos(φK−1) cos(φK) for −π/2 <

φj ≤ π/2, j = 1, . . . , K. Web Appendix B presents examples of this formulation. Thus, for

fixed K, (1) is “parameterized” in terms of φ (K×1) and we write hK(z; φ) = P 2
K(z; φ)ψ(z);

estimation of the finite-dimensional “parameter” φ leads to an estimator for h(z).

With K = 0 in (1), P 2
K(z) ≡ 1, and hK(z) reduces to the base density; i.e., hK(z) = ψ(z).

Values K > 1 control the extent of departure from ψ and hence flexibility for approximating

the true h(z) (K is not the number of components in a mixture). Several authors (e.g.,

Fenton and Gallant, 1996; Zhang and Davidian, 2001) have shown that hK(z; φ) with K ≤ 4

can well-approximate a diverse range of true densities.

We now describe how we use (1) to approximate the assumed “smooth” density f0(t)

of a continuous, positive, time-to-event random variable T0 with survival function S0(t) =
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P (T0 > t), t > 0. As T0 is positive, we assume that we may write

log(T0) = µ+ σZ, σ > 0, (2)

where Z takes values in (−∞,∞). We consider two formulations that together are sufficiently

rich to support an excellent approximation to virtually any f0(t). In (2), it is natural to

assume that Z has density h ∈ H that may be approximated by (1) with N (0, 1) base

density ψ(z) = ϕ(z) for suitably chosen K, so that T0 is lognormally distributed when

K = 0. Although this can approximate very skewed or close-to-exponential f0 with large

enough K, an alternative formulation better suited to this case is to assume that Z∗ =

eZ has density h ∈ H that may be approximated by (1) with standard exponential base

density ψ(z) = E(z) = e−z, so that Z has an extreme value distribution (Kalbfleisch and

Prentice, 2002, sec. 2.2.1) when K = 0. As discussed in Section 3, we propose choosing the

representation (normal or exponential) and associated K best supported by the data.

In both cases, approximations for f0(t) and S0(t) follow straightforwardly. Under the

normal base density representation, for fixed K and θ = (µ, σ,φT )T , we have for t > 0

f0,K(t; θ) = (tσ)−1P 2
K{(log t− µ)/σ; φ}ϕ{(log t− µ)/σ},

S0,K(t; θ) =

∫
∞

(log t−µ)/σ

P 2
K(z; φ)ϕ(z) dz.

(3)

Because P 2
K(z; φ) may be written as

∑2K
k=0 dkz

k, where the dk are functions of the elements

of φ, S0,K(t; θ) in (3) may be written as a linear combination of integrals of the form

I(k, c) =
∫
∞

c
zkϕ(z)dz that satisfy I(k, c) = ck−1ϕ(c) + (k − 1)I(k − 2, c) for k ≥ 2, where

I(0, c) = 1 − Φ(c), I(1, c) = ϕ(c), and Φ(·) is the N (0, 1) cumulative distribution function

(cdf). For the exponential base density representation, we have approximations

f0,K(t; θ) = (σeµ/σ)−1 t(1/σ−1) P 2
K{(t/eµ)1/σ; φ} E{(t/eµ)1/σ}

S0,K(t; θ) =

∫
∞

(t/eµ)1/σ

P 2
K(z; φ) E(z) dz,

(4)
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where, similar to the normal base case, the integral in (4) may be calculated using the

recursion I(k, c) = ckE(c) + kI(k− 1, c), k > 0, with I(0, c) = e−c. Note, then, that for fixed

K, except for the need for a routine to calculate the normal cdf, the approximations of f0(t)

and S0(t) using either base density representation are in a closed form depending on the

“parameter” θ, whose finite dimension depends on K. This offers computational advantages

and makes handling of arbitrary censoring patterns straightforward, as we demonstrate next.

