Contents

3 Primal-Dual and Dual Algorithms for the Assignment
and Transportation Problems 227

3.1

3.2
3.3

3.4

3.5
3.6

3.7
3.8

The Hungarian Method for the Assignment Problem . 228
3.1.1 Minimal Chain Decompositions in Partially Or-

dered Sets . . . . . .. ... ... ... 250
3.1.2 The Bottleneck Assignment Problem . . . . .. 255
Balanced Transportation Problem . . . . . . ... ... 257

Transformation of Single Commodity Minimum Cost Flow
Problem into Sparse Balanced Transportation Problem 275

Signature Methods . . . . . .. .. ... ... .. ... 277
3.4.1 Signature Method 1. . . . . ... .. ... ... 282
3.4.2  An Inductive Signature Method . . . . . . . .. 290
3.4.3 Signature Method 2 : A Dual Simplex Method . 291
Other Methods for the Assignment Problem . . . . .. 293
Algorithm for Ranking Assignments in Nondecreasing

Order of Cost . . . . . .. ... .. ... ... ..... 293
Exercises . . . . . . ... oo 297

References . . . . . . . . ... 321



i



Chapter 3

Primal-Dual and Dual
Algorithms for the
Assignment and
Transportation Problems

The assignment and transportation problems are single commodity
minimum cost flow problems on pure bipartite networks. Primal-
dual algorithms are a class of methods for LPs with the following
characteristic features:

1. They maintain a dual feasible solution, and a primal vector (this
vector is primal infeasible until termination) that together sat-
isfy all the complementary slackness optimality conditions for the
original problem throughout the algorithm. This primal vector
is usually feasible to a relaxation of the primal problem (typi-
cally this is obtained by changing the equality constraints in the
problem to “ =” inequalities).

2. In each step, the algorithm either performs (a) below, or (b) if
this is not possible.

(a) Keeps the dual solution fixed, and tries to alter the primal
vector to bring it closer to primal feasibility while continuing

227



228 Ch. 3. Primal-Dual and Dual Algorithms

to satisfy the complementary slackness conditions together
with the present dual solution.

(b) Keeps the primal vector fixed, and changes the dual feasible
solution. The aim of this is to get a new dual feasible solu-
tion satisfying two conditions. The first is that the new dual
feasible solution satisfies the complementary slackness con-
ditions together with the present primal vector. The second
is that it makes it possible to get a new primal vector closer
to primal feasibility when the algorithm continues.

3. As the algorithm progresses, the primal vector moves closer and
closer to primal feasibility. In other words, there is a measure
of primal infeasibility which improves monotonically during the
algorithm.

There are two possible conclusions at termination. One occurs if
the primal vector being maintained becomes primal feasible at some
stage; then it is an optimum solution. The second occurs if a primal
infeasibility criterion is satisfied at some stage.

For the assignment and transportation problems it is easy to obtain
an initial dual feasible solution. And the task in (a) above is a maxi-
mum value flow problem on a subnetwork known as the admissible or
equality subnetwork wrt the present dual feasible solution. These
facts make the primal-dual methods particularly attractive to solve
them. The blossom algorithms discussed in Chapter 10 for match-
ing and edge covering problems are primal-dual algorithms that are
generalizations of the Hungarian method of the next section to those
problems. The primal-dual approach can be used to solve a general
LP, however, for these general problems it seems to offer no particular
advantage over the primal simplex algorithm.

3.1 The Hungarian Method for the As-
signment Problem

The data in an assignment problem of order n is the cost matrix ¢ =
(¢;j) of order n x n. Given c the problem is to find z = (z;;) of order



3.1. The Hungarian Method 229

n X n to

n n
Minimize z(z) = Y Y cijzy

i=1j=1

Subject to Y Jz;; = 1 fori=1ton (3.1)

j=1

n
oz = 1 forj=1ton
i=1

Lij 0 for all ’L,_]

and z;; = Oorl forallij (3.2)

Every feasible solution of (3.1) and (3.2) is an assignment of order
n and vice versa. See (1.17) for an assignment of order 4. Every BFS of
(3.1) satisfies (3.2). So, if (3.1) is solved by the simplex method ignoring
(3.2), the optimum solution obtained will satisfy (3.2) automatically.
The Hungarian method does not use basic vectors for (3.1), but it
maintains (3.2) throughout.

In an assignment z, if a particular z;; = 1, the cell (4, ) is said to
have an allocation (in this case row ¢ is said to be allocated to, or
matched with, column j in x). A partial assignment of order n is a
0-1 square matrix of order n which contains at most one nonzero entry
of 1 in each row and column. Here is a partial assignment of order 3.

010
000
0 00

Clearly, a partial assignment is a feasible solution for a relaxed ver-
sion of (3.1) and (3.2) in which the equality constraints in (3.1) are re-
placed by the corresponding “=” inequalities. The Hungarian method
moves among partial assignments in which the number of allocations

keeps on increasing as the algorithm progresses.



230 Ch. 3. Primal-Dual and Dual Algorithms

Represent each row and each column of an n X n array by a node.
Join each row node to each column node by an edge, leading to a com-
plete bipartite network (see Figure 3.1). Make the cost of the edge
joining row node 7 with column node j, ¢;;. The set of allocated cells
in any partial assignment (assignment) corresponds to a matching (per-
fect matching) in this bipartite network, and vice versa. For example,
the dashed subnetwork in Figure 3.1 (a) is the perfect matching corre-
sponding to the assignment in (1.17). Hence, the assignment problem
(3.1) and (3.2) is equivalent to that of finding a minimum cost perfect
matching in this bipartite network. That’s why it is also known as the
bipartite minimum cost perfect matching problem.

(@) (0)
Figure 3.1:

Direct all the lines in this bipartite network from the row node to
the column node. Treat all the row nodes as sources each with a supply
of one unit, and the column nodes as sinks with a demand of one unit.
Then (3.1) is the problem of finding a minimum cost feasible flow in this
network. An allocation in cell (7, ) corresponds to a flow of one unit
on the arc connecting row node ¢ with column node j and vice versa.
We can introduce a supersource s and supersink ¢ and transform this
into a minimum cost flow problem on the network in Figure 3.1 (b), in



3.1. The Hungarian Method 231

which all the arcs incident at s,t are required to be saturated.

In large scale applications, for each i, a subset of {1,...,n} is usu-
ally specified, and z;; can be equal to 1 only when j is in that subset;
otherwise it has to be 0. This can be handled by defining c;; to be
+oo whenever z;; is required to be 0. In the corresponding networks
in Figures 3.1 (a) and (b), the arc (¢,5) (i-e., (Ri, C;)) is included only
if z;; can be equal to 1 in the problem. Thus the network is no longer
the complete bipartite network. Let m denote the number of arcs in
the network (i.e., the number of variables x;; which can assume the
value 1). The assignment problem is said to be sparse if m is small
compared to n?, and dense if m is close to n?2.

In this section we present an implementation of the primal-dual ap-
proach for the assignment problem known as the Hungarian method.
It is described using arrays for ease of understanding, but computer im-
plementations are usually based on the corresponding network. The arc
joining row node ¢ to column node j is omitted if x;; is required to be
0 in the problem. The dual of (3.1) is

n n
Maximize Zuz + Zvj

i=1 j=1
Subject to u; +v; = ¢ij, 4,5 =1ton (3.3)

Denote the objective value of assignment x with ¢ as the cost matrix
by z.(z). Let ¢ be the matrix obtained by subtracting a real number
a from every element in a row or a column of ¢. Since each assignment
contains a single nonzero entry of 1 in each row and column, we have
2:(x) = a+ zo(x). So, the set of optimum assignments that minimize
z¢(x) is the same as the set of optimum assignments that minimize
ze(x). Hence, for solving the assignment problem, we can replace ¢ by
c’. We use this idea repeatedly. Let u = (u1,...,u,),v = (vy,...,v,)
be such that ¢f; = ¢;;—u;—v; 20,4, j = 1 ton. This is the condition for
u,v to be dual feasible, and in this case ¢;; are the dual slacks, ¢ = (c};)
is known as the reduced cost matrix, and ro = 327" ; u; + 327 v; as
the total reduction wrt u,v. The matrix ¥ is obtained by subtracting
u; from each entry in row ¢ of ¢ for ¢ = 1 to n, and then subtracting v,
from each entry in column 5 of the resulting matrix, for j = 1 to n. By



232 Ch. 3. Primal-Dual and Dual Algorithms

the above argument, for each assignment x we have z.(z) = ro+ z.0(z).
Since ¢® = 0, z0(z) = 0, and so 7 is a lower bound for the minimum
objective value in (3.1) whenever u,v is dual feasible. If we can find
an assignment x which has allocations only in those cells in which the
entries in ¢ are zero, then z.(z) = 0, and hence z is an optimum
assignment. To find such an assignment, we define the cell (i,7) or
the corresponding arc (i, j) (we will use this notation to denote the arc
joining row node i to column node j) in the network in Figure 3.2 to
be admissible (or an equality cell or equality arc respectively) if
cgj = ¢;; —u; —v; = 0. When all inadmissible arcs are removed from the
network in Figure 3.1 (b), we get the admissible subnetwork or the
equality subnetwork wrt the dual feasible solution u,v. A maximum
value flow from s to ¢ in the equality subnetwork corresponds to a
partial assignment having the maximum number of allocations among
admissible cells. If this is an assignment, it is clearly optimal to (3.1)
and (3.2); otherwise we get a partial assignment = satisfying

zij(cij —u; —v;) =0, for all 4,7 (3.4)

The complementary slackness optimality conditions for (3.1) and its
dual (3.3) are (3.4). The Hungarian method maintains x, (u, v) always
satisfying (3.2), dual feasibility constraints in (3.3), and (3.4). When
x satisfies (3.1), it is an optimum assignment and the method termi-
nates. If the maximum value flow in the equality subnetwork does not
saturate all the arcs incident at ¢, there exists no assignment which
has allocations among admissible cells only. In this case the Hungar-
ian method goes to a dual solution change routine. After this change
the new reduced cost matrix will contain some new cells with zero
entries in columns which have no allocations at present, and the pro-
cedure is repeated. During the method, each row and column of the
array (i.e., each node in the network implementation) may be in three
possible states: unlabeled, labeled and unscanned, labeled and
scanned. The list is always the set of current labeled and unscanned
rows and columns.

THE HUNGARIAN METHOD

Step 0 The initial dual feasible solution If some dual feasible



3.1. The Hungarian Method 233

solution is available, use it as the initial one; otherwise define it
to be (u' = (uj),v' = (vj)) where uj = min {¢;; : j = 1 to n},
vj = min {c; —u; : i =1ton}, fori,j =1ton. List = 0. Go
to Step 1 with any partial assignment containing allocations only
among admissible cells in the reduced cost matrix wrt the initial

dual solution (this could be 0, containing no allocations).
Step 1 Tree growth routine

Substep 1  Label each row without an allocation with (s, +),
and include it in the list.

Substep 2  If list = (), tree growth has terminated and there is
a nonbreakthrough. The present set of allocations contains
the maximum number possible among admissible cells; go
to Step 3. Otherwise, select a row or column from the list
for scanning and delete it from the list.

Forward labeling Scanning row ¢ consists of labeling each
unlabeled column j for which (4, 7) is an admissible cell, with
the label (row 4, +).

Reverse labeling To scan column j, check whether it has
an allocation. If the row in which that allocation occurs is
unlabeled so far, label it with (column j, —).

If any column without an allocation has been labeled, there
is a breakthrough; go to Step 2. Otherwise, include all newly
labeled rows and columns in the list, and repeat this Substep
2.

Step 2 Allocation change routine Suppose column j, which does
not have an allocation, has been labeled. Trace its predecessor
path using the labels. Delete present allocations in cells corre-
sponding to reverse arcs, and add allocations in cells correspond-
ing to forward arcs of this path. If all the columns have allocations
now, these allocations define an optimum assignment; terminate.
Otherwise, chop down the present trees (i.e., erase the labels on
all the rows and columns) and go back to Step 1.



234 Ch. 3. Primal-Dual and Dual Algorithms

Step 3 Dual solution change routine Compute §, minimum value
of reduced cost coefficient among cells in labeled rows and unla-
beled columns. ¢ will be > 0. If § = +o0; this can only happen
if some z;; are constrained to be 0 in the problem; there is no
feasible assignment, terminate. If ¢ is finite, add it to the value
of u; in all labeled rows and subtract it from the value of v; in
all labeled columns. Compute the new reduced cost coefficient in
each cell. Retain the present labels on all the labeled rows and
columns, but include all the labeled rows in the list, and resume
tree growth by going to Substep 2 in Step 1.

Discussion

When solving small problems by hand, a good initial partial as-
signment in Step 0 can be obtained by making an allocation in an
admissible cell in the initial reduced cost matrix that is not yet struck
off, in a row or column containing only one such cell if possible, or in
any admissible cell not yet struck off otherwise; striking off all other ad-
missible cells in the row and column of the allocated cell; and repeating
this process with the remaining admissible cells.

Also, to find ¢ in Step 3, draw a straight line in the present reduced
cost matrix through each unlabeled row and each labeled column, then
these straight lines cover all the admissible cells (if there is an admissi-
ble cell without a line through it, its column would have been labeled
when its row was scanned, a contradiction, see Array 3.1). Hence every
reduced cost coefficient not covered by a straight line is > 0, and 9 is
the minimum of these entries. So, § will always be > 0. The number
of allocations at this stage can be verified to be equal to the number of
straight lines drawn. To get the new reduced cost coefficients, subtract
0 from the entry in the present reduced cost matrix in each cell in a la-
beled row and unlabeled column (i.e., those cells without a straight line
through them), and add § to the entry in each cell in an unlabeled row
and labeled column (i.e., those cells at the intersection of two straight
lines). From the definition of ¢ this implies that all the new reduced
cost coefficients are = 0, i.e., the new dual solution is dual feasible. Let
a be (the number of labeled rows — the number of labeled columns)
at present. Add da to the total reduction; this updates it.



3.1. The Hungarian Method 235
Array 3.1 Summary of Position When Hungarian
Method Reaches Dual Solution Change Routine.
(@t,, c= (cij= ¢ij — ; — ¥;)), are the dual solution and
reduced cost matrix before change. (4,0,¢ = (¢;j = ¢;j —

@; — ¥;)) are the corresponding things after change.
Block of la- | Block of un- | Allocat St. Dual
beled cols. labeled cols. tions | lines | change
Block | Each col. | No admissible | Some U, =
of la- | here has an | cells here (one | rows U + 0
beled | allocation col. would | have for
rows | among labeled | be labeled | no here
rows (there is | otherwise). alloca-
breakthrough aj> 0, here. | tion.
?therWlee). § = Min.{Z;:
Cij :_ijd here, | (4,5) here}>0.
SO, admissi- | 5 _ & _
bility  pattern lfllére. ‘i Nev(\sf
remains — Uh- | 5dmissible cells
changed. created  here,
this allows tree
growth.
Block | No allocation Each row here | Each | Draw | 4; =
of here (otherwise | contains an | row | throughu, for ¢
unla- | a row here | allocation in | has each | here.
beled | could be | these cols. | alloca-| row.
rows | labeled). Cij :aj here, | tion.
Gij =Cij +0 so  admissibi-
here. All cells | lity pattern
here become remains un-
inadmissible changed here.
next.
Allocat Each col. has | Some cols.
tions | allocation. have no alloca-
tion.
St. Draw through
lines | each col.
Dual ’(AJ]‘ = 17]' — 0 for ’(AJ]‘ = 17]' for j
changd j here here.




236 Ch. 3. Primal-Dual and Dual Algorithms

Cells that have allocations at present remain admissible in the new
reduced cost matrix, and hence (3.4) continues to hold. New admissible
cells are created among labeled rows and unlabeled columns, so, when
the list is made equal to the set of all labeled rows, and tree growth
resumed, at least one new column will be labeled. See Array 3.1

Suppose d came out to be +oo in Step 3 at some stage. Let J be
the set of all cells (i, j) with row ¢ labeled, and column j unlabeled at
this stage. So, the present reduced cost coefficient ¢;; = +o0 for all
cells (4,7) € J (i.e., z;; is required to be 0 for every (i,7) € J). Even if
all cells not in J are made admissible, no more labeling can be carried
out, and the current nonbreakthrough continues to hold. This implies
that the present partial assignment contains the maximum number of
allocations possible under the constraint that z;; must be 0 for all
(i,7) € J, hence there is no feasible assignment in the problem.