3. Censored Data Regression Analysis Based on SNP

3.1 Popular Regression Models

Let X i be a vector of time-independent covariates and Ti be the event time, with (Ti,X i)

independent and identically distributed (iid) for i = 1, . . . , n. The usual PH model is

λ(t|X; β) = limδ→0+ δ−1P (t ≤ T < t+ δ |T ≥ t,X) = λ0(t) exp(XT β), t > 0, (5)

where λ0(t) is the baseline hazard function corresponding to X = 0. Letting S(t|X; β) =

P (T > t|X) be the conditional survival function for T given X, it is straightforward

(Kalbfleisch and Prentice, 2002, sec. 4.1) to show that S(t|X; β) = S0(t)
exp(XT β), where

S0(t) = exp{−
∫ t

0
λ0(u) du} is the baseline survival function associated with λ0(t). Usually,

λ0(t) is left completely unspecified, whereupon (5) is a semiparametric model, and β char-

acterizing the hazard relationship is estimated via partial likelihood (PL; Kalbfleisch and

Prentice, 2002, sec. 4.2). We instead impose the mild restriction that S0(t) is the sur-

vival function of a random variable T0 satisfying (2) with density f0(t), and that f0(t) and

S0(t) may be approximated by either (3) or (4). Letting the conditional density of T |X be

f(t |X; β), we obtain approximations to S(t |X; β) and f(t |X; β) for fixed K given by

SK(t|X; β,θ) = S0,K(t; θ)exp(XT β), fK(t|X; β,θ) = eX
T βλ0,K(t; θ)SK(t|X; β,θ), (6)

where λ0,K(t; θ) = f0,K(t; θ)/S0,K(t; θ). As we demonstrate shortly, the approximations in

(6) may be substituted into a likelihood function appropriate for the censoring pattern of
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interest, upon which estimation of (β,θ) and choice of K and the base density may be based.

We propose a similar formulation for the usual AFT model

log(Ti) = XT
i β + ei, ei iid. (7)

Rather than taking the distribution of the “errors” ei to be completely unspecified, we assume

that ei = log(T0i), where T0 has survival function S0(t) and “smooth” density f0(t) that may

be approximated by (3) or (4). For fixed K, this leads to approximations to the conditional

survival and density functions of T |X, S(t |X; β) and f(t|X; β), given by

SK(t |X; β,θ) = S0,K(te−X
T β ; θ), fK(t |X; β,θ) = e−X

T βf0,K(te−X
T β ; θ). (8)

The same principle may be applied to the PO model, which in its usual form assumes

S(t |X; β)

1 − S(t |X; β)
=

{
S0(t)

1 − S0(t)

}
exp(−XT β), (9)

where S0(t) is the baseline survival function, assumed to have density f0(t), and S(t |X; β)

is the conditional survival function given X with density f(t |X; β). Model (9) implies

S(t |X; β) = S0(t)/{e
X

T β + S0(t)(1 − eX
T β)}; thus, assuming S0(t) and f0(t) may be ap-

proximated by (3) or (4), S(t |X; β) and f(t |X; β) may be approximated by

SK(t |X; β,θ) = S0,K(t; θ)a−1
0,K(t,X; β,θ), fK(t |X; β,θ) = f0,K(t; θ)eX

T βa−2
0,K(t,X; β,θ)

(10)
for fixed K, where a0,K(t,X; β,θ) = eX

T β + S0,K(t; θ)(1 − eX
T β).

We may now exploit these developments. Assuming as usual that the censoring mech-

anism is independent of T given X, we demonstrate when T may be (i) interval-censored,

known only to lie in an interval [L,R]; (ii) right-censored at L (set R = ∞); or (iii) observed

(set T = L = R). For (i) and (ii), ∆ = 0; else, ∆ = 1 (iii). With iid data (Li, Ri,∆i,X i),

i = 1, . . . , n, assuming that f(t |X) and S(t |X) may be represented as in (6), (8), or (10),
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for fixed K, the loglikelihood for (β,θ), conditional on the X i, is

ℓK(β,θ) =
n∑

i=1

[
∆i log{fK(Li |X i; β,θ)}+(1−∆i) log{SK(Li |X i; β,θ)−SK(Ri |X i; β,θ)}

]
.

For fixedK, base density, and model, ℓK(β,θ) may be maximized in (β,θ) using standard

optimization routines; we use the SAS IML optimizer nlpqn (SAS Institute, 2006). Choice of

starting values is critical for ensuring that the global maximum is reached. In Web Appendix

C, we recommend an approach where ℓK(β,θ) is maximized for each of several starting values

found by fixing φ over a grid and using “automatic” rules to obtain corresponding starting

values for (µ, σ,β). Although elements of φ are restricted to certain ranges, unconstrained

optimization virtually always yields a valid transformation so that
∫
hK(z; φ)dz = 1. The

declared estimates correspond to the solution(s) yielding the largest ℓK(β,θ).