Consider the Hungarian method applied to solve an assignment
problem of order n. Whenever Step 2 is carried out, the number of
allocations increases by 1. Thus Step 2 is carried out at most n times
in the algorithm. From Array 3.1 we see that at least one new column
gets labeled when tree growth is resumed after a dual solution change
step. Thus Step 3 can occur at most n times between two consecutive
occurrences of Step 2. The effort needed to carry out Step 3 (updating
the reduced cost coefficients) and the following tree growth, before
going to Step 2 or 3 again is at most O(n?). Thus the effort between
two consecutive occurrences of Step 2 is O(n?), and therefore the entire
method takes at most O(n*). Later on we show that the method can be
implemented so that its worst case computational complexity is at most
O(n®). If the infeasibility criterion is never satisfied, at termination we
will have an assignment x and a dual feasible solution (u,v) which
together satisfy the complementary slackness conditions (3.4), so x is
an optimum assignment, and (u, v) is an optimum dual solution.

EXAMPLE 3.1 Illustration of the allocation change routine

In this example n = 6 and Array 3.2 contains all the relevant infor-
mation. Admissible cells are those with a zero in the upper left corner.



3.1. The Hungarian Method 237

Allocations are marked with a [J in the cell. All other information is
omitted.

When column 6 without an allocation is labeled (Row 6, +) we had
a breakthrough, so we put a new allocation in the cell (6, 6). Now
look at the label on row 6, which is (Col 1, —). Thus we delete the
allocation in cell (6, 1). Continuing this way using the labels, we put
a new allocation in (3, 1), delete the one in (3, 4), add on allocation
in (4, 4), and reach row 4 labeled (s, +), implying that the allocation
change routine is complete. The allocation change path indicated by
the labels on Array 3.2 is shown in Figure 3.2. The wavy edges in
Figure 3.2 correspond to allocated cells in Array 3.2, on this allocation
change path. This path is clearly an alternating path (nodes in it
correspond alternatively to unallocated cells, allocated cells in Array
3.2). It is called the alternating predecessor path of column 6 traced
by the labels.

Array 3.2
j= 1 2 3 4 ) 6 Row labels
1=1 0
|
2 0 Col. 3,—
|
310 0 Col. 4,—
O
4 0 0 (s,+)
5 0 0 (s,+)
6|0 0 0 Col 1,—
O
Column | Row 3 Row 4 | Row 4 Row 6
Labels + + + +

The allocation change routine reverses the roles of unallocated and
allocated cells along this path. It has the effect of increasing the number



238 Ch. 3. Primal-Dual and Dual Algorithms

CDa G CDACDA CDRCED

The column The row with
whose labeling label (s, +) at
lead to the the end of
breakthrough. the path

Figure 3.2: Allocation change path.

Array 3.3
Jj= 1 2 3 4 5 6
1=1 0
O
2 0
O
310 0
O
4 0 0
O
5 0 0
610 0 0
O

of allocations by 1. Hence a path like this is called an augment-
ing path in the admissible network. An augmenting path in the
admissible network wrt the present allocations is an alternating path
of unallocated and allocated arcs, joining a column node and a row
node both of which have no allocated arcs incident at them. The tree
growth routine discussed above is an efficient scheme to look for such
an augmenting path. When a breakthrough occurs, it is an indication
that an augmenting path has been identified. In this case the tree
is said to have become an augmenting tree. The augmenting path
is the predecessor path of the column node without an allocated arc



3.1. The Hungarian Method 239

incident at it, whose labeling lead to the breakthrough. If a nonbreak-
through occurs, it is an indication that no augmenting path exists in
the admissible network wrt the present allocations.

The new allocations after the allocation change are shown in Array
3.3. The new partial assignment has five allocations, one more than the
previous. Now the labels on all the rows and columns are erased, and
the algorithm begins another labeling cycle to see whether yet another
allocation can be squeezed in among the present admissible cells.

EXAMPLE 3.2

Here we solve the assignment problem of order 4 with the original cost
matrix ¢ = (¢;;) given below.

Cii Initial Cij — Uy
j=11]121]3 |4 u; j=1]2 |3 |4
1=1115(22]13 |4 4 11 181 9 (0
211221157 7 5 141 8 |0
3116[120(22|6 6 10 (1411610
416 |11 8 |5 5 1 6 (310
v; — 116310
Total Reduction = 32

1st reduced cost matrix with initial allocations

j= 1 2 3 4 | uy Row labels
1=1]10= Ci1 1216 0 S, +
4
2[4 8 |5 0 Col. 4, —
O 7
319 8 |13 0 s, +
6
410 0 |0 0
O 5
v; 1] 6 3 0 Nonbreakthrough
Col. labels Row | § = 4. Resume labeling
3, +



240 Ch. 3. Primal-Dual and Dual Algorithms
2nd reduced cost matrix
j= 2 3 4 u; Row labels
i=1|6 8|2 0 s, +
8
210 411 0 Col. 4, —
O 11
315 419 0 s, +
10
410 00 4
O 5
vj 116 3 —4 | Breakthrough, col. 1 labeled
Col. labels | Row 2 Row 3 Total reduction 40
+ 3, +
2nd reduced cost matrix, new allocations, labels
j=1112 3 4 u; Row labels
i=1|6 8|2 0 s, +
8
210 4|1 0
O 11
3151419 0 Col. 4, —
O] 10
410 (010 4
O 5
v; | 1]6 3 —4 Nonbreakthrough
Col. labels Row 1 | 6 = 4. Resume labeling
1,+




3.1. The Hungarian Method 241

Third reduced cost matrix

j=11 2 3 4 U; Row labels
i=11416 0 0 s, +
10
210 (4 1 2
] 11
31312 7 0 Col. 4, —
|12
41010 0 6 Col. 3, —
O 5
v | 1 6 3| —6 | Breakthrough, col. 2 labeled
Col. labels Row 4 | Row 1 | Row Total reduction 42
+ + 1,4
3rd reduced cost matrix, new allocations
j=11]2[3] 4 U
i=11416 (010
O 10
2101141112
] 11
31312710
] 12
41010016
O 5
v;| 1] 6] 3|6

Now we have a full assignment, {(1, 3), (2, 1), (3, 4), (4, 2)} among
the admissible cells, which is an optimum assignment for the problem.
Its cost (wrt the original cost matrix) can be verified to be 42, which
is also the total reduction at this stage. An optimum dual solution is
the (u,v) from the final reduced cost matrix.

An O(n?®) Implementation of the Hungarian Method

An O(n®) implementation of the Hungarian method is obtained by
not updating the entire reduced cost matrix but only portions of it



242 Ch. 3. Primal-Dual and Dual Algorithms

that are needed, after each dual solution change step. In this imple-
mentation an index is maintained on each unlabeled column. It is an
ordered pair of the form [t;, p;] for column j, where p; is the minimum
current reduced cost coefficient in this column among labeled rows, and
t; is the number of a labeled row in which this minimum occurs. The
index is maintained in each column as long as it remains unlabeled.
The moment the column gets labeled in the method its index is erased.
So, at each visit to Step 3 in the method, § = min {p,: over columns
j unlabeled at that time}.

Define a stage in the Hungarian method to begin either after get-
ting the initial partial assignment or after an allocation change has
been carried out, and to end when the next allocation change has been
completed. So there are at most n stages in the method, and Step 3
occurs at most n times in each stage. All reduced cost coefficients are
computed once at the beginning of each stage using the dual solution
at that time. The reduced cost coefficient is not computed again during
this stage in any cell in this implementation.

We will now describe how the work in a stage is organized in this
implementation. At the beginning of the stage, compute the entire
reduced cost matrix ¢ = (¢;; = ¢;; — u; — v;) wrt the present (u,v).
Then carry out Step 1 as usual, and if this leads to Step 2, this stage
is completed after it. On the other hand, if this leads to Step 3, before
going there, compute for each unlabeled column j, p; = min {¢;;: row
i labeled}, and let ¢; be an ¢ that ties for this minimum (break ties
arbitrarily), and index this column with [t;, p;]. Then enter Step 3.
Each time you have to carry Step 3 in this algorithm, compute § =
min {p;: over columns j unlabeled at that time}. Subtract ¢ from the
p; index of each unlabeled column j. Let L be the set of all unlabeled
columns j for which p; became 0 as a result of this operation. For each
J €L, (t;, j) is anew admissible cell. Put all labeled rows in the list, and
resume tree growth (scanning the present labeled rows first) treating
{(tj,7) : j € L} as the set of new admissible cells among the unlabeled
columns. In this tree growth step, each column j € L will get labeled.
Whenever a column gets labeled, erase its index. Whenever a new
row, say row i, is labeled do the following. Because of the way the dual
variables are changed in Steps 3 of the algorithm, for each unlabeled



3.1. The Hungarian Method 243

column j the present v; is the same as at the beginning of this stage,
and the same thing is true for u; since row 7 remained unlabeled so far
and got labeled just now. So, the present reduced cost coefficient in
cell (i,7) in unlabeled columns j in this row 4 is the same as at the
beginning of this stage, ¢;;. For each unlabeled column j at this time
let [tj,p;] be the present index on it. If ¢;; = 0 label column j with
the label (row 4, +). If p; > ¢; > 0 change the index on column j to
(4, Cij; if p, = ¢;; > 0 leave the index on column j unchanged. Repeat
this same process each time Step 3 has to be carried out in this stage.

The efficiency of this implementation stems from the fact that it
updates the indices on unlabeled columns during a stage without re-
computing the reduced cost coefficients after each dual solution change.
Since the reduced cost coefficient in any cell is computed once only in
each stage, the computational effort per stage can be verified to be at
most O(n?). Since there are at most n stages, the overall computa-
tional complexity of the Hungarian method with this implementation
is at most O(n?).

Algorithm to Obtain a Maximum Cardinality
Independent Set of Admissible Cells

Suppose we are given a subset of cells of the p x n transportation
array called admissible cells. A subset of admissible cells is said to
be independent if no two cells in it lie in the same row or column.
Let a line refer to either a row or column of the array. A subset of lines
is said to cover all the admissible cells (or to form a covering set
of lines) if each admissible cell is contained in a row or column (or
both) from the subset. Every subset of an independent set is obviously
independent, but an independent set may loose its independence when
a new cell is introduced into it. So, the problem of finding a maximum
cardinality independent set is mathematically interesting. Similarly, a
covering set of lines continues to possess this property when new lines
are introduced into it, but may no longer remain a covering set if lines
are deleted from it. Hence the problem of finding a minimum car-
dinality covering set of lines is a mathematically interesting problem.
The famous Konig-Egervary Theorem in bipartite network theory (see



244 Ch. 3. Primal-Dual and Dual Algorithms

Exercise 3.13) states that the cardinalities of maximum cardinality in-
dependent sets of cells and minimum cardinality covering sets of lines
are always equal.

When an allocation is made in each cell of an independent set, we
get a partial assignment. So, a maximum cardinality independent set
can be obtained by finding a partial assignment with the maximum
number of allocations among admissible cells. For this we can start
with 0 allocations in the p x n array, and carry out Steps 1 and 2 of the
Hungarian method until the tree growth routine ends in a nonbreak-
through. The set of cells with allocations at termination is a maximum
cardinality independent set, and the set consisting of unlabeled rows
and labeled columns is a minimum cardinality covering set of lines.

Exercises

3.1 Solve the assignment problems with the following cost matrices,
to minimize cost.

10 11 10 5 6 4 3
5 26 14 18 15 10 10
6 22 18 17 15 8 8
2 14 16 16 24 25 12 |,
4 15 19 10 8 14 11
0 22 22 15 28 24 12
8§ 18 21 18 18 18 14

121 6 17 9 8 10
8 33 45 15 20 31
5 19 30 16 14 22
7T 22 35 25 27 26
2 10 24 18 31 14
4 12 31 17 18 18

—_

3.2 The coach of a swim team needs to assign swimmers to a 200-
yard medley relay team. The “best times” (in seconds for 50 yards)
achieved by his five swimmers in each of the strokes are given below.
Which swimmer should the coach assign to each of the four strokes?

Stroke Carl Chris Ram Tony Ken
Backstroke | 37.7 329 33.8 37.0 354
Breast Stroke | 43.4 33.1 422 34.7 41.8
Butterfly 33.3 285 389 304 336
Freestyle 29.2 264 296 285 31.1




3.1. The Hungarian Method 245

3.3 There are n boys and n girls. Friendship between boys and girls
is a mutual relationship (i.e., a boy and a girl are either friends of each
other or not). b; is the number of boys among the n who are friends
of girl 7, and a; is the number of girls among the n who are friends of
boy 4,i,7 = 1 to n. If all the a; and b; are equal to a positive number
v, prove that it is possible to form n boy-girl friendly couples.

3.4 A colonel has five positions to fill and five eligible candidates to
fill them. The number of years of experience of each candidate in each
field is given in the following table. How should the candidates be
assigned to positions to give the greatest total years of experience for
all jobs?

Position
Candidate | Adjutant Intelli. Operations Supply Training
1 3 5 6 2 2
2 2 3 5 3 2
3 3 0 4 2 2
4 3 0 3 2 2
5 0 3 0 1 0

3.5 Find a minimum cost assignment wrt the cost matrix given below.
No allocations are allowed in cells with a dot in them.

12 . 6 9 6
8 . 4 3 8
3 . 18 3 19
1 . 6 5 11 .
5 1 13 4 5 6 1 2
13 12 3 1 .
3 12 3 7 13 6 8 3
3 4 1 5 5 5 49

3.6 Let ¢ = (¢;j) where ¢;; = (1 —1)(j — 1), for 4,5 = 1 to n; ¢ = (¢;5),
where ¢;; = (i+j—n)(i+j—n—1)/2, fori,j =1ton; T = (Ty)
where Z;; = 1 if i + j = n + 1, 0 otherwise, for ¢, 7 = 1 to n.

For n = 5, solve the assignment problem with ¢ as the cost matrix
by the Hungarian method. Show that ¢ is the final reduced cost matrix



246 Ch. 3. Primal-Dual and Dual Algorithms

at termination, and that Z is the optimum assignment. Show that these
results are true for any n = 2, and that the Hungarian method goes
through (n — 1)(n — 2)/2 breakthroughs and nonbreakthroughs put
together before solving this problem. (Silver [1960], Machol and Wien
[1977]).

3.7 Prove that every feasible solution x of (3.1) can be expressed as
a convex combination of assignments of order n.

3.8 The HQ of a large company has n gates, each of which is manned
by a night watchman every night. There are n night watchmen on the
payroll, and they are rotated among the gates for security reasons. A
planning period consists of r nights, and = = (z;;) is a nonnegative
integral matrix satisfying 3%, z;; = 7,320 x; = r, for all 4,5 = 1 to
n. It is required to assign night watchman to gates over the period (one
watchman per gate per night) so that the ith watchman is assigned to
watch the jth gate for exactly x;; nights. Prove that an assignment
like that exists, and develop an efficient algorithm to find it. Apply
your algorithm on the problem in which n = 5,7 = 30 and z is the
following matrix, and generate an assignment of the 5 night watchman
to the 5 gates over the 30 nights of the planning period, satisfying the
conditions mentioned above.

3 10 9 5 3
8 2 5 10 5
r=|11 4 10 5 O
0 7 3 4 16
8 7 3 6 6

(D. Gale)

3.9 An assignment problem of order 9 is being solved by the O(n®)
implementation of the Hungarian method discussed above. Relevant
information on the array when a nonbreakthrough has just occurred is
given in the following array. [ indicates an allocation in that cell in
the present partial assignment. In some of the cells the original cost
coefficient is given at the bottom right corner. The present labels on all
the labeled rows and labeled columns, and the indices on the unlabeled



3.1. The Hungarian Method 247

columns are given. The present dual feasible solution is also given.
Continue the application of the method until the next breakthrough
occurs.

j= 1 2 3 4 5 6 7 8 9 la- | w;
bel
=1 s, +
200
2 s, +
200
3| O 1, —
200
4 ] 3, —
200
5 | 2, —
200
6 |
400 400 400 400 400 200
7 L]
400 400 400 400 350 200
8 L]
400 400 400 400 400 200
9 L]
400 400 400 400 400 200
la- | L, + | 1, + | 2, ¥
bel
n- [2,40] | [3,40] | [2,80] | [4,100] | [5,110] | [5,110]
dex
v; | 100 | 100 | 100 100 100 100 100 100 100

3.10 Prove that the number of labeled columns plus the number of
unlabeled rows is equal to the number of allocated cells, at the occur-
rence of a nonbreakthrough in the Hungarian method. At the same
point in the method, prove that the number of labeled rows minus
the number of labeled columns is = the number of rows without al-
locations. Using this prove that the total reduction strictly increases
whenever the dual solution changes in the method.

Give a proof of the primal infeasibility criterion in the Hungarian
method (that there is no feasible assignment if § = +o00 in some dual
solution change step) using the duality theorem of LP.