Following other authors (e.g., Gallant and Tauchen, 1990; Zhang and Davidian, 2001), for

a given model (PH, AFT, PO), we propose selecting adaptively the K-base density combina-

tion by inspection of an information criterion over all combinations of base density (normal,

exponential) and K = 0, 1, . . . , Kmax. Our extensive studies show Kmax = 2 is generally

sufficient to achieve an excellent fit. With q = dim(β,θ), criteria of the form −ℓK(β,θ)+ qc

have been advocated, with small values preferred. Ordinarily, the Akaike Information Cri-

terion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn (HQ) criteria take

c = 1, log(n)/2, and log{log(n)}, respectively; AIC tends to select “larger” models and BIC

“smaller” models, with HQ intermediate. As noted by Kooperberg and Clarkson (1997, Sec-

tion 3), with censored data, dependence of c on n may be suspect; for right-censored data,

replacing n by d = number of failures has been proposed (e.g., Volinsky and Raftery, 2000),

although a similar adjustment under interval censoring is not obvious. It is nonetheless com-

mon practice to base c on n. We have found in the current context that replacing n by d has

little effect on the K-base density choice. We use HQ with c = log{log(n)} in the sequel.

The SNP approach is an alternative to traditional semiparametric methods such as PL
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when one is willing to adopt the assumption of a “smooth” density f0(t). The formulation also

supports selection among competing models (e.g., PH, AFT, PO): that for which the chosen

K-base density combination yields the most favorable value of the information criterion may

be viewed as “best supported” by the data. This may be used objectively or in conjunction

with other evidence, e.g., the outcome of a formal test of the proportional hazards assumption

(e.g., Gray, 2000; Lin, Zhang, and Davidian, 2006), in adopting a final model.

To obtain standard errors and confidence intervals for the estimator for β, the parameter

ordinarily of central interest, as well as for any other functional of the conditional distribution

of T |X based on a final selected representation, we follow other authors and treat the chosen

K, base density, and model as predetermined. That is, we approximate the sampling variance

of the resulting estimator β̂ or of any functional d(β̂, θ̂) via the inverse “information matrix”

acting as if the chosen ℓK(β,θ) were the loglikelihood under a predetermined parametric

model. This matrix is readily obtained from optimization software. For β̂, the square root

of the relevant diagonal element of this matrix yields immediately our proposed standard

error; for general functionals, we use the delta method. Assuming that these quantities

have approximately normal sampling distributions, 100(1 − α)% Wald confidence intervals

may be constructed as the estimate ± the normal critical value × the estimated standard

error. Although the choice of K and base density is made adaptively, which would seem

to invalidate this practice, results cited in Web Appendix A support it, and simulations in

Section 4 demonstrate that this approach yields reliable inferences in realistic sample sizes.

Several useful byproducts follow from the SNP approach. Selection of a model with

K = 0 suggests evidence favoring the parametric model implied by the chosen base density;

e.g., the AFT model with K = 0 and normal base density corresponds to assuming T given

X is lognormally distributed. Because “smooth” estimates of baseline densities and survival

functions are immediate, predictors of survival probabilities and calculation of associated
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confidence intervals as in Cheng et al. (1997) are easily handled.

3.2 Model Extensions

A “parametric” representation makes otherwise difficult-to-implement extensions of stan-

dard time-to-event regression models straightforward. In Web Appendices D and E, we ex-

hibit two possibilities: extension of the AFT model to incorporate so-called “heteroscedastic

errors” and extension of this model to accommodate time-dependent covariates.

4. Simulation Studies

We report on simulations to evaluate performance of the SNP approach. For all SNP fits,

we considered Kmax = 2 and both the normal and exponential base densities.

In the first set of scenarios, data were generated under the PH model (5) with continuous

covariate X uniformly distributed on (0, 1) and 25% independent uniform right censoring,

with true baseline hazard λ0(t) corresponding to a lognormal with mean 2.9 and scale 0.66; a

Weibull with shape 0.9 and scale 25.0; a gamma with shape and scale 2.0; and a log-mixture of

normals found by exponentiating draws from the bimodal normal mixture 0.3N (0.2, , 0.36)+

0.7N (1.8, 0.36). In all cases, the true value of β = 2.0, n = 200, and 1000 Monte Carlo (MC)

data sets were generated. For each, the PH model was fitted by PL via SAS proc phreg

and by the SNP approach, with comparable results, as shown in Table 1(a). The SNP-

based AFT and PO models (7) and (9) were also fitted to each data set, and Table 1(a)

summarizes how often HQ selected each model. Percentages do not necessarily add to 100%

across the three models; because fits with K = 0 and exponential base density lead to

the same value of HQ for the AFT and PH models, HQ supports more than one model

when this configuration is selected, so the percentages reflect the proportions of times this

occurred. Under the Weibull, selection of the AFT or PH model corresponds to choosing

a PH model (Kalbfleisch and Prentice, 2002, p. 44). “Correct” indicates the percentage of

data sets for which HQ supported selection of the (true) PH model under these conditions
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and indicates that inspection of HQ across SNP fits of competing models can be useful for

deducing the appropriate model, a capability that grows with sample size. The true PH

model was identified over 90% of the time for all distributions when n = 500.

Informally, the information on λ0(t) and β is roughly “orthogonal,” so it is not unex-

pected that imposing smoothness assumptions on λ0(t) and fitting the SNP-based PH model

does not yield increased precision for estimating β relative to PL. For the PH model, the

real advantage of the SNP approach is the ease with which it handles interval- and other

arbitrarily-censored data. Under the gamma and log-mixture-normal scenarios, we generated

interval-censored data for each subject by drawing five random examination times, where

the times between each were independently lognormally distributed, and then generated in-

dependently an event time from the PH model. This led to the percentages of right- and

interval-censored data in Table 1(a). Results of fitting the PH model by SNP for 1000 MC

data sets with n = 200 show that the approach leads to reliable inferences.

The second set of scenarios involved a true PO model (9) with X and either independent

25% uniform right censoring or interval censoring as above, β = 2.0 or −2.0, n = 200, and

1000 data sets generated with f0(t) lognormal with mean and scale 13.8 and 0.53, log-mixture

normal from 0.3N (1.2, 0.36) + 0.7N (−1.8, 0.36), and Weibull with shape and scale 1.0 and

5.0. From Table 1(b), when the true PO model is fitted via SNP, reliable inferences on β

obtain, and HQ is able to identify the true PO model well except for the Weibull; for this

case, performance improves with increasing sample size.

In the third set of scenarios, data were generated from the AFT model (7) with X as

above; β = 2.0; and f0(t) lognormal with mean 0.5 and scale 1.31, Weibull with shape 2.0 and

scale 16.0, gamma with shape and scale 2.0, and the log-mixture of normals 0.3N (1.2, , 0.36)+

0.7N (−1.8, 0.36) (bimodal). For each of 1000 data sets with independent uniform right

censoring, the AFT model was fitted via SNP; the Buckley-James method; and the rank-
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based method of Jin et al. (2003), with both logrank and Gehan-type weight functions,

using the R function aft.fun (Zhou, 2006). Table 2 shows that the SNP method yields

reliable inferences and compares favorably to competing semiparametric methods, achieving

marked relative gains in efficiency in some cases. With n = 200 and 50% censoring, the SNP

procedure continues to perform well. Undercoverage of SNP Wald confidence intervals in the

log-mixture-normal case is resolved for n = 500. The PH and PO models were also fitted.

In all but the gamma scenario, HQ strongly supports the AFT model; increasing to n = 500

in the gamma case vastly improves identification of the correct model. The similarity of

the gamma distribution to a Weibull may be responsible for the difficulty the criterion has

distinguishing the AFT and PH models for the smaller sample size.

Byproducts of the SNP approach for any model are estimates of the corresponding density

f0(t) and survival function S0(t). Figure 1 shows the 1000 estimates of S0(t) under two of the

AFT scenarios, demonstrating that its true form can be recovered with impressive accuracy.

We also carried out simulations for the true AFT model for gamma and log-mixture-

normal scenarios under interval censoring, each with 1000 data sets generated as for the PH

model to yield the censoring patterns in Table 2. The AFT model was fitted to each using the

SNP approach; as for PH, the results demonstrate the reliable performance of the method,

with undercoverage of confidence intervals for n = 200 under the log-mixture-normal.

For all three model scenarios, Table 3 presents for selected configurations the number of

times each K-base density combination was chosen by HQ when fitting the true model. Not

surprisingly, the normal base density is chosen most often when f0(t) is lognormal and log-

mixture normal, and the exponential base density is preferred for the Weibull and gamma.

Undercoverage of Wald intervals in some instances with n = 200 in Table 2 suggests that

the delta method approximation may be less reliable for the AFT model than for PH and PO.