3.11 Consider an assignment problem of order n in which z;; is re-
quired to be 0 whenever j ¢ S; for each ¢ = 1 to n, where Sy, ..., S, are



248 Ch. 3. Primal-Dual and Dual Algorithms

all subsets of {1,...,n} which are given. Determine the necessary and
sufficient conditions that these sets have to satisfy, for the existence of
a feasible assignment to the problem.

3.12 Evaluate the worst case computational complexity of the Hun-
garian method to solve a sparse assignment problem of order n as a
function of order n and m (n? —m is the number of variables required
to be 0 in the problem).

3.13 Let Q be a specified subset of admissible cells in the p x n array.
Set up a directed network G = (N, A) where N = {$, Ry, ..., R,,C4, ...,
C,,t} (5,1, are the supersource, supersink respectively, and R;, C; cor-
respond to row 4, col j of the array, for i = 1 top, j =1ton), A=
{(5,Ry) :i= 1 to p}U{(R;, C}) : 4,j s. t. cell (i,7) € Q } U{(C},T) : j
= 1 to n}, as in Figure 3.2. Make the lower bound for flow on all the
arcs in A zero, and the capacities for flow on all the arcs (§, R;) and
(Cj,7) equal to 1, and oo for all the arcs of the form (R;,C;) € A.

(i) Prove that the maximum cardinality among independent sets of
admissible cells in the array is equal to the maximum value of flow
from 3 to ¢ in G. Given an integral maximum value flow vector in
G, discuss how to construct a maximum cardinality independent
set of admissible cells in the array from it, and vice versa.

(ii) Let [X,X] be a cut separating 5 and £ in G. Prove that the capacity
of this cut is finite iff there are no arcs of the form (R;,C;) €
A with R; € X, C; € X and (4,5) €Q. Using this prove that
in this case, the set of lines {Row i : i € X} U {Column j :
j € X} is a covering set of lines, and that the cardinality of
this covering set is equal to the capacity of this cut [X,X] in G.
Conversely, given a covering set of lines in the array, prove that
[X,X], where X = {5}U {Row i: row i is not in the covering
set} U{Column j: column j is in the covering set}, and X = N'\
X, is a cut separating § and ¢ in G whose capacity is equal to
the cardinality of this covering set of lines. Using these prove
that the problem of finding a minimum cardinality cover for Q
in the array is equivalent to that of finding a minimum capacity
cut separating § and f in G.



3.1. The Hungarian Method 249

(iii) Using these prove the Konig-Egervéry Theorem which states
that the maximum cardinality among independent sets is equal
to the minimum cardinality among covering sets of lines, by ap-
plying the maximum flow minimum cut theorem on G.

(iv) Prove that the covering set of lines obtained at termination of
the algorithm discussed above is a minimum cardinality covering
set of lines.

3.14 ¢ = (¢;) is the original cost matrix for an assignment problem
of order n. For any cell (i,7) in the n x n array, let a(i,j) denote a
minimum cost assignment among those containing an allocation in cell
(i,7). For a given r, the following method finds a(r, 1), ..., a(r,n).

Step 1 Find a minimum cost assignment with ¢ as the cost ma-
trix by the Hungarian method. Let a; = {(1,j1),...,(n,j,)} be
the optimum assignment obtained, and ¢ the final reduced cost
matrix.

Step 2 Let a be a positive number > every entry in ¢. Add « to
all the elements in row r of ¢. In the resulting matrix, subtract
« from each entry in column j,.

Step 3 Find a most negative entry in the present matrix. Suppose it
appears in row ¢ and has absolute value 3. Add [ to every entry
in row ¢ of the present matrix. In the resulting matrix subtract
0 from every entry in column j;.

Step 4 Repeat Step 3 as often as necessary, until the present matrix
becomes = 0. Then go to Step 5.

Step 5  Let ¢ = (¢;) be the matrix obtained at the end. For 1
- q = n, there exists an assignment with an allocation in cell
(r,q) and all the other allocations in cells (4, j) with ¢; = 0. Any
such assignment is a(r, q).

(i) Prove that Step 3 has to be repeated exactly n — 1 times before
going to Step 5 in this method.



250 Ch. 3. Primal-Dual and Dual Algorithms

(ii) Prove the statement in Step 5, that for each ¢ = 1 to n, there
exists an assignment with an allocation in cell (r, ¢), and all other
allocations in cells with 0 entries in ¢, and any such assignment
is indeed a minimum cost assignment among those with an allo-
cation in (r,q).

(iii) Derive the worst case computational complexity of this method.
Apply the method on the problem with n =5, r =1 and

0 3 9 4 0
2 0 7 0 11
c=|95 15 0 16 12

4 0 18 0 17
0 20 21 13 O

(Kreuzberger and Weiterstadt, [1971], “Eine Methode zur Bestimmung
mehrerer Losungen Furdas Zuordnungsproblem,” Angewandte Infor-
matik, 13, no. 9 (407-414), in German)

Comment 3.1 The Hungarian method for the assignment problem
is due to Kuhn [1955]. The name for the method recognizes the work of
the Hungarian mathematicians J. Egervary and D. Konig (the Konig-
Egervéry Theorem, see Exercise 3.13) which is the basis for the method.
Each maximum value flow problem encountered in the method is of the
Konig-Egervary type (i.e., that of finding a maximum cardinality set
of independent admissible cells). The O(n®) implementation of the
Hungarian method is due to Lawler [1976 of Chapter 1].

Kk ok ok ok skoskook sk ok ko sk sk skook sk skok sk okok sk sk skok sk skok sk skokosk skokok sk kok skoskokokoskoskok skokok skokoskok skokokskokokskokok

3.1.1 Minimal Chain Decompositions in Partially
Ordered Sets

Suppose we are given a finite set of n elements, P. We will number
the elements serially and represent each element by its number, thus



3.1.1. Minimal Chain Decompositions 251

P ={1,...,n}. A strict partial order on P is an order relation between
some pairs of elements of P, denoted by >, satisfying : ¢ y i for all 4;
1 > j implies j % i ; and the following property called transitivity :
for i,5,h, ¢ > j, j > h implies ¢ > h. This relationship makes P a
partially ordered set or poset, which we also denote by the same
symbol P. The partial order can be represented by a directed network
with the elements in P as its nodes and arcs (7, ) if ¢ > j. Normally if
1 = jand j > h, we have ¢ = h by transitivity, but we do not include
the arc (i,h) in this network, even though it is quite harmless to do
so. Thus whenever i > j, either there is an arc (i, j), or there exists a
chain from node ¢ to node j in the network; and conversely. Thusi > j
iff there exists a chain from ¢ to j in this network representation. The
network thus constructed has no directed circuits by the properties of
the partial order, see Figure 3.3 for an example.

R O
w@@

Figure 3.3:

We define a chain in this poset to be a set of one or more elements
i1,19,...,1; of P satisfying iy > iy > ... = 14;; thus it corresponds
to a chain in the network when there are two or more elements in
it. However, a single element by itself (that is, a single node in the
network) is also considered a chain of the poset.

A decomposition of this poset is a partition of the set P into
chains which are mutually disjoint. The trivial decomposition of P into
n one-element chains is an example of a decomposition. A decomposi-
tion with the smallest number of chains in it is said to be a minimal
decomposition. We will use the symbol A to denote decompositions



252 Ch. 3. Primal-Dual and Dual Algorithms

and |A| to denote the number of disjoint chains in A.

A subset N C P is said to be a set of unrelated elements in
the poset if for every pair 7,7 € N, neither ¢ > j, nor j > 1.

As an example, consider the poset on P = {1 to 10} represented
by the network in Figure 3.3. In this poset, the set of all j satisfying
2> jis{4,5,6,7, 8,9, 10}. The sets {1, 2, 3}, {6, 7, 8} are both
sets of unrelated elements, but the set {5, 6, 7, 8} is not since 5 > 6.
{C1,Cs,C3,C4} is a chain decomposition of this poset where

G = 1,(1,4
C; = 2,(2,5),5,(5,8),8,(8,10),10 (3.5)
C3 = 3; C4:6

In any decomposition, each node in a set of unrelated elements N
has to appear on a different chain (as otherwise there will be two nodes
i,7 in N such that either i = j or j > i, a contradiction). Hence the
number of disjoint chains in any decomposition of P is = the cardinality
of any set of unrelated elements in P. Hence we have the result.

(3.6)

no. of chains in minimal }> { maximum no. of mutually

decomposition of P 1 unrelated elements of P

The finite case of the well-known Dilworth’s chain decomposition
theorem for posets asserts that equality holds in (3.6). Here we show
how to prove this result as a corollary of the Konig-Egervary theorem,
through a bipartite network formulation. Also, we show that a mini-
mal decomposition of P and a maximum cardinality set of unrelated
elements in P can both be obtained using the algorithms discussed
earlier. These results are due to Fulkerson [1956].

Construct the bipartite network G = (Np, Na; A) where N} =
{Rl, ceey Rn}, NQ, = {01, c. ,Cn}, and A = {(Rl, O]) D ]} Notice
that G contains arcs corresponding to all order relations implied by
transitivity, that is, (R;, C;) € A whenever i, j € P are such that ¢ > j.
Corresponding to G, set up an n x n array with R;, C; associated with
row ¢, column j of the array, and the arc (R;, C;) in G associated with



3.1.1. Minimal Chain Decompositions 253

the cell (7, 7) in the array. Make the cell (7, j) in the array admissible iff
(R;,C;) is an arc in G. Then an independent set of admissible cells in
the array corresponds to a matching in G and vice versa. If M ={(R;,,
Ci,), (Riy, Ciy), -+, (Riy_,s Ciyy)} is a matching in G with [M| = [,
{(i1,12), (i3,%4), - - -, (121, i) } is the corresponding independent set of
admissible cells in the associated array, and vice versa. We can group
the distinct elements in the set {iq,4s,...,7%} into chains, each one
passing through two or more elements. Since M is a matching in G,
these chains will be disjoint. Let r be the number of these chains, and
let p1,po, ..., p, be the numbers of elements on them. So, the numbers
of arcs on these chains are p; — 1,...,p, — 1 respectively, and hence
[=|M|=(p1—1)+...4 (p, — 1). The total numbers of elements of
P which do not appear on any of these chains is n — (p; + ...+ p;)
= ny. Add a one-element chain at each of these elements to the set of
r chains obtained above. This leads to a decomposition A of P, with
IAl=ny+r.Now,n=n—-(p1+...4p)) +p1 +... +pr =11 +
r+ (pn—1) + ... + (pr—1)) = |A| + |M]. So, corresponding to any
matching M in G, we can construct a decomposition A of P such that
Al =n— M|

As an example, consider the poset represented by the acyclic net-
work in Figure 3.3. Here n = 10, and the array corresponding to this
partially ordered set is given below, with admissible cells marked by a
X.

Array 3.4
Ci|Cy | C3|Cy | C5 | Cs | Cr | Cg | Cy | Cro

R, X X b'e

Ry x | x| x| x| x| x X
Rs x | x x | x X
Ry X b'e

Rs X X | x X
R6 X

R7 X

Rg X
Ry

Ry




254 Ch. 3. Primal-Dual and Dual Algorithms

An independent set of admissible cells in Array 3.4 is M = {(1, 4),
(2,5), (4,7), (5,8),(7,9), (8, 10)}. This independent set of admissible
cells corresponds to the chain decomposition A = {Cy, Ca, Cs, C4} of
the partially ordered set, where Cy, Cy, C3, C4 are given in (3.5). It can
be verified that |M|+ |A| =n = 10 here.

Let X = {Ry,,...,R,,: Cj,,...,Cj,} be a set of lines (rows and
columns) in the array corresponding to the poset P, which covers all
the admissible cells. Suppose X is a proper cover, that is, no subset
of X covers all the admissible cells in the array. Then we claim that
t1,...,tw, J1,- -, Jq are all distinct. To see this, suppose t; = j;. Since
X is a proper cover, there must exist an r such that R, ¢ X and
(R,,Cj},) is an admissible cell. Similarly there must exist an s such that
Cs ¢ X and (Ry,, Cs) is admissible. By transitivity and the assumption
that ¢, = 71, it follows that (R,,Cs) is an admissible cell, and since
neither R,, nor C§ is in X, this contradicts the assumption that X
covers all admissible cells. So, elements in {t1,...,tw; J1,...,Jq} are
all distinct. Let U = {1,...,n}\{t1,...,tw; j1,. .., Jq} Since X covers
all admissible cells, the elements in U are mutually unrelated, and by
the definition of U we have {t1,...,ty,J1,...,J,t UU = P, and hence
|X| 4+ |U| = n. So, corresponding to any covering set X of lines in the
array, we can construct a mutually unrelated set of elements U of P
such that |U| =n — |X].

As an example, consider the poset represented by the acyclic net-
work in Figure 3.3. Array 3.4 corresponds to it. In Array 3.4, all ad-
missible cells are covered by the set of lines { Ry, Ro, R3, R4, R5, Rs, Cy}.
This covering set of lines leads to the set of unrelated elements U={6,
7,10} in P.

THEOREM 3.1 (Dilworth’s Theorem) The number of chains in a
minimal decomposition of a finite poset P is equal to the maximum
number of mutually unrelated elements in P.

Proof Construct the array corresponding to P as described above.
In this array find a maximum cardinality set of independent admissi-
ble cells 1\/[ and a minimum cardinality set of covering lines L cov-
ering all the admissible cells. Obtain the chain decomposition A of
P corresponding to M, and a set U of mutually unrelated elements



3.1.2. Bottleneck Assignment Problem 255

of P corresponding to L by the procedures described above. We have
|A| = |P| — M| and |U| = |P| — |L|, and by Kénig-Egervary theo-
rem M| = |L|. So |A| = |U|. But by (3.6) we have |A| 2 |U| for
every chain decomposition A and set of unrelated elements U in P and
]A] = |Ij| This implies that A is a minimal decomposition of P and
U is a maximum cardinaltiy set of mutually unrelated elements in P,
and since |A| = |U], the theorem is proved. i

Hence to find a minimal chain decomposition of a finite poset P, we
construct the array corresponding to it as described above, and then
find a maximum cardinality set of independent admissible cells, M, in
it, using the algorithm discussed earlier. A minimal chain decomposi-
tion of P is obtained directly using M as described above.

3.1.2 The Bottleneck Assignment Problem

In the assignment problem (3.1), the objective function is the sum of
the costs of all the allocations. This objective function may not be
appropriate in some practical applications. As an example, consider
the application discussed in Exercise 3.15 at the end of this section.
Minimizing the sum of the inconvenience of all the salesmen may not
please a particular salesman if his own individual inconvenience turns
out to be large in the optimum assignment. A better objective in this
case, is to minimize the maximum inconvenience experienced by any
salesman. This leads to a problem known as the bottleneck assign-
ment problem or the min-max assignment problem. If ¢ = (¢;;)
is the square cost matrix of order n, in this problem our aim is to find
an assignment z = (z;;) that minimizes the function f(z) = maximum
{cij : ,j such that z;; = 1} over the set of all assignments of order
n. We discuss an algorithm for this problem now. It uses the tree
growth steps in the Hungarian method. To avoid confusion we refer to
steps in this method as items. In this method the value of 2" is like
a threshold. At each stage, all cells with cost coefficient = threshold
are admissible. If there is no assignment among the set of admissible
cells, the threshold is increased to the next higher level. The method
terminates as soon as a full assignment is located among the set of ad-
missible cells. Hence, this method is known as the threshold method



256 Ch. 3. Primal-Dual and Dual Algorithms

for the bottleneck assignment problem. It is due to Gross [1959]. The
assignment at termination is an optimum assignment, and the terminal
value of 2" is the optimum objective value in the bottleneck problem.

THE THRESHOLD METHOD

Item O Define u; = min. {c;1,...,¢n}, ¢ = 1 to n, v; = min.
{c1j, .- enj}, J=1ton, 28 =max. {u, ..., up;v1,...,0,}. De-
fine the set of admissible cells to be {(i,5) :4,js. t. ¢;; = 2'}.
With this set of admissible cells and any partial assignment with
allocations only among admissible cells (for example, the 0 partial
assignment), enter the tree growth routine (Step 1) of the Hun-
garian method and make allocation changes as breakthroughs
occur, until either a full assignment is obtained or a nonbreak-
through occurs. If a full assignment is obtained, it is an optimum
assignment; terminate. If a nonbreakthrough occurs, go to Item
1.

Item 1  Let r be the number of the present visit to this iteration.
Define 2" = min.{c;; : (4, 7) is inadmissible at this stage}. Let
the new set of admissible cells be {(i,7) : c;j = 2"+'}. Make the
list = set of all labeled rows, and resume tree growth by going to
Substep 2 in Step 1 of the Hungarian method, and continuing as
in Item 0.