We thus investigated replacing delta method standard errors by those from a nonparametric
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bootstrap, where the K-base density for the AFT model is chosen by HQ for each bootstrap

data set. E.g., for the interval censored log-mixture scenario, for the first 300 of the 1000 MC

data sets, the MC mean, standard deviation, average of delta method standard errors, and

associated coverage are 2.05, 0.26, 0.23, and 90.3, respectively. The MC average of bootstrap

standard errors using 50 bootstrap samples and coverage of the associated interval are 0.28

and 94.3, suggesting that this approach can correct underestimation of sampling variation.

The foregoing results involved simple models with a single covariate in order to allow

reporting for a number of scenarios with straightforward interpretation. Given failure to

achieve nominal coverage for some settings for the AFT model, further evaluation of the SNP-

based approach in this case is warranted. Moreover, demonstration of computational stability

and feasibility of the proposed methods for all three models under more complex conditions

is required. Accordingly, we carried out additional simulations. We report on representative

scenarios, each involving 1000 MC data sets with n = 200 or 500 and 25% independent

uniform right censoring and generated from the AFT model (7), where X = (X1, X2, X3)
T

with X1 distributed as uniform on (0,2), X2 Bernoulli with P (X2 = 1) = 0.5, and X3 ∼

N (0.5, 1) and the true value of β = (2.5, 0.5,−0.8)T . Table 4 shows results for fitting the

AFT model when the true f0(t) was lognormal with mean 54.6 and scale 7.3, gamma with

with shape 2.0 and scale 6.0, and log-mixture of normals 0.3N (1.2, , 0.36)+0.7N (−1.8, 0.36)

(bimodal). In all scenarios, no computational issues were encountered for any data sets, and

performance is similar to that for the simpler models above, with analogous undercoverage of

Wald intervals for components of β in some cases. HQ chose K-base density combinations

in proportions similar to those in Table 3 in all cases. For the gamma and log-mixture

scenarios with n = 200, we used a nonparametric bootstrap with 50 bootstrap replicates as

described above to obtain alternative standard errors for the first 300 MC data sets; results

are indicated by an asterisk in Table 4 and suggest that, as above, use of bootstrap standard

13



errors to form Wald intervals yields reasonable performance.

We also carried out analogous simulations under the PH and PO models, representative

results of which are in Web Appendix F. Again, computation was stable and straightforward

in every situation we tried, and, as in the single covariate case reported above, coverage of

delta method intervals achieved the nominal level for both models.

Overall, the simulations demonstrate that the SNP approach is computationally straight-

forward and yields reliable performance under the “smoothness” assumption and provides

a tool for practical model selection. Simulations showing performance of the SNP approach

for the model extensions described in Section 3.2 are given in Web Appendices D and E.

5. Applications

5.1 Cancer and Leukemia Group B Protocol 8541

Lin et al. (2006) discuss Cancer and Leukemia Group B (CALGB) protocol 8541, a

randomized clinical trial comparing survival for high, moderate, and low dose regimens of

cyclophosphamide, adriamycin, and 5-flourouacil (CAF) in women with early stage, node-

positive breast cancer. Following the primary analysis, interest focused on the prognostic

value of baseline characteristics. We consider estrogen receptor (ER) status; ER-positive

tumors are more likely to respond to anti-estrogen therapies than those that are ER-negative.

ER status is available for 1437 of the 1479 subjects, of whom 64% were ER-positive, with

64% right-censored survival times. Figure 1 of Lin et al. (2006) suggests that the relationship

of survival to ER status does not exhibit proportional hazards, a finding corroborated by

their spline-based test for departures from proportional hazards (p-value=< 0.001).

We fit the AFT, PH, and PO models with binary covariate Xi (=1 if ER-positive) using

SNP; here and in Section 5.2 we considered the normal and exponential base densities and

Kmax = 2. The HQ criterion was 10177, 10197, and 10192 for the preferred K-base density

combinations for AFT, PH, and PO, respectively. Both the PL and SNP fits of the PH
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model yielded an estimated hazard ratio of 0.77. The AFT model is best supported by

the data, consistent with the evidence discrediting the PH model. The preferred AFT fit

takes K = 1 with normal base density, with an estimate of β of 0.45 (SE 0.08). Here, the

effect of a covariate is multiplicative on time itself rather than on the hazard, leading to the

interpretation that failure times for ER-positive women are “decelerated” relative to those

for ER-negative women: the probability that an ER-positive woman survives to time t is

the same as the probability that an ER-negative woman survives to time 0.64t, so that,

roughly, being ER-negative curtails survival times by 64% relative to being ER-positive. A

possible explanation is that ER-positive women may have received anti-estrogen therapy

during follow-up, enhancing their survival.

Further analyses of the CALBG 8541 data are in Web Appendix F.

5.2 Breast Cosmesis Study

The famous breast cosmesis data (Finkelstein and Wolfe, 1985) involve time to cosmetic

deterioration of the breast in early breast cancer patients who received radiation alone (X =

0, 46 patients) or radiation+adjuvant chemotherapy (X = 1, 48 patients). Deterioration

times were right-censored for 38 women. Times for the 56 women experiencing deterioration

were interval-censored due to its evaluation only at intermittent clinic visits. Numerous

authors have used these data to demonstrate methods for interval censored data.

We fitted the AFT, PH, and PO models using the SNP approach, obtaining HQ values of

309, 309, 317, respectively, for the chosen K-base density combination, supporting AFT and

PH. The preferred fit for each usesK = 0 and the exponential base density; this configuration

is equivalent to a Weibull regression model, for which the PH and AFT models are the same.

This is consistent with the adoption of the PH (e.g., Goetghebeur and Ryan, 2000; Betensky

et al., 2002) or AFT (e.g., Tian and Cai, 2006) models by many authors. The SNP estimate

of β = 0.95 (SE 0.280) in (5) is consistent with the results from several methods for fitting

15



the PH model with interval censored data reported by Goetghebeur and Ryan (2000) and

Betensky et al. (2002). The corresponding Wald statistic for testing β = 0 is 3.35, in line

with the score statistic of Finkelstein (1986) of 2.86 and Wald statistics implied in Table 2

of Goetghebeur and Ryan (2000). Figure 2 shows the SNP estimates of S(t |X = 0) and

S(t |X = 1) based on the PH fit; compare to Figure 1 of Goetghebeur and Ryan (2000).

6. Discussion

We have proposed a general framework for regression analysis of arbitrarily censored time-to-

event data under the mild assumption of a “smooth” density for model components ordinarily

left unspecified under a semiparametric perspective. The methods are straightforward to

implement using standard optimization software, and computation is stable across a range of

conditions. A SAS macro is available from the first author. Although we focused on the PH,

AFT, and PO models, the approach allows any competing models, such as generalizations of

(7), models with nonlinear covariate effects, and linear transformation models to be placed

in a common framework, providing a basis for model selection. Standard errors and Wald

confidence intervals may be obtained using standard parametric asymptotic theory in most

cases; however, this approximation is less reliable for the AFT model, so we recommend using

a nonparametric bootstrap with small samples/numbers of failures in this case. A rigorous

proof of consistency and asymptotic normality of the estimators for β and functionals of

f0(t) in the general censored-data regression formulation here is an open problem.

It should be possible to adapt the approach to problems involving both censoring and

truncation (Joly et al., 1998; Pan and Chappell, 2002). Because with the SNP representation

f(t|X; β) and S(t|X; β) are in “parametric” form, the likelihood function is straightforward

under the usual assumption that censoring and truncation are independent of event time.

A further advantage, not illustrated here, is that an efficient rejection sampling algorithm

for simulation from a fitted SNP density is available (Gallant and Tauchen, 1990). This may
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be used to simulate draws from the fit of f0(t) under the preferred model and hence draws

of Ti from f(t |X) for any X, allowing any functional of this distribution to be approximated.

Supplementary Materials

Web Appendices A–F, referenced in Sections 2, 3.1, 3.2, 4, and 5.1, are available under

the Paper Information link at the Biometrics website http://www.biometrics.tibs.org.
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Table 1

Simulation results based on 1000 Monte Carlo data sets when the true model is the PH or
PO model with baseline density f0(t). Mean is Monte Carlo mean of the 1000 estimates of
β when the true model is fitted, SD is their Monte Carlo standard deviation, SE is the
average of the 1000 estimated delta method standard errors, and CP is Monte Carlo
coverage probability, expressed as a percent, of 95% Wald confidence intervals. For

right-censored data, SNP and PL indicate fitting using the SNP approach with K and the
base density chosen via HQ and partial likelihood, respectively. All of the AFT, PH, and
PO models were fitted to each data set under right-censoring; the columns AFT, PH, and