Exercises

3.15 There are n salesmen to be assigned to n markets on a one to
one basis. ¢;; measures the inconvenience experienced by the ith sales-
man if he is assigned to market j (for example, c;; may be the daily
commuting distance for him under this assignment). It is required to
find an assignment that minimizes the maximum inconvenience experi-
enced by any salesman. Solve this problem when ¢ = (¢;;) is the matrix
given below.



3.2. Balanced Transportation Problem 257

3 9 15 20 5
13 16 7 8 9
c=1|19 12 13 14 15
7 17 8 9 13
9 15 16 12 11

3.16 Each visit to Item 1 in the the threshold method increases the
number of admissible cells in the array by at least one. Hence Item 1
occurs at most n 2 times in the method. Using this, derive the worst
case computational complexity of this method.

3.17 An assembly line consists of workstations 1, ...,n, each staffed
by an operator. Each unit is processed on each workstation as it passes
along, it cannot move past a workstation until its processing there is
completed. There are n laborers, and c;; is the number of seconds that
the jth laborer takes to process a unit at workstation 7. It is required
to determine how the laborers should be assigned to the workstations
on a one to one basis, so as to maximize the productivity of the line.
Formulate this problem. Obtain an optimum solution when ¢ = (c¢;;)
is the following matrix.

9 7 18 13 14 16
16 12 11 23 5 19
13 9 25 19 17 18
18 16 10 9 13 11
12 12 8 18 8 9
6 11 7 19 9 12

3.2 The Primal-Dual Method for the Un-
capacitated Balanced Transportation
Problem

A commodity has to be shipped from p sources (ith source has a; units
available to ship, ¢ = 1 to p) to n markets (jth market needs b; units,



258 Ch. 3. Primal-Dual and Dual Algorithms

j = 1ton). ¢; is the unit transportation cost ($/unit) on the route
from source ¢ to market j, i = 1 to p, 7 = 1 to n. The data satisfies

a;,b; > 0, for all 7, j; and Zai :ij

x;; denotes the amount of material shipped from source ¢ to market
J. These z;; are the decision variables in the problem. It is

p n
Minimize z(z) = Y ) cijzy

Subject to Y z;; = a;, i=1top (3.7)

J=1

p
inj = bj,jzlton
i=1

=

Tij 0, for all 4,7

It is the problem of finding a minimum cost flow vector saturating
all the arcs leading to the super sink in the bipartite network in Figure
3.4. All lower bounds are 0. Data on each arc is capacity; unit cost
coefficient in that order. z;; is the flow on the arc joining source %
and market j. By identifying the cell (¢, 7) in the p x n transportation
array with the arc joining source ¢ to market j in the network, all the
computations can actually be carried out on the array itself.

In practical applications, each source may not be able to ship to
all the sinks. If sink j is too far away from source i, it is realistic to
specify that source ¢ cannot ship to sink j (i.e., that z;; = 0). There
may also be other practical reasons why a source cannot ship to some
sinks. Thus, for each source, a subset of sinks to which it can ship
is specified, and all flows from that source to sinks outside that set
are required to be zero. This can be handled by defining c¢;; to be
+00 whenever z;; is required to be zero in the formulation (3.7). In
the corresponding bipartite network in Figure 3.4, the arc (4, 7) is not
included if z;; is required to be 0; thus it is no longer the complete
bipartite network. We denote by m the number of source to market
arcs in this network. Clearly m = pn, the transportation problem is



3.2. Balanced Transportation Problem 259

Sources Markets

Super-
source

Super-
sink

Figure 3.4:

said to be sparse if m is small compared to pn, and dense if m is close
to pn.

The primal-dual algorithm is described using arrays for ease of un-
derstanding, but computer implementations are usually based on the
network formulation as described above, this saves in memory require-
ments and running time for solving practical problems which are almost
always sparse. The dual problem is

Maximize Zaiui + ijvj
<

Subject to u; + v, c;; foralli,j (3.8)

Let ¢;; = ¢;j —u; —vj, for t = 1 to p, j = 1 to n. These are the
reduced cost coefficients wrt (u, v), and (u,v) is dual feasible iff they
are all = 0. The complementary slackness conditions for optimality in
these problems are

wijéij = 0 for all Z,] (39)

The cell (,7) in the array (the corresponding arc (i,7) in the bi-
partite network in Figure 3.4) is said to be an admissible or equality
cell (admissible or equality arc) wrt (u,v) if ¢; = 0; otherwise it is
inadmissible. The network obtained by deleting all the inadmissible



260 Ch. 3. Primal-Dual and Dual Algorithms

arcs from Figure 3.4 is known as the admissible or equality sub-
network wrt (u,v). The complementary slackness conditions require
that the flow amounts should be 0 on all the inadmissible arcs. The
flow problem, known as the restricted primal at this stage, is to find
a maximum value flow from the super source to the super sink in the
equality subnetwork. It is equivalent to

Maximize » (z;; : over (4,;) admissible )
Subject to Zmij = g, i=1top
j=1
P
Sz = by, j=1ton (3.10)
i=1

Tij = 0, if (4,7) admissible, 0 otherwise

The primal-dual algorithm maintains vectors z, (u,v) which always
satisfy the constraints in (3.10), (3.8), (3.9). When the z vector satisfies
the equality constraints in (3.7), it is an optimum solution and the
method terminates.

THE CLASSICAL PRIMAL-DUAL METHOD FOR THE
UNCAPACITATED BALANCED TRANSPORTATION PROBLEM

Step 0 Initialization If some dual feasible solution is available, use

it as the initial one, otherwise define it to be (u' = (u;), v' = (vj))

where uj = min { ¢;; :j=1ton },vj =min { ¢;j —uf 11 =1
top}, fori=1top, j =1ton. List = ). Define 2! = 0. Go to
Step 1.

Step 1 Tree growth routine Let Z = (Z;;) be the present flow.

Substep 1 Label each row i satisfying >3; #;; < a; with (s,
+), and include it in the list.
Substep 2  If list = (), tree growth has terminated and there

is a nonbreakthrough. The present flow is a maximum value
flow in the admissible subnetwork, go to Step 3. Otherwise,



3.2. Balanced Transportation Problem 261

select a row or column from the list for scanning and delete
it from the list.

Forward labeling Scanning row ¢ consists of labeling each
unlabeled column j such that (i, 7) is an admissible cell, with
the label (row 4, +).

Reverse labeling To scan column j, label all unlabeled
TOWS 1
satisfying Z;; > 0 with (column j, —).

If any column without an allocation has been labeled, there
is a breakthrough, go to Step 2. Otherwise, include all newly
labeled rows and columns in the list, and repeat this Substep
2.

Step 2 Flow change routine Suppose column j satisfying a =
b; —>2; Z;; > 0 has been labeled. Trace its predecessor path using
the labels, suppose it ends with row ¢ with the label of (s, +). This
path is an FAP from row i to column j in the equality subnetwork.
Call it P. Let 8 = a; — 3, Z4j, and € the residual capacity of P.
Define v = min{ «, 3,¢ }. Carry out flow augmentation by the
amount v on the FAP P, and get the new flow z. If % is feasible
to (3.7), it is an optimum solution; terminate. Otherwise, chop
down the present trees (i.e., erase the labels on all the rows and
columns) and go back to Step 1.

Step 3 Dual solution change routine Same as Step 3 of the
Hungarian Method.

EXAMPLE 3.3

Consider the balanced transportation problem with data given in
the following array. An initial dual feasible solution (u = (u;),v = (v;))
is also given in the array.



262 Ch. 3. Primal-Dual and Dual Algorithms
j= 1 213141516 |a;]|u
=1 4
ci1=51|3 73] 8 5 3
2 3
5161215 7|11 )
3 3
218 3|4 8 2 2
4 7
916]10| 5] 10 9 )
b; 3 3162|112
v olo] 1]o] 2] o

The reduced cost coefficients, ¢;; = ¢;; — u; — v; are entered in the
upper left corners of the cells in the following array. All cells in which
¢ij = 0 are admissible cells, and they are marked with a little box in
the middle. An initial flow among the admissible cells is obtained by
inspection, and the flow amounts, when nonzero, are entered in the

little boxes.

j= 1 2 3 4 5 6 | a; | u; Row
label
2=c¢11 |0 3 0 3 2
i=1 4 Col. 4, -
3
0 1 6 0 0 6
2| O+0 O 3 s, +
5
0 6 0 2 4 0
3 —0 46 Ol 3 Col. 1, -
2
4 1 4 0 3 4
4 7 s, +
)
b; 3 3 6 2 1 2
v; 0] o 1 2] 0
Col. | Row 2 Row 3 | Row 2 | Row 2
label + + + +



3.2. Balanced Transportation Problem 263

] = 1 2 3 4 516 | a; | u Row
label
2=¢11 |0 3 0 3 2
i=1 4 Col. 4, -
3
0 1 6 0 0 6
2 O 3
5
0 6 0 2 4 0
3 O] 3
2
4 1 4 0 3 4
4 7 S, +
5
b; 3 3 6 2 1 (2
v; 0 0] 1 o] 2] o0
Col. Row 1 Row 4
label + +

In the first array at the top, rows 2 and 4 have additional material
to be shipped, so they are labeled with (s,+). Columns 3 and 6 have
unfulfilled requirements. The labeling routine is applied, and it ends
in a breakthrough with column 3 labeled. We move to the flow change
routine. Entries of +60 and —6 are made in admissible cells as indicated
by the labels. The value of § should be min.{6 = unfulfilled requirement
in column 3; 2 = additional material available at row 2; 3 = flow amount
in cell (3, 1) with a —6 entry} = 2. The new flow vector is recorded in
the next array together with the present reduced cost coefficients. The
old labels are erased and the labeling routine is applied again. The row
and column labels obtained are recorded on the array.

We have a nonbreakthrough. So, we move to the dual solution
change routine. § = 2. The new dual feasible solution is 4, v marked
in the following array. In this array we show the new reduced cost
coefficients in each cell. The new admissible cells are marked with a
little box in the middle. Notice that all the cells with positive flow
amounts in the present flow vector remain admissible. The present



264 Ch. 3. Primal-Dual and Dual Algorithms

flow amounts in cells with positive flow are entered inside the box in
them.

j=l1]23]4]5/|6]alu

0O |0 |1 (0 |1 |0
i=1|0 |[3] m
)

0O |3 |6 |2 |0 |6
2| [2] 3
)

0O |8 |0 (4 |4 |0
3([1] 0| 3
2

2 (1 (2 |0 |1 |2
4 7
7

The algorithm now resumes labeling using the new admissible cells.
It can be continued in the same manner until an optimum solution is
obtained.

Discussion

If 6 turned out to be +o0o in Step 3 at some stage, the flow at that
stage is a maximum value flow, not only in the equality subnetwork
at that stage but in the entire original bipartite network. This case
can only occur if some of the z;; were required to be 0 in the original
problem. Since this flow leaves the demand at some markets unfulfilled,
it implies that there is no feasible solution to the problem.



3.2. Balanced Transportation Problem

Array 3.5 Summary of Position at Occurrence of

Nonbreakthrough. (i, d, c= (¢;= ¢

~

— u; — 7;), are the

dual solution and reduced cost matrix before the change.
(4,0,¢ = (¢ = ¢;j — U; — D) are the corresponding things
after the change. & = (Z;;) is the present flow.

Block of la- | Block of unla- | Supply | Dual
beled cols. beled cols. position | change
Block | ¢ = %ij here, | No admissible | Material | @4; =
of la-|so  admissi- | cells here (a | avail- W + 0
beled | bility pattern | col. would | able at | here.
rows remains be labeled | some
unchanged otherwise). rows
So %ij> 0 here.
here. 6 =
Min{c;;: (4,7)
here}> 0.
Cij =Cij —0
here. New
admissible cellg
created here,
and their cols.
get  labeled
next.
Block | Z;; = 0 here Eij :aj here, T = | Uy = Uy
of un- | (otherwise so  admissi- | a; here; | here.
la- a row could | bility pattern | other-
beled | be labeled). | remains wise
rows & = %ij +4 | unchanged. a  Tow
here. All cells could be
here become labeled.
inadmissible
next.
Require{ >>;Z;;; = b; | Some cols.
ment here; oth- | with un-
posi- erwise it | fulfilled
tion would be a | requirements.
breakthrough.
Dual ’(AJ]‘ = 173‘ — 0 TA)j = ’(7]‘ here.
change | here




266 Ch. 3. Primal-Dual and Dual Algorithms

For arbitrary ¢ and arbitrary (i.e., not necessarily rational) positive
a;, bj sat- isfying > a; = 3 b;, the method terminates in a finite number
of steps if the list is maintained as a queue and the node for scanning
in Substep 2 of Step 1 is selected by the FIFO (first in first out) rule.
To see this, we notice from the facts in Array 3.5 that when labeling is
resumed after each occurrence of Step 3, at least one new column gets
labeled. So, in this algorithm, after at most n consecutive occurrences
of Step 3, Step 2 must occur, and then the total flow 33" z;; strictly
increases.

Each equality subnetwork appearing in the algorithm consists of all
the nodes (source nodes with their availabilities, sink nodes with their
requirements) and equality arcs corresponding to the subset of equality
cells wrt the dual feasible solution at that stage. We can associate
any equality subnetwork with the subset of cells corresponding to the
equality arcs in it. Denote by ¥(E) the value of the maximum value
flow in the equality subnetwork associated with the subset of cells E.

The equality subnetwork changes in the algorithm after each oc-
currence of Step 3. The first time that Step 3 occurs after an equality
subnetwork associated with a subset E of cells appears for the first
time in the algorithm, the total flow - > x;; becomes equal to J(E),
and this happens after at most O(m(p + n)) consecutive occurrences
of Steps 1 and 2, by the results in Section 2.3.3. If the algorithm did
not terminate then, Step 3 will occur, and it could repeat at most n
times consecutively, followed by another occurrence of Steps 1 and 2,
at which time the total flow strictly exceeds ¥(E).

So, after the equality subnetwork defined by the subset of cells E
first appears in the algorithm, there is a consecutive run of at most
O(m(p+n)) Steps 1 and 2 ; followed by a consecutive run of at most
n Steps 3, and then another occurrence of Steps 1 and 2. After these
are over, the equality subnetwork defined by the subset of cells E can
never reappear in the algorithm. Since there are only a finite number
of subsets of cells, this implies that the algorithm is a finite algorithm.

This primal-dual method for the transportation problem is practi-
cally efficient and is useful for doing sensitivity analysis when the a;
and b; change. Experience indicates that in solving large problems,
computer implementations of the primal algorithm using tree labels,



3.2. Balanced Transportation Problem 267

discussed in Chapter 5, are superior to those of the primal-dual method
discussed here. Newer variants of the primal-dual method are discussed
in Chapter 5, they are competitive with other algorithms for solving
large scale minimum cost flow problems.

To study the worst case computational complexity of this algo-
rithm, we will assume that all the a; and b; are positive integers and
let >°; a; = 32, b; = . In this case, every breakthrough leads to an in-
crease in the total flow value, >°; 3= x;;, by at least 1. When tree growth
is resumed after each dual solution change, at least one new column
gets labeled. Hence between two consecutive breakthroughs, there are
at most n nonbreakthroughs. It can be verified that the overall compu-
tational effort in the primal-dual method in this case is bounded above
by O(v(n+p)?). This grows exponentially with the size of the problem,
since 7y grows exponentially with the number of digits needed to store
the a;, b;. However there is a scaling or digit-by-digit implementa-
tion of the primal-dual method which is polynomially bounded, which
we discuss next.

Polynomially Bounded Scaling Implementation

Consider the case where the a;, b; are all rational numbers. By se-
lecting the unit for measuring the commodity appropriately, the prob-
lem can then be modified into one in which all the a;, b; are positive
integers. We assume that this has been done. Let >>;a; = 3, 0; = 7.
No assumptions are made about c;;.

Let g be the smallest positive integer such that a; and b; = 924 for all
i,j (i.e., each a;,b; have at most ¢ digits in its binary expansion, and ¢
is the smallest integer with this property). The scaling implementation
deals with a sequence of ¢+ 1 problems called subproblems all of which
are transportation problems with the same cost matrix (and hence the
same set of nodes and arcs) as (3.7), but with scaled down availabilities
and requirements which approximate those of (3.7) to successively more
digits of precision. Initially availabilities and requirements, and hence
flow augmentations are on a coarser scale than in the original problem,
but by the end of the sequence all the data converts to the original
data, and the terminal solution, if one is obtained, will be an optimum



268 Ch. 3. Primal-Dual and Dual Algorithms

solution of the original problem. The final solution of each approximate
problem leads to a good initial flow for the next approximate problem in
the sequence. The worst case computational complexity of the scaling
implementation is proportional to the number of digits in the binary
encoding of the a;, b;.