PO indicate the percentage of 1000 data sets for which that model was chosen based on HQ,
and Correct indicates the percentage of data sets supporting the PH model; see the text. For

interval-censored data, only SNP was used. (a) PH model: true value of β = 2.0 in all
cases. (b) PO model: true value of β = 2.0 (lognormal, Weibull) or β = −2.0 (log-mixture).

f0(t) n Cens. rate Method Mean SD SE CP AFT PH PO Correct

(a) True PH model

Right-censored data

lognormal 200 25% SNP 2.02 0.32 0.31 95.4 9.4 86.5 5.2 86.5
PL 2.00 0.32 0.32 96.3

Weibull 200 25% SNP 2.02 0.31 0.31 95.5 86.7 88.0 2.8 97.2
PL 2.01 0.32 0.32 96.3

gamma 200 25% SNP 2.06 0.32 0.31 94.3 66.8 81.6 6.3 81.6
PL 2.02 0.32 0.32 95.2

log-mixture 200 25% SNP 2.04 0.34 0.33 94.9 2.4 73.6 24.0 73.6
PL 2.02 0.33 0.33 95.5

Interval-censored data

gamma 200 18% right, SNP 2.04 0.30 0.29 93.9
82% interval

log-mixture 200 20% right, SNP 2.04 0.30 0.30 94.8
80% interval

(b) True PO model

Right-censored data

lognormal 200 25% SNP 2.01 0.18 0.18 94.6 0.7 2.2 97.1 97.1
Weibull 200 25% SNP 2.00 0.46 0.45 94.6 29.4 19.7 65.1 65.1
log-mixture 200 25% SNP −1.99 0.46 0.45 95.3 1.4 15.4 83.2 83.2

Interval-censored data

log-mixture 200 20% right, SNP −2.01 0.48 0.47 95.7
80% interval



Table 2

Simulation results based on 1000 Monte Carlo data sets when the true model is the AFT
model with baseline density f0(t). For right-censored data, SNP, BJ, Gehan, and LR

indicate fitting using the SNP approach with K and the base density chosen via HQ, the
Buckley-James method, and the rank-based method of Jin et al. (2003) using Gehan-type

and log-rank weight functions, respectively. All other entries are as in Table 1. For
interval-censored data, only SNP was used. True value of β = 2.0 in all cases.

f0(t) n Cens. rate Method Mean SD SE CP AFT PH PO Correct

Right-censored data

lognormal 200 25% SNP 2.02 0.27 0.26 94.4 80.2 8.0 12.3 80.2
BJ 2.02 0.27 0.26 94.2

Gehan 2.02 0.27 0.28 95.3
logrank 2.01 0.29 0.29 94.7

200 50% SNP 2.02 0.30 0.30 93.3
Weibull 200 25% SNP 2.00 0.14 0.15 95.9 71.0 88.7 1.1 98.9

BJ 2.00 0.18 0.19 96.3
Gehan 2.00 0.17 0.17 95.7
logrank 2.00 0.14 0.15 96.1

200 50% SNP 2.01 0.20 0.20 94.8
gamma 200 25% SNP 2.00 0.20 0.19 94.0 65.0 66.4 11.4 65.0

BJ 2.00 0.22 0.23 96.0
Gehan 2.00 0.21 0.22 95.4
logrank 2.00 0.20 0.21 95.4

200 50% SNP 2.00 0.26 0.24 92.9
500 25% SNP 2.00 0.06 0.06 94.0 98.8 1.2 0.0 98.8

log-mixture 200 25% SNP 1.99 0.19 0.18 91.9 100.0 0.0 0.0 100.0
BJ 1.99 0.42 0.28 80.5

Gehan 1.99 0.29 0.29 95.6
logrank 2.00 0.41 0.43 96.5

200 50% SNP 1.98 0.23 0.22 91.5
500 25% SNP 2.00 0.05 0.05 94.8
500 50% SNP 2.00 0.06 0.06 93.5

Interval-censored data

gamma 200 20% right, SNP 2.01 0.22 0.21 92.2
80% interval

gamma 500 16% right, SNP 2.00 0.06 0.06 94.7
84% interval

log-mixture 200 17% right, SNP 2.05 0.27 0.23 90.3
83% interval

log-mixture 500 17% right, SNP 2.00 0.07 0.06 94.0
83% interval



Table 3

Numbers of times each K-base density combination was chosen by the HQ criterion when
fitting the true model (PH, AFT, PO) for selected configurations in Tables 1 and 2.