We consider the general problem in which some of the z;; may be
required to be 0. For i = 1 to p, let I'; = {j: z;; can have a positive
value in the solution}; and for j = 1 to n, let ; = {i: z;; can have a
positive value in the solution}. So, source 7 is allowed to ship only to
sinks in I'; for all 4, and sink j can receive shipments only from sources
in Q; for all j. Let F = {(¢,7) : z;; can have a positive value in the
solution} = UJ_;{(i,7) : j € T} = Uj_ {(4,5) : i € Q;}. So, the cost
coefficients c¢;; are only defined for (7, j) € F in the problem, for (i, j) ¢
F we treat c;; to be +-00. Hence the original problem to be solved is

Minimize Z Cij Tij

(4,)€EF
Subject to Z Ty =a,t=1top
Jjer;
Z Tij :bj,jzl ton (311)
i€

zi; =0, for (i,j) €F

Let d;,gj,% = 1 to p, 7 = 1 to n, be non-negative integers. In the
scaling implementation, the subproblems are all transportation models
in the form (3.12), where A is a specified positive integer. In the algo-
rithm, d; will be of the form | % | and g; will be of the form L;’—JSJ, where
s ranges from ¢ to 0 in stages. When some of the z;; are required to
be zero even if the original problem (3.11) is feasible, the subproblems
in some stages may be infeasible for some A. In any feasible solution
of (3.12), A is known as the total flow in that solution. It is the
total amount of material reaching the sinks from the sources in that
solution.

Minimize Z Cij Tij
(i,j)€F



3.2. Balanced Transportation Problem 269
Subject to Z Tij =d,i=1top
Jjer;

S oay; =gj=1ton (3.12)

=y
XD wmy =A
i g
zi; =0, for (i,j) €F

The dual of the original problem (3.11) is

Maximize Zaiui + ijvj
<

Subject to u; + v; ¢;j forall (4,j) € F (3.13)

Denoting the dual variables corresponding to the constraints in
(3.12) by m;, i, 6 in that order, the dual of (3.12) is

Maximize dA — Z dim; — Zgj,uj
Subject to —m; —p; +6 ¢ij, forall (i,7) e F  (3.14)
0, for all 7, 5.

=
2>
Ty g =

The complementary slackness optimality conditions in the primal
dual pair (3.12), (3.14) are

(Cij + i+ py — (5)(137/] = 0, for all (’L,j) eF (315)
j=1
p

pi(gi =D zy) = 0,j=1ton (3.17)
=1

We call the pair (z, (7, u, §)) feasible to (3.12), (3.14) an extreme
pair if they together satisfy (3.15), whether they satisfy (3.16), (3.17)
or not. An extreme pair for (3.12),(3.14) is said to be a maximum
extreme pair if the total flow > (z;; : over (4, ) € F) is the maximum



270 Ch. 3. Primal-Dual and Dual Algorithms

value that can be attained with the supply at source (row) node i
limited to at most d;, and the amount that can be shipped to sink
(column) node j limited to at most g;, i = 1 top, j = 1 to n.

If (z, (7,7, 0)) is a maximum extreme pair when d; = a;,g; = b;
for all 4, j, and the total flow in T is v = }_ a;, then (3.16), (3.17) hold
automatically in this pair. In this case, let T@; = § — T, 0 = —; for all
i,7, then (Z, (w,v)) is an optimum pair for the original problem. This
fact is used in this implementation.

For r = 0 to ¢, define

ai b

di = L2q_rJJgj = LQq—r

|,i=1top,j=1ton.

The scaling implementation solves a sequence of (¢ + 1) subprob-
lems. For r = 0 to ¢, the rth subproblem is (3.12) with d; = d}, g; = ¢}
for all ¢,5. Each subproblem is solved by the primal dual algorithm,
walking along extreme pairs only, until a maximum extreme pair is ob-
tained for it. This will be recognized in the algorithm when, either the
capacity at all the source (row) nodes is used up, or all the capacity
at the sink (column) nodes is used up, or if 6 = oo in a dual solution
change step. It then moves to the next subproblem, beginning with an
initial extreme pair for it constructed from the last pair for the present
subproblem. In the gth (i.e., final) subproblem, we have d; = a;, g; = b;
for all 4, 7, and since Y- a; = Y b;, a maximum extreme pair for it leads
to a solution for the original problem (3.11) if it is feasible, as shown
later.

For r < ¢ we may not have 3-;dj = }_; g7, but we apply the primal
dual algorithm to find a maximum extreme pair for the rth subproblem.
While solving this problem the algorithm maintains the pair (z, (u,v))
where z satisfies (3.12) with d; = dj,g; = g} for all 4,j; u,v satisfy
(3.13) always, and these vectors together satisfy (3.9). There is a vector
(7, u, 6) feasible to (3.14) and satisfying —m; — p; + 6 = u; + v; for all
i, j; that can be obtained from (u, v) by the formulas 7, = v — w;, p; =
v —v;,6 = 2v for all 4, j, where v = max.{uy,...,up;v1,...,v,}, and
the pair (z, (7, p,0)) will then be an extreme pair for (3.12), (3.14).

Let G denote the bipartite network for the original problem (3.11)
as in Figure 3.5, in which the arc joining source node ¢ to market node



3.2. Balanced Transportation Problem 271

j exists iff (i, j) € F. For r = 0 to q, let G, denote the same network as
G, but with the capacities a; replaced by dj, and capacities b; replaced
by g;, for all ¢, 5.

Subproblem 0 begins with 2° = 0,u° = (v = min.{c;; : j = 1 to
n}), v° = (v) = min.{c;; —u; : i = 1 to p}). The rth subproblem is ter-
minated when flow value in the network G, from the supersource to the
supersink (which is the total flow in the solution x at that stage) reaches
the maximum value possible in G, recognized as described above. If the
original problem is on the complete bipartite network (i.e., all variables
x;; are allowed to take positive values), this will happen when either
the supply d; at each source 7 is used up or the demand g7 at each mar-
ket j is met. If some variables are required to be zero in the original
problem, another signal for the termination of the rth subproblem is ¢
becoming oo in a dual solution change step. Let 2", (4", 9") be the pair

at the termination of subproblem r. The total flow in Z" is

YN @ =n, (3.18)
i g

Define, for r = 0 to q
A, = min. {Z d?azgﬂ (3.19)
( J

So, A, =7, and v, = A, forallr. Forr =0to g—1, ify, < A, —(n+
p), terminate the algorithm. In this case the original problem (3.11) has
no feasible solution (see Lemma 3.2 given below). Otherwise, initiate
subproblem r + 1 with the pair z" ™' = 27", (v ! = a", 0" = o"),
this pair satisfies (3.13), (3.9) since ", (4", 9") do. Thus all the pairs
obtained during the implementation will be extreme pairs. At the end
of subproblem ¢, we have the maximum extreme pair ¢, (4%, 99) in G,
with total flow = ~,. If v, = v, 9, (a9, 0?) together satisfy (3.11),
(3.13), (3.9), so they form an optimum primal dual pair for the original
problem (3.11). If 5y, < v, the original problem (3.11) is infeasible.

Flow changes occur at most Ay times in subproblem 0. If the algo-
rithm is continued after subproblem r, 22" is the initial primal vector
for solving the (r+ 1)th subproblem. By Lemma 3.2 given below, there
will be at most A1 — 2A, + 2(n + p) flow changes while solving the



272 Ch. 3. Primal-Dual and Dual Algorithms

(r+ 1)th subproblem. So, the total number of flow augmentations dur-
ing the entire scaling implementation is at most A0+23;},(AT+1 —2A,)
+ 2q(n + p).

i a |d®|d|d?|a®|d*|d°| d°
1 38101 1(12]4]9]|19] 38
2 41 | 0 |1 | 2| 5 |10|20| 41
3 23 10|01 2|5 |11] 23
4 B 0|00l 13| 7|15

j 1 2 3 4 |Total [ 117 | 0 | 2 | 5 |12|27 |57 | 117

b 25 29 30 33| 117

¢ 0 0 0 0 0 A, = 0,1,5,12,27 57,117

g¢ 0 0 0 1 1 respectively for » = 0 to 6.

¢ 1 1 1 2 5

¢ 3 3 3 4 13

gt 6 7 T 8 28

¢ 12 14 15 16| 57

g® 25 29 30 33| 117

As an example we consider a problem with p = n = 4. The cost
matrix is not shown, but the vectors a, b, and d", g" are given for all r
in the table above. v =Y a; = > b; = 117. Max.{a;,b; : all 4,5} = 41,
and the smallest integer ¢ satisfying the property that all a;, b; = 2445
6. So, we have to solve seven subproblems, these correspond to r = 0
to 6.

In this example A° + Z‘T];(l)(ATH — 2A,) = 15. So, to solve this
problem, the scaling implementation needs at most 15 + 96 = 111 flow
augmentations, this compares with the maximum of 117 that may be
needed in the direct implementation of the primal dual method.

LEMMA 3.1 0= A = maz.{p,n}; 0= A,y — 2A, = maz.{ p,n },
for all v = 0.

Proof From the definition of ¢, all df, g9 are 0 or 1. So, 0 =N =

max.{p,n}.
Let £,n be any positive integers. We have

205¢) = lgres) =205 +1




3.2. Balanced Transportation Problem 273

Applying this we conclude that

o
[IA

TM: I M@

<
Qq—rl _22 2q- - P

b, " b
qui 2Xlp =

[IA

oé

These inequalities, and the definitions of A, A, 1, imply this lemma.
|

LEMMA 3.2 If the original problem (3.11) has a feasible solution,
then v, = A, — (p+n), for all r.

Proof Let & = (&;;) be a feasible solution for (3.11). Then, for all
i, J

2'(%'/21’) = a;/2%7"
> (&5/27) = b;/2%

iEQj

So, if the amount of material that can leave source (row) node i
is @;/297", and that reaching market (column) node j is b;/297", for
all 7, 7; then all the arcs incident at the supersource and the supersink
will be exactly saturated in a maximum value flow (Z/2" is such a
flow). However, the maximum amount of material that can leave source
(row) node i is limited to at most di = |a;/2%"| = (a;/2%") — 1,
and that reaching market (column) node j is limited to at most gj =
1b;/297"| = (b;/297") — 1 in G,. So the maximum flow value in G, is
ZA, —(p+n)ie, nw=A, —(p+n).

THEOREM 3.2 Assuming that all the a;,b; are positive integers, the
overall computational effort for solving (3.11) by the scaling implemen-
tation of the primal dual algorithm is at most O(L(n+p)? (maz.{p,n})),
where L is the sum of the binary digits in all the a; and b;.



274 Ch. 3. Primal-Dual and Dual Algorithms

Proof ¢ defined earlier is < L. Lemmas 3.1 and 3.2 imply that
the total number of flow changes in any subproblem is at most 4 max.{
p,n }. So, the total number of flow augmentations in the scaling im-
plementation is at most 4(g+ 1)(max.{ p,n }) = 4L(max.{ p,n }). We
have already seen that the computational effort between two consec-
utive occurrences of flow augmentation in any subproblem is at most
O(p + n)?. Hence the result follows. §

So, the scaling implementation of the primal dual algorithm is a
polynomially bounded algorithm for solving the transportation prob-
lem (3.7) with some specified subset of variables x;; set equal to 0 if
desired, in which the overall computational effort is bounded above by
a low degree polynomial in the size of the problem.

Comment 3.2  This scaling technique was introduced by Edmonds
and Karp [1972 of Chapter 2|. It led to the first polynomial time
algorithm for minimum cost flow problems.

Exercises

3.18 Complete the solution of the problem in Example 3.3 by the
primal-dual algorithm

3.19 Develope a primal-dual method to solve the following capaci-
tated transportation problem.

p n
Minimize z(z) = Y > cijzyy

n
Subject to inj = g,i=1top
j=1

p
inj = bj,jzlton
i=1

<
Oz.fij

[IA

kij7 for all Z,j



3.3. Transformation 275

3.20 Whenever a nonbreakthrough occurs in the primal-dual algo-
rithm for the balanced transportation problem (3.7), prove that the
quantity > (a; : over labeled rows i) — >>(b;: over labeled cols. j) > 0.
Using this prove that the dual objective function 3}, a;u; + 3; bjv;
strictly increases whenever the dual solution changes in this algorithm.
Also prove the following using the duality theorem of LP: While solving
(3.7) with some variables z;; constrained to be 0, by the primal-dual
algorithm, if § turns out to be 400 in some dual solution change step,
the problem is infeasible.

3.3 Transformation of Single Commodity
Minimum Cost Flow Problem into Sparse
Balanced Transportation Problem

The balanced transportation problem is a special case of the single com-
modity minimum cost flow problem on a bipartite network. We will
now show that every single commodity minimum cost flow problem,
even on a nonbipartite network, can be transformed into an uncapaci-
tated balanced transportation problem which is sparse.

Consider the single commodity minimum cost flow problem on the
directed network G = (N, A, 0, k,c, 5,£,0) for shipping © units from
5 to £ at minimum cost. Let |N| = n,|.A| = m. Construct a bipartite
network H = (N7, Ny; A) as follows. For each (i,5) € A put a node
corresponding to it in A; which we conveniently denote by the symbol
“7.” So, IN1| = m. Make Ny = N. N, N, are respectively the sets
of source and sink nodes in H. Define A = {(ij,), (ij,j): for each
(i,7) € A}, so |A| = 2m. The lower bounds and capacities for arcs
in A are 0, 400 respectively. For each (i,7) € A, in H the unit cost
coefficient on the arc (ij,4) is 0, and that on the arc (ij,j) is ¢;;; and
the availability of material at the source node ij in N is k;;. For each
i € N, the requirement at the sink node ¢ € N5 in H is b; where



276 Ch. 3. Primal-Dual and Dual Algorithms

Sources Sinks

O

Figure 3.5: Bipartite network H. Data on arcs is lower bound, capacity,
unit cost coefficient, in that order. Data by the side of the nodes is
availability (for sources), requirement (for sinks).

k(i,N)—v ifi=3
by =1 k(i,N)+v ifi=*%
(i, N) ifi#5ort

Unless k(5, V) = o, the flow problem in G is infeasible. So, we assume
that this condition holds. This implies that all the availabilities at
the sources, and the requirements at the sinks, in H, are = 0. In
H, each source node is joined to exactly two sink nodes. See Figure
3.5. The sum of all the availabilities at the source nodes in H, as well
as the sum of all the requirements at the sink nodes, are both equal
to k(NM,N). Thus the minimum cost flow problem in H satisfying
all the availability, requirement constraints at the nodes, is a sparse
uncapacitated balanced transportation problem.

We will now prove the equivalence of the minimum cost flow prob-
lems in G and H. Let f = (fi;) be a feasible flow vector in G. Define the



3.4. Signature Methods 277

corresponding flow vector in H to be x where for each (i,5) € A, z;;; =
fij, and x;;; = k;; — fi;. Then it can be verified that z is a feasible flow
vector in H, having the same cost as f in G. Conversely, if x is a feasi-
ble flow vector in H, define the flow vector f = (f;;) in G by: for each
(i,7) € A, fij = x;;;. It can be verified that f is a feasible flow vector in
G which has the same cost as z in H. So, the minimum cost flow prob-
lem in G is equivalent to the minimum cost flow problem in H, which
is a sparse uncapacitated balanced transportation problem. Using this
transformation, and the scaling implementation to solve the resulting
transportation problem, we get a polynomially bounded algorithm for
the minimum cost flow problem in G. Primal-dual algorithms that solve
the minimum cost flow problem in G directly will be discussed later in
Chapter 5.

3.4 Dual Simplex Signature Methods for
the Assignment Problem

Consider the LP

Minimize cgxy + ¢pZp
Subject to Bxg + Dzp =25

>
B s .’L'D:O

in which the coefficient matrix A = (B:D) is of order m xn and rank m.
The LP is written with the variables partitioned into basic, nonbasic
parts, xg,xp. The primal basic solution associated with the basic
vector g is T = (Zp = B7'b,Zp = 0). It is primal feasible if T = 0.
The dual basic solution associated with this basic vector is @ = cg B~ 1.
This basic vector is dual feasible if the associated reduced cost vector
¢ = (¢, cp) = (0,cp—7D) = 0. The dual simplex algorithm for solving
this LP is always initiated with a dual feasible basic vector zg. If xp is
also primal feasible, it is an optimum basic vector, and the algorithm
terminates. Otherwise, the algorithm checks to see if a condition for
primal infeasibility is satisfied, and if so, it again terminates. If neither



278 Ch. 3. Primal-Dual and Dual Algorithms

of these two events has occurred, it selects a primal variable z; whose
value Z; in the primal basic solution Z associated with zp satisfies
Z; < 0, as the dropping variable from the present basic vector zp,
for a dual simplex pivot step. The nonbasic variable to replace it, called
the entering variable is selected by the dual simplex minimum ratio
test, whose function is to guarantee that the next basic vector will also
be dual feasible. Then the whole process is repeated with the new basic
vector. In the dual simplex algorithm, the dual objective function 7b is
monotone nondecreasing. See Murty [1983 of Chapter 1] for a detailed
description of the dual simplex algorithm. In this section we will discuss
a new class of algorithms for the assignment problem called signature
methods, which are related to the dual simplex algorithm in spirit.

We consider the assignment problem (3.1) of order n associated
with the cost matrix ¢ = (¢;;), a minimum cost flow problem on the
bipartite network G = (Ng,Ng, A), where Ng = {Ry,...,R,} = set
of row nodes, Ng = {C1,...,C,} = set of column nodes, and A =
{ (R;,Cy): 1,7 s.t. an allocation is allowed in cell (¢,7)}. The arc
(R;,C;) in G is associated with the variable z;; in the problem. The
dual variables are u;, v; associated with the nodes R;, C; respectively,
i,7 = 1 to n. Each basic vector for (3.1) corresponds to a spanning
tree in G and vice versa, in-tree arcs are associated with basic variables,
and out-of-tree arcs with nonbasic variables. A spanning tree T in G
has exactly 2n — 1 arcs, and the dual basic solution corresponding to
it, denoted by w(T) = (u;(T)),v(T) = (vj(T)), can be obtained by
arbitrarily fixing the value of one dual variable (e.g. u;(T) = 0) and
then solving the equations

Up(T) +vy(T) = ¢py, for each in-tree arc (R, Cy)

by back substitution. The matrix ¢(T) = (¢;(T)), where ¢;(T) =
¢;; —u;(T) —v;(T) is the matrix of reduced or relative cost coefficients
wrt T. T is dual feasible if ¢ = 0, dual infeasible otherwise.

The primal basic solution of (3.1) corresponding to T, z(T) =
(x;;(T)) is obtained by setting x;;(T) = 0 whenever (R;,C;) is an
out-of-tree arc, in the system of equality constraints in (3.1), and then
solving the remaining system by back substitution. x(T) is integer,



3.4. Signature Methods 279

but it may not be = 0. T is primal feasible if 2(T) = 0 (in this case
x(T) will be an assignment), primal infeasible otherwise.

We denote by P(p, q, T), the unique path between the nodes p, ¢ in
T.

The row signature vector (column signature vector) of a
spanning tree in G is the vector of its row node degrees (column node
degrees). If (dy,...,d,) is the row or column signature vector of a
spanning tree in G, clearly, d; = 1 for all ¢ = 1 to n, and Yoid; =
2n — 1. Hence, in every signature vector there is at least one entry
equal to 1. It corresponds to a terminal node. For example, the row,
column signature vectors of the spanning tree in Figure 3.9 are (2, 1,
2,22 2), (1, 3,4, 1, 1, 1) respectively. Both these vectors have at
least one entry of 1.

THEOREM 3.3 A spanning tree T in G which contains exactly one
entry of 1 in either its row or column signature vectors is a primal
feasible spanning tree.

Proof Let d = (di,...,d,) be the row signature vector of T,
and suppose it contains a unique 1 entry. A similar proof holds if the
column signature vector contains a single 1 entry.

Let i* be the unique number such that d;x = 1. Since d; = 1 for
all 7 and Y7 ;d; = 2n — 1, the hypothesis implies that d; = 2 for
all i # i*. For each i # i*, the path P(R;, R;, T) contains exactly
one edge incident at R;, and since d; = 2, there must be exactly one
edge in T incident at R; which is not on the path P(R;, R;, T). Let
o = j*, where (R;», Cj+) is the unique in-tree arc incident at R;-, and
for i # i*, let o; be j, where j is such that (R;, C;) is the unique in-tree
arc incident at R; not on P(R;+, R;, T). Clearly, o; # oy, for any i # h,
as otherwise there will be a cycle in T, a contradiction. So, {(i,0;) : @
= 1ton } is an assignment, and since all these cells correspond to in-
tree edges, this assignment is the basic solution of (3.1) corresponding
to T, hence T is a primal feasible tree. 1

As an example consider the spanning tree in Figure 3.9 with its row
signature vector (2, 1, 2, 2, 2, 2). R is the unique terminal row node.
The primal basic solution corresponding to this tree is the assignment



280 Ch. 3. Primal-Dual and Dual Algorithms

{(1, 1), (2, 3), (3, 2), (4, 5), (5, 4), (6, 6)}, which corresponds to the
set of solid lines in Figure 3.9.

Signature methods are always initiated with a dual feasible span-
ning tree in G and dual feasibility is maintained throughout. They go
through a sequence of pivot steps; each pivot step moves from a tree
to an adjacent tree that differs from it in a single arc. The dropping
arc from the present tree is always selected by a special dropping arc
selection rule described in the algorithm. The entering arc to replace
the dropping arc is determined so as to maintain dual feasibility. Ter-
mination occurs when either primal infeasibility is established, or when
a spanning tree with exactly one terminal row node, or one terminal
column node is obtained. In the latter case the primal basic solution
corresponding to the final tree is an optimum assignment. The method
tries to reduce the number of terminal row nodes (or terminal column
nodes) to one. This number is monotone nonincreasing during the
method.

A stage in a signature method begins with a dual feasible spanning
tree in G with more than one terminal row node (or column node, if the
method works with column signature vectors) and is completed when
this number decreases by 1. Each stage may consist of several pivot
steps. Since G is bipartite and T has 2n — 1 arcs, the total number of
terminal row nodes, or column nodes in any spanning tree in G, is at
most n — 1. So, the algorithm has at most n — 2 stages.

The dropping arc choice is defined by the method, but once the
dropping arc is selected, the choice of the entering arc to replace it is
carried out by the same procedure in all the signature methods. We
describe this next.

The Entering Arc Choice Rule

Let T be the present dual feasible spanning tree in G, and let (w, 1)
denote the in-tree arc that has been selected as the dropping arc, w,
are the row and column nodes on it. Deletion of the arc (w,!) from
T leaves two distinct subtrees, a T* containing node w, and a T
containing node [. If T is drawn as a rooted tree with w as the root
node, the family of node [ is exactly the set of nodes in T, and the set of
nodes in T¥ is the complement of this set. Let X = R¥, X = R! (Y =



3.4. Signature Methods 281

C%, Y = C') be the set of row (column) nodes in T%, T! respectively.
(X, X), (Y, Y), are the partitions of row, column nodes in this pivot
step. They are uniquely determined by T and (w,1).

Since (w, 1) is an in-tree arc, ¢, its present relative cost coefficient,
is 0, but it becomes nonnegative in the next tree. Suppose its new value
is 8. Let @, 0, ¢;; denote the present quantities in the tree T. It can be
verified that the unique solution of the system: u; = 0, cpg —up —v4 = 0
for each arc (R,,C,) € T except the arc (w,!), and = ¢ for arc (w,),
is (@, 9) marked in the following Array 3.6, and ¢;; are the reduced cost
coefficients wrt it.

Array 3.6
Block of co_ls.
Block Y =C% Y =C! New dual
of rows | solution
in this block | in this block | in this block
X:Rl 62]2623_6 éij:éij le:ﬂ2+(5
in this block | in this block | in this block
New dual 0 = 5 0 =10;—0
solution 9 | in this block | in this block

Dual feasibility is maintained in the new tree if &; = 0 for all i, ;.
For this we must choose

0= mln{a] = Cijj — U; — ’L~)j ' R; € X, O]‘ € Y}

Since the present tree T is dual feasible, this § will be = 0. Con-
sequently, the entering arc in this pivot step is selected to be an arc
(g,h) with ¢ € X and h € Y, which attains the minimum for ¢ in the
above equation. The new tree is obtained by replacing (w,[) in T with

(g, h).



282 Ch. 3. Primal-Dual and Dual Algorithms

In the above equation, ¢ will be oo only if all the cells (i,7) with
i € X, and j € Y are constrained to have no allocation in them. As
before, this is an indication that there exists no feasible assignment,
and the method terminates if this happens.

Selection of the Initial Dual Feasible Spanning Tree

If the assignment problem being solved is on the complete bipartite
network (i.e., every variable z;; is eligible to have value 1), an initial
dual feasible spanning tree can be taken to be the tree T consisting
of the following arcs: all arcs (R, C;),j = 1 to n, for some p, and arcs
(R;, Cyi) for i # p, where ¢ is an index attaining the minimum for vy
=min. { ¢ —¢p;: j=1ton}. Let u) =0, and v} = ¢, for j =1 to
n. It can be verified that (u°,v°) is the dual basic solution associated
with TO, and that it is dual feasible. The row signature vector of T?°
is (n,1,...,1). Hence it has n — 1 terminal row nodes.

In dense or sparse problems, other methods for obtaining an initial
dual feasible spanning tree are discussed in Murty and Witzgall [1977],
and Section 13.6, Chapter 13 in Murty [1983 of Chapter 1]. In highly
sparse problems, it may be necessary to include some artificial arcs
(among those which correspond to cells that are constrained not to
have any allocations) in the network, associated with very large positive
cost coefficients (equal to § = 1 + n(max. {|c;;| : (i,7) can have an
allocation})), in order to get an initial dual feasible spanning tree.
If any of these artificial cells have an allocation in the final optimum
assignment, it is an indication that the original problem has no feasible
assignment.

The only remaining thing needed to describe a signature method
is the dropping arc selection strategy to be used. We discuss several
signature methods next.

3.4.1 Signature Method 1

This method is initiated with a dual feasible spanning tree. It is entirely
guided by the row signature vector, the column signature vector and
the primal basic solution are never explicitly used in carrying out the
algorithm.



3.4.1. Signature Method 1 283

The method seeks a tree whose row signature vector contains a
single 1 and otherwise 2s. Given a dual feasible spanning tree T with
more than one terminal row node, it selects one of these nodes, say t,
and designates it as the target row node. There must be at least
one row node in T of degree = 3. It selects one of these, say s, as the
source row node. Once the target row node t and the source row
node s in the tree T are selected, the dropping arc in this method is
always the arc incident at s on the path P(s, ¢, T). If it is the arc (s, ),
[ is a column node with degree = 2 in T, as the path P(s,t, T) itself
contains two arcs incident at [. Let (g, h) be the entering arc to replace
(s,1), determined as described above, and T! the new tree obtained
after this pivot step. Let d(s),d(g),d'(s),d'(g) be the degrees of s,g
in T, T* respectively. Then d'(s) = d(s) — 1,d*(g) = d(g) + 1. So, g
which is the row node on the entering arc, is not a terminal row node
in T!. If g was a terminal row node in T, the number of terminal
row nodes has decreased by one in this pivot step, this completes a
stage in the method. If the number of terminal row nodes in T is one,
it is primal feasible, and hence optimal, and the method terminates.
Otherwise, it goes to the next stage with T,

If g was not a terminal row node in T, continue the stage with T*.
Keep the same target row node ¢, but make g the next source row node
and carry out the next pivot step. In the next pivot step, the set X in
the row partition becomes smaller (it loses node g) and the set Y in
the column partition becomes larger.

So, the target row node remains the same in a stage, but the source
row node keeps changing. The set X gets smaller, and the set Y gets
larger, until in the last pivot step of the stage the row node in the
entering arc is a terminal row node before that arc enters. The row
nodes that drop off from X during this stage are all nonterminal row
nodes, so, if the initial tree in this stage had r terminal row nodes, the
number of pivot steps in it will be = n — r. If carried out directly, the
computational effort in each pivot step (to compute ¢ and update all the
reduced cost coefficients) is at most O(n?), and hence the total effort in
this stage may be O((n—r)n?), or O(n®). However, using the technique
described under the O(n?®) implementation of the Hungarian method,
this stage can be implemented in such a way that the computational



284 Ch. 3. Primal-Dual and Dual Algorithms

effort in it is at most O(n?). In this implementation, all the reduced
cost coefficients are computed in the first pivot step of the stage, and
for each row node R; in the set X at that time an index of the form
[w;, pi] is defined, where p; = minimum current reduced cost coefficient
in R; among columns in the present set Y, and w; is a column in Y
where this minimum occurs. In each pivot step of the stage, we do the
following work.

(i) 0 = minimum of p; in the indices of rows in the set X in that
step. Computing this ¢ therefore takes only O(n) effort using
these indices and if the row R, € X attains this minimum (break
ties arbitrarily) and the present index on R, is [wy, p,), then the
arc (R, w,) is the entering arc in this pivot step.

(ii) Update the dual solution as indicated in Array 3.6

(iii) Get the new sets X, Y. Eliminate the indices on all the rows no
longer in X.

(iv) Subtract § from the p; entry in the index of each row node in the
new X.

(v) For each column C; that just joined the set Y, compute the
correct reduced cost coefficient ¢j; = ¢;; — u} — v}, where (v, ') is
the new dual solution, for rows R; in the new set X only, and if
the present p; on this row satisfies p; > E;j change the index for
R; to [C}, ¢;]; otherwise leave this index unchanged.

Under this implementation, in each cell, the reduced cost coefficient
is computed once at the beginning of the stage, and at most once more
during the entire stage. It can be verified that the overall computational
effort during a stage is at most O(n?) under this implementation. Each
stage reduces the number of terminal row nodes by one, hence there
can be at most n stages in the method. So, the overall computational
effort in this method is at most O(n?), which is of the same order as
that of the Hungarian method.

As an example consider the problem in which n = 6, and the dual
feasible spanning tree T at the beginning of a stage is the one in Figure



3.4.1. Signature Method 1 285

Figure 3.6: DA, EA denote the dropping arc, entering arc respectively.

3.6. Orientations of the arcs are not shown in the figure, each line is
directed from the row node to the column node on it. To keep the
presentation simple, we do not include the arc cost coefficients in this
illustration, but we give the entering arc in each step. T has two
terminal row nodes, Ry and Rg, of which Rg has been selected as the
target row node t. Ry of degree 3 in T has been chosen as the source
row node s. (Rp,C3), the first arc on the path P(R;, Rg, T) is the
dropping arc in this pivot step. We have R* =X = {R;}, C* =Y = {
01, Cg}, Rl = X = {RQ,Rg, R4,R5,R6 }, Cl = Y = { 03, 04,05, C@}
Suppose the arc (R3, Cy) marked with a dashed line in Figure 3.7 is the
entering arc. So, in the notation used above for describing the pivot
step, g = Rs,h = (5. Since ¢ = Rj3 is not a terminal row node in
Figure 3.6, the stage continues. The next tree T! is drawn in Figure
3.7.

Rg continues to be the target row node t. The new source row
node is R3. The dropping arc is (R3,Cy). X = {Rs5,Rs}. Y =
{C1,Cs, C3,Cs}. Tt can be verified that the set X became smaller, and
Y became larger. In T! the entering arc is (Rs, Cs), so g = Rs. This is
not a terminal row node in T!, so the stage continues. The next tree
T2 is drawn in Figure 3.8. In T2, X = {Rs}, Y = {C}, Cs, C3,Cy, Cs},
and (Rg, C3) is the entering edge. Since g = Rg is a terminal row node



286 Ch. 3. Primal-Dual and Dual Algorithms

s g t
DHORONOFORO
/
7
DA / EA
/4
_Y
7
Ve
/1
/
7
7

® &E @ G

Figure 3.7: DA, EA denote the dropping arc, entering arc respectively.

in T2 (it is actually the target row node), with the pivot step in it, the
stage is completed. The next tree T3 is drawn in Figure 3.9. The row
signature vector in this tree is (2, 1, 2, 2, 2, 2), so this is an optimum
tree. The solid arcs in Figure 3.9 define an optimum assignment.

The method is executed without ever computing the primal basic
solution corresponding to any tree, except for the very last tree to get
the optimum assignment. Let T, T be two consecutive trees obtained
in the method in that order, with z(T) = (z;;(T)), 2(T) = (z;(T)),
the associated primal basic solutions. Let (s,l) be the dropping arc
from T, which is replaced by the entering arc (g, h) in the pivot step
that led to T. Let © be the fundamental cycle of (g,h) wrt T. It
contains the dropping arc (s,l). Orient © so that the dropping arc
(s,1) is a reverse arc. Let 6§ be the flow amount on the arc (s,) in
z(T). In z(T), add 6 to the flow amounts on all the forward arcs
of @, and subtract ¢ from the flow amounts on all the reverse arcs
of @, this leads to (). In the same way, the primal basic solution
corresponding to each tree obtained in the method can be computed
by updating the previous basic solution along the fundamental cycle of
the entering arc.