Base Density Standard Normal Standard Exponential
K K

f0(t) n Cens. rate 0 1 2 0 1 2

True PH Model

lognormal 200 25% 873 43 19 11 33 21
Weibull 200 25% 9 0 35 854 74 28
gamma 200 25% 140 12 33 644 143 28
log-mixture 200 25% 239 26 721 0 0 14
gamma 200 18% right, 302 28 8 645 12 5

82% interval
log-mixture 200 20% right, 505 62 241 9 6 177

80% interval

True AFT Model

lognormal 200 25% 873 49 18 10 30 20
Weibull 200 25% 3 0 24 890 54 29
gamma 200 25% 65 16 49 624 212 34
log-mixture 200 25% 0 153 847 0 0 0
gamma 200 20% right, 223 32 17 640 68 20

80% interval
log-mixture 200 18% right, 0 567 432 0 0 1

82% interval

True PO Model

lognormal 200 25% 878 81 19 0 6 16
Weibull 200 25% 31 3 40 830 82 14
log-mixture 200 25% 0 225 774 0 0 1
log-mixture 200 18% right, 0 620 350 0 6 24

82% interval



Table 4

Simulation results for the SNP approach based on 1000 Monte Carlo data sets when the
true model is the AFT model with baseline density f0(t) and multiple covariates under right

censoring. Entries are as in Table 1. The True β column gives the true values of the
elements of β. Entries with an asterisk (∗) at the sample size indicate results for the first

300 Monte Carlo data sets, for which both delta method and nonparametric bootstrap
standard errors were used, where SEboot and CPboot denote the average of bootstrap standard
error and Monte Carlo coverage probability expressed as a percent, of 95% Wald confidence
intervals using the bootstrap standard errors, respectively. For each scenario, NK and EK,
K = 0, 1, 2, indicate the number of times the configuration of normal (N) or exponential

(E) base density with the indicated K was chosen by HQ.

f0(t) n Cens. rate True β Mean SD SE CP SEboot CPboot

lognormal 200 25% 2.5 2.51 0.27 0.26 94.8
0.5 0.49 0.15 0.15 93.5

-0.8 -0.81 0.30 0.29 94.6
(N0 = 853, N1 = 64, N2 = 19, E0 = 8, E1 = 38, E2 = 18)

gamma 200 25% 2.5 2.50 0.16 0.11 93.3
0.5 0.50 0.06 0.06 92.3

-0.8 -0.80 0.12 0.11 92.1
(N0 = 50, N1 = 16, N2 = 60, E0 = 594, E1 = 237, E2 = 43)

200∗ 25% 2.5 2.50 0.11 0.11 93.3 0.13 96.0
0.5 0.51 0.07 0.06 92.7 0.07 95.0

-0.8 -0.79 0.12 0.11 91.3 0.13 96.3

500 25% 2.5 2.50 0.07 0.07 93.7
0.5 0.50 0.04 0.04 93.1

-0.8 -0.80 0.07 0.07 93.8
(N0 = 0, N1 = 3, N2 = 68, E0 = 418, E1 = 464, E2 = 47)

log-mixture 200 25% 2.5 2.49 0.10 0.09 94.1
0.5 0.50 0.06 0.05 92.8

-0.8 -0.80 0.11 0.10 91.8
(N0 = 0, N1 = 197, N2 = 803, E0 = 0, E1 = 0, E2 = 0)

200∗ 25% 2.5 2.49 0.09 0.09 95.3 0.10 96.7
0.5 0.50 0.06 0.05 93.0 0.06 94.0

-0.8 -0.80 0.11 0.10 91.7 0.11 93.0

500 25% 2.5 2.49 0.06 0.06 94.7
0.5 0.50 0.03 0.03 94.7

-0.8 -0.80 0.07 0.06 94.5
(N0 = 0, N1 = 16, N2 = 984, E0 = 0, E1 = 0, E2 = 0)



FIGURE CAPTIONS

(figures follow, one per page, in order)

Figure 1. SNP estimates of S0(t) for the AFT model based on 1000 Monte Carlo data sets,

with the true S0(t) (white solid line) and average of 1000 estimates (dashed line)

superimposed. (a) log-normal mixture scenario with n = 500, 50% right censoring. (b)

gamma scenario with n = 200, 25% right censoring.

Figure 2. Estimated survival functions for time to cosmetic deterioration for the radiation only

group (solid line) and radiation+chemotherapy group (dashed line) based on the SNP

fit of the PH (AFT) model to the breast cosmesis study data.
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