We will now show that if this method is initiated with the dual

feasible spanning tree T° discussed above, then it is very similar to



3.4.1. Signature Method 1 287

Figure 3.8: DA, EA denote the dropping arc, entering arc respectively.

the dual simplex algorithm in its choice of the dropping arc in each
pivot step. This follows from the following results. We assume that
the initial spanning tree is T° constructed with p = 1.

1. Let T be a tree obtained during the method, and (X, X) the
partition of row nodes in the pivot step carried in it. Then every
row node in X has degree 1 or 2 in T. The reason for this is the
following. From the initial spanning tree T° and the manner in
which the method is executed, it is clear that R; is the only row
node whose degree can be > 2 in any tree obtained during the
method. If T is the first tree in any stage, X contains the source
row node s which is R;, as this is the only row node with degree
> 2in T, the result holds. If T is not the first tree in a stage, the
result follows from this and the fact that the set X gets smaller
as we move from one pivot step to the next in a stage.

2. Let (s,1) be the dropping arc in a pivot step carried out on a
spanning tree T in this method. Then z4(T) = (. To see this,
let (X, X), (Y, Y) be the row node and column node partition
in the pivot step carried out on T. X,Y are the sets of row,
column nodes in the component T'! containing column node [
when (s,1) is deleted from T. By 1, each node in X has degree 1



288 Ch. 3. Primal-Dual and Dual Algorithms

Figure 3.9:

or 2 in T, let ny,ny be the numbers of these nodes with degrees
1, 2 respectively. This implies that T* has n; +n, row nodes, and
n1+2ns arcs. Since T'is a tree, these facts imply that the number
of column nodes in it, | Y| = ny +2ny + 1 — (ng +ng) = ng + 1.

x(T) is obtained by substituting z;; = 0 for all (4, j) correspond-
ing to arcs not in T in the system of equality constraints in (3.1)
and then solving the remaining system for the values of z;; for
(1,7) corresponding to arcs in T. From this, and the fact that |X|
=ny +ny, |[Y| =1 + ny, and that node [ is the column node on
the dropping arc (s, (), we get the following relations by summing
the equality constraints in (3.1) over rows in T', and columns in
T! separately.

D (@45(T) : over (i,5) € TY = ny+ne

S (2 (T) : over (i,7) € TY = na+1—a4(T)
S0, ny+1—24(T) = ny+nsy, which implies that z4(T) = 1—n; =
0, since T! contains the target node which has degree 1 in T.

3. The dual objective value is nondecreasing during the method.
This follows from the result in 2.



3.4.1. Signature Method 1 289

These results imply that if Signature method 1 is initiated with the
spanning tree T°, then it can be viewed as a dual simplex method,
even though it does not always choose pivots in the usual dual simplex
way, since the primal basic value associated with the dropping arc may
sometimes be 0 instead of being < 0.

Signature method 1 can of course be initiated with any dual fea-
sible spanning tree in G. However, in this case the primal basic value
associated with the dropping arc may not be = 0 in some pivot steps
(the proof of this property given above is based on the fact that all
the trees obtained under the method have at most one row node of
degree > 2 which may not hold in this general case). So, the dual
objective value may increase, decrease, or remain unchanged in a pivot
step in this general version, and hence this general version cannot al-
ways be interpreted as a dual simplex method, even though it moves
from a dual feasible tree to an adjacent dual feasible tree in each pivot
step. This general version also takes no more than n stages, and the
computational effort in it is bounded above by O(n?).

Exercises

3.21 Let T be a spanning tree in G whose row signature vector d =
(d;) contains a unique entry equal to 1, which is d,. For each j =1 to
n, define p1; to be the i where 7 is such that (R;, C;) is the arc incident
at C; on the path P(R,,C;, T). Prove that the primal basic solution
associated with T is the assignment {(x;,7): j = 1 to n}.

3.22 Prove that if two spanning trees of G correspond to different
assignments, they cannot have the same signature vectors.

3.23 Let T be a spanning tree in G whose row signature vector con-
tains a single 1 entry, and T the corresponding cotree. Prove that
(T, T,0) is a strongly feasible partition (see Section 5.5.1 for defini-
tion) for (3.1) when the root node is the unique terminal row node in
.

3.24 Solve the assignment problem of order 5 with the following cost
matrix, to find a minimum cost assignment.



290 Ch. 3. Primal-Dual and Dual Algorithms

14 18 15 10 10
18 17 15 8 8
16 16 24 25 12
19 10 8 14 11
22 15 28 24 12

3.25 Consider a spanning tree T in G, in which all row nodes R, to R,
have degree = 2, and only R; has degree > 2. Prove that the associated
primal basic solution (z;;(T)) is primal feasible iff z,;(T) = 0 for all
j. (Balinski [1985])

3.26 A Worst Case Example Consider the assignment problem of
order n with the cost matrix ¢ = (¢;;) where ¢;; = (n—1)(j —1) for each
i,7. When initiated with the dual feasible spanning tree T discussed
above, corresponding to p = 1, show that Signature method 1 requires
(n—1)(n —2)/2, or O(n?) pivot steps to solve this problem. (Balinski
(1985, 1986])

3.4.2 An Inductive Signature Method

Consider an assignment problem of order n with ¢ = (¢;; : 4,7 = 1 to
n) as the cost matrix. For r =1 to n, define ¢ = (¢;; : 4,5 = 1 to ),
and the assignment problem of order r to be the one with row nodes

Rq,...,R,, column nodes C1,...,C,, and cost matrix c".
Suppose we have an optimum tree T (r) for problem r. Let u" =
(uf,...,ul),v" = (v],...,v") be the dual basic solution associated with

T(r). Define d,11 = min { ¢,y1; — v} : j = 1 to 7}, and let g be a
j which attains this minimum, break ties arbitrarily. Define a"+t! =
(uf,...,ul, Gpyq). Define 6,4y = min { ¢jppq — a7 ti=1tor+1
}, and let w be r 4 1 if it attains this minimum, otherwise w is any ¢
which attains this minimum. Define 4" = (v],..., 0%, 9,11). In the

bipartite network for problem r+ 1 define the spanning tree T (r+1) to
be the one consisting of all the arcs in T (r) and the two arcs (R,4+1, Cy)



3.4.3. Signature Method 2 291

and (R, Cr41). The dual basic solution corresponding to T (r + 1) in
problem r+1 is (4"**, 9" ). This can be verified to be dual feasible. If
w=r+1, T(r+1) has exactly one terminal row node (the one which
is a terminal row node in T(r), since R, has degree 2 in T(r+1) in
this case), and hence an optimum tree for problem r + 1. If w #r+1,
T(r + 1) has exactly two terminal row nodes (these are R,;; and the
terminal row node in T(r)). So, problem r + 1 can be solved in this
case by Signature method 1 initiated with T (r + 1), in just one stage,
this takes a computational effort of at most O(r?).

This method proceeds inductively on r. It is initiated with the
problem of order 2 for which the solution is trivially obtained. For r
= 2 ton — 1, it solves problem r + 1 beginning with an optimum tree
obtained for problem r. The final problem is the original problem. The
overall computational effort is > O(r?) = O(n®).

Suppose we are solving a sparse assignment problem using this
method. After solving problem r, it may be necessary to rearrange
the remaining rows (and columns in the same order) and select row
r 4+ 1 among them appropriately, in order to guarantee that T (r) can
be extended to an initial dual feasible spanning tree for problem r + 1,
using only cells in which allocations are permitted; or artificial cells
can be introduced as mentioned earlier.

The worst case upper bound on the computational effort of this
inductive version can be shown to be achieved on the problem with
cost matrix ¢ = (¢;;) where ¢;; = ij for all 4, j. The Hungarian method
and Signature method 1 initiated with T also require the worst case
upper bound computational effort on this problem.

3.4.3 Signature Method 2 : A Dual Simplex Method

We now discuss signature methods which are strictly dual simplex
methods on all counts. In these methods, the initial dual feasible span-
ning tree in G is T discussed above constructed with p = 1. Here all
the trees will be treated as rooted trees with R; permanently desig-
nated as the root node (because in the initial tree, R; has degree n).
These methods use both the row and column signature vectors.

An arc e in a spanning tree in G is said to be an odd arc if the



292 Ch. 3. Primal-Dual and Dual Algorithms

son(e) is the column node on it, even arc otherwise. Also given two
nodes p, g we say that p is higher (lower) than ¢ if p is an ancestor
(descendent) of q. Likewise, given two in-tree arcs e, e’, we say that e
is higher (lower) than ¢ if e is on the predecessor path of parent(e’)
(¢’ is on the predecessor path of parent(e)).

We discuss two versions of this method based on the following drop-
ping arc choice rules.

DROPPING ARC CHOICE RULE 1 If a stage has just been
completed and the present spanning tree is T, terminate if it has a
unique terminal column node, since T is optimal then. Otherwise,
select any odd arc (R;,C;) in T where C; has degree = 3 in T, as the
dropping arc in the initial pivot step for the next stage. If you are not
at the beginning of a stage, the preceding pivot step must have caused
the degree of the column node, say [, on the entering arc in that step
to increase to 3 or more. Select the dropping arc to be the unique odd
arc incident at [ in T.

DROPPING ARC CHOICE RULE 2 Let T be the present dual
feasible but primal infeasible spanning tree in G. Define PC(T) to be
the set of all in-tree arcs that tie for the most negative primal basic
value among all in-tree arcs on which the column node has degree = 3.
If you are beginning a new stage, select the dropping arc to be the
highest arc in PC(T). If you are not at the beginning of a stage, the
preceding pivot step must have caused the degree of the column node,
say h, of the entering arc in that step to increase to 3 or more. Choose
the dropping arc to be the unique odd arc on which the column node
has degree = 3 that is highest above h in T.

Dropping arc choice rule 2 helps to increase the sets X, Y very
rapidly, and thus gain efficiency. See Balinski [1986] for a proof that in
both these versions, the primal basic value associated with the dropping
arc is always = —1. Hence these versions are strictly dual simplex
methods. Balinski [1985, 1986] initiated the signature methods, and the
Signature methods 1,2 are both due to him. The inductive signature
method is due to Goldfarb [1985].



3.5. Other Methods 293

3.5 Other Methods for the Assignment
Problem

There are several other methods for the assignment problem. The
algorithms of Chapter 5 can be specialized to the assignment problem.
For example the specialization of the algorithms of Section 5.6 leads to
relaxation methods for the assignment problem (Bertsekas [1981]). The
method of Section 5.8.1 specialized to the assignment problem leads to
the shortest augmenting path algorithm for it.

3.6 Algorithm for Ranking Assignments
in Nondecreasing Order of Cost

Consider the assignment problem of order n with ¢ = (¢;;) as the cost
matrix. Here we discuss an efficient method that actually ranks the
assignments in nondecreasing order of cost starting with a minimum
cost one. In each step it obtains one new assignment in the ranked
sequence with a computational effort of at most O(n?), and can be
continued as long as necessary, and terminated whenever a sufficient
number of assignments in the ranked sequence have been obtained.

We will denote the assignment « = (z;;) by the set {(7, ) : z;; = 1}.
Correspondingly, we write (i,j) € x,0or ¢ z to indicate that z;; = 1
or 0 respectively. Let a(l) denote a minimum cost assignment, and
a(l),a(2),...,a(r),... the ranked sequence of assignments satisfying
for all r = 2

a(r) = a min. cost assignment excluding a(1),...,a(r — 1)

In the algorithm we will use subsets of assignments called nodes.
A node is a nonempty subset of assignments a of the form

N = {(ilajl)w"7(Z.m.jr);(m17p1)7"'=(mu=pu)}
= {a:(iy,51) €ay,...,(ir,jr) € a; (3.20)
(mlapl) ¢ a:"'v(mwpu) g (I}



294 Ch. 3. Primal-Dual and Dual Algorithms

The cells (i1, j1), - - -, (ir, jr) are specified to be contained in, and
the cells (m,p1), ..., (my,p,) are specified to be excluded from
each assignment in N. In the definition of the node N, 41, ... 4, will

all be distinct, and the same property will hold for ji,...,J.. Also,
in all nodes generated in the algorithm, all the specified to be ex-
cluded cells will belong to the same row of the array, i.e., m; = my =

. = my in N. The matrix obtained by striking off rows iy,...,1,
and columns ji,...,J, from ¢ and replacing the entries in positions
(m1,p1),...,(my,p,) by infinity or a very large positive number, is
known as the remaining cost matrixz corresponding to node N and is
denoted by cn. A minimum cost assignment in N can be found by solv-
ing the assignment problem of order n — r with ¢n as the cost matrix.
Let xn, 2n denote a minimum cost assignment in N and its objective
value.

One of the operations performed in the algorithm is that of parti-
tioning a node using a minimum cost assignment in it. Let N be
the node in (3.20) and zn = {(i1,71)s - - (s Jr), (S15t1)5 -« oy (Spery tnr) }
be an optimum assignment in it. Each of (s1,¢1),. .., (Sn_r, tn_) should
be distinct from (my, p1), ..., (Mg, py) from the definition of N. Let

Nl = {(ilhjl)a"'7(i7‘7.j7‘);(mlapl)a'"7(mU7pu)7(817t1)}
N2 = {(ilyjl)a"'7(irajr);(317tl);(mlapl)a'"’(mUaPU)a(S%t?)}

N1 = {(t1,51)s -, (Gry Jr); (S1,1)5 - - (Sner—2y tner—2);

(mlapl)a R (mu7pu)7 (Sn—r—la tn—r—l)}

The partitioning of N using zn generates the mutually disjoint
subnodes Ny,..., N,,_,_1, and the partition itself is

N = {znx} UU'ZI !N, (3.21)

The algorithm maintains a list which is a set of nodes. Each node
in the list is stored together with a minimum cost assignment in it and
its objective value.



3.6. Assignment Ranking Algorithm 295

THE ASSIGNMENT RANKING ALGORITHM

Initial step Find a minimum cost assignment a(1) = {(1, 1), ..., (1, jn)},
say. Let the list at this stage be {(1, 1)}, {(1,71); (2,72)},-- ,{(1, j1), - - -,
(n—2,Jn2);(mn—1,Jp,-1)}. A minimum cost assignment in each
of these nodes is found, and it is stored together with the node

in the list. Go to the next step.

General step  Suppose a(1),...,a(r) in the ranked sequence have
already been obtained, and the list of nodes at this stage is
My, ...,M;. From the manner in which these are generated,
My, ..., M, will be mutually disjoint, and their union will be the
set of all assignments excluding a(1),...,a(r). Let xp, be an
optimum assignment in the node M, and z\p, its objective value,
for d =1 to £. So, the next assignment in the ranked sequence
is a(r + 1) = xm, for a d satisfying zy, = min. {zm,, ..., 2Mm, }-
If a(r 4+ 1) is the last assignment in the ranked sequence that is
required, the algorithm terminates here. Otherwise, delete My
from the list, and partition it using xn,. Let Mg1,..., Mgy be
the subnodes generated. Find a minimum cost assignment in
each of them, add each of these subnodes to the list and go to
the next step.

Discussion

If a predetermined number, h, of assignments in the ranked se-
quence are required, only the h nodes that are associated with the
least objective values are stored in the list and the rest are pruned. If
it is desired to obtain all the assignments whose cost is = some prede-
termined number, «, only those nodes in which the minimum objective
value is = « are stored in the list, and the rest are pruned.

As an example consider the assignment problem of order 10 with
the following cost matrix.



296 Ch. 3. Primal-Dual and Dual Algorithms

7 51
50 12
27 77
62 0

0 97
79 68

(@)
[\

87 38 60 74 66 0 20
64 8 53 0 46 76 42
18 22 48 44 13 0 57
8 5 6 14 0 26 39
5 13 0 41 31 62 48
0 15 12 17 47 35 43
76 99 48 27 34 0 0 0 28 O
0 20 27 46 15 84 19 3 24
56 10 45 39 0 93 67 79 19 38
27 0 39 53 46 24 69 46 23 1

(3.22)

O O Ww o o

©

The minimum cost assignment in this example is a(1) = {(1, 9), (2,
7), (3, 3), (4, 8), (5, 6), (6, 4), (7, 10), (8, 1), (9, 5), (10, 2)}, with an
objective value of 0. The list at the end of the initial step consists of
the following nodes. The minimum objective value in each node is also
recorded.

M = {(1,9)},2m, = 10

M, = {(1,9),(2,7)}, 2m, = 14

M; = {(1,9),(2,7),(3,3)}, 2m, = 14

M, = {(1,9),(2,7),(3,3),(48)}, 2m, = 1

Ms = {(1,9),(2,7),(3,3),(4,8),(5,6)}, 2, = 15

Ms = {(1,9),(2,7),(3,3),(4,8),(5,6), (6,4)}, 2n, = 53

M: = {(1,9),(2,7),(3,3),(4,8),(5,6),(6,4),(7,10)}, 2m, = 45

Ms = {(1,9),(2,7),(3,3),(4,8),(5,6),(6,4),(7,10),(8,1)}, 2 mg = 47

My = {(1,9),(2,7),(3,3),(4,8),(5,6),(6,4),(7,10), (8,1),(9,5)}, 2m, = 56

Comparing the values of zy, to zm,, we find that a(2) is a minimum
cost assignment in My. It is a(2) = {(1, 9), (2, 7), (3, 3), (4, 2), (5, 6),
(6,4), (7, 8), (8 1), (9, 5), (10, 10)} with an objective value of 1. If it
is required to find a(3), then My should be partitioned using a(2) and
the algorithm continued.



3.7. Exercises 297

Comment 3.3  This ranking algorithm has been taken from Murty
[1968]. The same approach has been extended to rank the chains be-
tween a pair of nodes in a directed network (Section 4.7); to rank
the spanning trees in an undirected network(Section 9.3); to rank the
cuts in a capacitated network (Hamacher [1982], Hamacher, Picard and
Queyranne [1984]); and in general to rank the solutions of any discrete
optimization problem(Lawler [1972]).

3.7 Exercises

3.27 Consider the assignment ranking example given above for the
assignment problem of order 10 with the cost matrix ¢ given in (3.22).
Find a(3) to a(6) in this example.

3.28 There are n jobs with given processing durations t;,7 = 1 to n;
and job starting times, s;,7 = 1 to n. Each job must be processed
without interruption on any one of the unlimited set of identical ma-
chines. Each machine can process any job, but no more than one job
at a time. Formulate the problem of determining the smallest number
of machines to process all the jobs, as one of finding a minimal chain
decomposition of a poset. Solve the problem with the following data.
(Gertsbakh and Stern [1978]).

|12 3 4 5 6 7 8 9 10
t; 130 25 10 18 65 7 9 10 3 18
s;i| 4 30 50 68 7 19 8 110 150 88

3.29 An Application in Job Scheduling There are n jobs. For
1 = 1 to n, the processing of the ith job has to start at specified time a;
and must be finished at time b;(> a;),t; = b; — a; being the processing
time for this job. All the jobs can be processed by a type of machine,
of which several copies are available. The set-up time required for a
machine to process job j after processing job 4 is r;; = 0, where the

(i) satisfy the triangle inequality : 7; = Tip+7p;, for all 4, j, p. Define



298 Ch. 3. Primal-Dual and Dual Algorithms

a partial order A on the set of jobs by ¢ A j iff b; + r; = aj (ie,iAj
iff j can be processed by the same machine after it processes job ).
Verify that this satisfies all the conditions for being a partial order. It is
required to find the minimum number of machines needed to meet the
given job schedule. Formulate this as the problem of finding a minimal
chain decomposition of a poset. Solve the numerical problem with the
following data: n = 7,7;; =4 for all ¢ # 7,

¢ |12 3 4 5 6 7
a; |0 2 19 12 11 29 37
b; |9 8 23 25 22 33 47

(Ford and Fulkerson [1962 of Chapter 1}).

3.30 Consider n men and n women such that each man-woman pair
is either ‘compatible’ or ‘incompatible.” If there is no way to match the
men and women into n compatible couples, then prove that for some
p > 0, there is a subset of p men who together are compatible with
only r women where r = p — 1.

3.31 Consider the transportation problem with an additional con-
straint on the left-hand side, where n, M and (c;;) are data. Prove
that this problem is equivalent to that of minimizing z subject to the
system of constraints on the right-hand side.

n o n n+1
minimize z = Z Z CijTij Z i =1,i=1ton
i=11=j j=1
n n+1
subject to injél,izlton injzl,jzlton
j=1 i=1
n n+1
waél,jzlton Z$n+1’j:M—|—n
i=1 j=1
n o on n+1
ZZ.Iwé?’L—M Z*’Bi,n—i—l:M—i_n
i=1j=1 i=1
Lij = 0, for all ’L,_] Lij - 0

0 < <
= Tntin+1 = N

(Glover, Klingman, and Phillips [1984])



3.7. Exercises 299

3.32 Let ¢ be the cost matrix for an assignment problem of order n,
for which Z is an optimum assignment, and (u,v) an optimum dual
solution. Let ¢’ be a matrix obtained by changing the values in a single
row, or a single column of ¢. Beginning with z, (u,v), show that an
optimum assignment with ¢’ as the cost matrix can be obtained with
a computational effort of at most 0(n?). (Weintraub [1973])

3.33 Let a,b be two given vectors in IR". It is required to find a per-
mutation of the vector b which brings it as close to a as possible. This
is equivalent to finding a permutation P of order n which minimizes
| @ — Pb ||. For any p— norm (1 = p = o0) || - ||, show that this
problem can be transformed into an assignment problem.

3.34 Consider the cost minimizing assignment problem with the cost

: . > > >

matrix (c;;) where ¢;; = ww;, with v; = up = ... = u, > 0 and
< < < . .. .

0 <wvy =wvy=...=w, Provethat the unit matrix is an optimum

assignment for this problem.

3.35 Consider an m X n transportation problem. Let a block of cells
in this problem refer to a subset of cells in the array of the following
forms: a subset of cells within a single row or a single column of the
array, or the set of all cells in a subset of rows or a subset of columns
of the array. Suppose there are additional constraints in the problem,
where each constraint is either a lower bound or an upper bound on
the sum of flows in all the cells in some block. Show that the overall
problem can still be posed as a minimum cost network flow problem.

3.36 Consider the following school timetable problem. There are n
classes, m teachers, and p time periods in which lectures could be
scheduled every week. Each period is one hour long. Following data
is available. Discuss a method for constructing a timetable for class-
teacher meetings over the available periods each week, subject to the
constraints given, so that as many of the meetings as possible are sched-
uled. (DeWerra [1971])

«; = number of periods that class ¢ should meet per week,



300 Ch. 3. Primal-Dual and Dual Algorithms

t=1to n
B; = number of periods that teacher j should teach per week,
j=1to n

1, if class i is unavailable for lecture during period ¢
every week (they may have other non-lecture
activities scheduled for that period), ¢ =1 to,n

0, otherwise

1, if teacher j is unavailable to lecture in period ¢
djp = every week, j =1tom,t=1top
0, otherwise.

3.37 Consider the assignment problem (3.1), (3.2). There may be
many assignments which are optimal to this problem. Define a second
best valued assignment in this problem to be an assignment whose
objective value is strictly greater than that of an optimum assignment
but has minimum cost among all such assignments. Develop a suitable
modification of the partitioning routine using an optimum assignment
to the problem, discussed in Section 3.6, to find a second best valued
assignment with a computational effort of at most O(n®). (Matsui,
Tamura, and Ikebe [1991]).

3.38 Assignment Using Choice Lists Giving numerical measures
for preferences is hard, it is more natural for preferences to be expressed
by choice lists without actual numerical measures. Consider a situation
involving people Pi,..., P, and items zi,...,x,. Each person gives
his/her choice list which is the list of the items in decreasing order of
preference.

A choice list is a linear ordering if each item in the list is strictly
preferred over those appearing later (example: x3,xs, 1, x4; here z3
is strictly preferred over o, etc.) It is a weak preference ordering if
some set of consecutive items in the list are considered equal in the
individuals choice. We will enclose these within brackets (example:
x4, (T2, T3), x1; here x4 is strictly preferred over x5 or z3, 25 and x5 are
equally preferred and either of these is strictly preferred over z;).

(i) If each person gives his/her choice list, but items have no choice
lists for people, develop an algorithm for assigning each person



3.7. Exercises 301

a different item, so that each gets his/her highest favored item
as far as possible. Apply this algorithm to the problem in which
n = 4 and the choice lists are

P1 . Ty, (IEQ, IIZ‘g), I
P2 . (.Il, IIZ‘3), (IEQ, $4)
Pg . T3,T9,T1, T4
Py (21,3, T4), T2.

(ii) Suppose each person may not list all items in his/her choice list,
or the number of people and items may not be equal. Modify
the algorithm developed above to assign at most one item per
person, so that as many people as possible are assigned their
highest favored items as far as possible.

(iii) Consider a case with n people, n items again. Each person gives
his/her choice list for items. Also, each item gives its choice list
of persons. With respect to these choice lists, an assignment a of
items to people is said to be a stable assignment if there exists
no pair (P, z;) without an allocation in a such that both P; and
x; prefer each other to their partners in a. Develop an algorithm
for finding a stable assignment of items to people.

(Wilson [1977], Gale and Shapley [1962])

3.39 Stable Assignment Problem A group consists of boys,
by,...,b,; and girls, ¢;...,9,. Each person lists the persons of the
other sex in the order in which he/she prefers them, this is called that
person’s choice list. An assignment of boys to girls, a, is said to be a
stable assignment with respect to these choice lists, if there is no pair
(b;, g;) without an allocation in a, such that both b; and g; prefer each
other to their partners in a. Gale and Shapley [1962] proposed the
following algorithm for finding a stable assignment.

“To start, let each girl propose to her favorite boy. Each boy who
receives more than one proposal rejects all but his favorite from among
those proposed to him. However, he does not accept her yet, but keeps



302 Ch. 3. Primal-Dual and Dual Algorithms

her on a string to allow for the possibility that someone better may
come along later.

We are now ready for the second stage. Those girls who were re-
jected now propose to their second choices. Each boy receiving propos-
als chooses his favorite from the group consisting of the new proposers
and the girl on his string, it any. He rejects all the rest and again keeps
the favorite in suspense.

We proceed in the same manner. Those who are rejected at the
second stage propose to their next choices, and the boys again reject
all but the best proposals they have had so far. As soon as the last boy
gets his proposal the “courtship” is declared over, and each boy is now
required to accept the girl on his string.” Remember that this algorithm
terminates as soon as every boy receives at least one proposal.

(i)  Prove that this algorithm terminates with a stable assignment.

(ii) Inthe assignment obtained under this method, prove that at most
one girl ends up with her last choice as a partner.

(iii) Prove that this algorithm terminates after at most n? — 2n + 2
stages.

(iv) Apply this algorithm when n =5, and the choice lists are:

b1 :94,93,92,91,95, | 91 : b1,02,b3,b4,05
ba : 93,92,91,895, 94, | 92 : ba, b1,b2,b3,05
bs : 92,91, 95,94, 93, | g3 b3,04,01,b2,05
bs : g1, g5, 94, 93, 92, ga : b2, b3,b4,01,05
b5 : arbitrary gs bl, bg, bg, b4, b5

(v)  Verify that the algorithm described above goes through exactly
n? — 2n + 2 stages before termination when the choice lists are



3.7. Exercises 303

(vi)

(vii)

as specified below.
bl c9n—1,9n-2,---,91, 9n, g1 - bl: b27 ey bn—l; bn
b2t gn—2, Gn—3; - -+ 91, Gn, Gn—1 92 :bp_1,b1,b2,...,bp_2,by
: gs: bn—Q;bn—lablv--'vbn—S;bn

bn—l 91,90, 9n—1,---,92 .
b, : arbitrary Gn_1:ba,b3,...,b,_1,b1;b,
gn - blab% s 7bn—17bn

If the method described above goes through the upper bound of
n? —2n-+2 stages before termination, prove that one girl must get
her last choice and the other girls must get their second to last
choices in the assignment obtained. Also, in this case prove that
the boy who received the last proposal must be the last choice of
all the girls. Also in this case prove that each boy, except possibly
the last one to receive a proposal, must get his first choice.

Show that the upper bound on the number of proposals made in
the above algorithm before termination is n+(n—1)% = n?—n+1,
and that this is attained in the problem with the following data,
even though the method does not go through the upper bound
on the number of stages in this problem.

n = 4 and the choice lists are given below

bi:93,92,91,94 | G1:b1,03,b2,04
ba: g1,94,92,93 | 92 :b2,01,03,b4
b3 : g2, 91, 935 G4, g3 : b2, b3,01,b4
b4 . arbitrary gs . bl, bg, bg, b4

(viii) In the same manner consider the following choice lists.

bl - 393,94,95,-..,41, 92, g1 bn—l: b17 b27 b37 s 7bn—27 bn
ba : 94, 95,96, - - - » 925 935 g2 : b1,b2, 03,04, .. by 1, 0p

b3 1 g5, 96,975 - - - 93, 4, g3 1 b2, b3,b4,05...,01,0,

bp_1: 92,93,94, - - -, Gn, 91, gn-1: bn—2,bn—1,b1,b2,...,b,_3,0y
b’fl ©91,92,93, -+, 9n—1,9n, gn - bn—l: b17 b27 b37 o 7bn—27 bn




304 Ch. 3. Primal-Dual and Dual Algorithms

For these lists prove the following: (1) in stage 1, all girls propose
and the only girl whose proposal is rejected is g;. (2) At every
stage at most one proposal is made. (3) At stage 1 < i < n? —
2n + 2, girl g, will make her tth proposal to the boy bs where
r,s,t can be expressed in terms of i and n as

(i —1) mod n if (i—1)modn#0
n otherwise
t=1+1[(—-1)/n], and

s t+r—2 for t+7r—2<n
]l t+r—1—n otherwise.

This proposal is accepted and a girl g, is jilted by boy bs; where
" =r+1,if r # n; 1 otherwise. (4) At stage n® — 2n + 2, ¢,
makes her nth proposal to b, and that proposal is accepted. (5)
This takes n? — 2n + 2 stages.

(Itoga [1978], Kapur and Krishnamoorty [1985])

3.40 Consider the problem discussed in Exercise 3.39. Each person
lists all the persons of the other sex in decreasing order of his/her
preference. Show that every stable assignment x = (z;;) of boys to
girls is an extreme point of the set of feasible solutions of the following
system and vice versa.

n
inj = l,i=1ton
j=1

Zmij = 1,j:1t0n
i=1

Tpg+ > (zp; :  over girls j preferred over girl ¢ by boy p) +
> (x4 : over boys i preferred over boy p by girl ¢) Z1,p,g=1ton

Lij = 0, for all ’L,_]

(Vande Vate [1989])



3.7. Exercises 305

3.41 The following (in Figure 3.10) is a minimum cost network flow
model for a 3-period production planning problem with inventory and
backorder bounds. ki, ks, k3 are production capacities; and di, ds, d3
are the demands in the three periods. sp,ss are respectively the in-
ventory limits from periods 1 to 2, and 2 to 3; by, by are the backorder
bounds in periods 1 and 2. These data provide the capacities for arcs
in the following network, all lower bounds are 0. The cost data is
not shown. Transform this problem into an equivalent uncapacitated
transportation problem. (Evans [1985]).

d

K] K
1

2 k3
b by
d d, -d,

| -

+d2+d3

Figure 3.10:

3.42 Allocation of Candidates to Jobs There are m jobs, and
n candidates. For each candidate, we are given a nonempty subset of
jobs (called candidate’s job-set) to which that candidate could be allo-
cated. Each candidate must be allocated to exactly one job in his/her
job-set, but each job can be allotted any number of candidates. Let
r1...,Tm be the number of candidates allocated to various jobs in an
allocation. For the ith job, we are given a monotonic strictly decreasing
cost function f;(r;),7 = 1 to m. Arrange the costs fi(r1),..., fi(Tm)
in non-increasing order. The resulting vector is called the ranked cost
vector associated with the allocation. It is required to find an alloca-
tion which corresponds to a lexico minimum of the ranked cost vector
subject to the conditions discussed above.

As a numerical example consider m = 3,n = 5, and the job-sets of

candidates 1 to 5 to be {1},{1,2},{1,3},{2,3}, {3} respectively. Let



306 Ch. 3. Primal-Dual and Dual Algorithms

the cost functions f;(r;) for jobs i = 1 to 3 be %, %, % respectively.

Consider the two allocations listed below

Job allocated to cand. j

Alloc. | j=1 2 3 4 ) ri 1ty 73| filr) fa(ra)  fs(rs)
a 1 2 33 3 1 1 3 1 2 3
as 1 112 3 3 1 1] 1 2 5

The ranked cost vectors associated with the allocations aq,ay are

(2, g, 1), (5,2, %) respectively, and hence by the lexico minimum crite-
rion a; is better than as. In fact in this numerical example it can be

shown that a; is an optimum allocation for the problem.

(i) Model this problem using a bipartite network. Show that each
allocation of candidates to jobs corresponds to a subnetwork of
this bipartite network.

(ii) Given an allocation a, define an alternating path wrt it, to be
a path beginning and terminating with job nodes, with succes-
sive edges having a common node and alternately belonging/not
belonging to a.

Given a feasible allocation a and an alternating path P wrt it, de-
fine the operation of rematching a using P to be that of obtaining
an allocation a! by (A) including in a allocations corresponding
to edges in P which are not already in a, and (B) deleting all al-
locations common to a and P. Show that the resulting allocation
a' will be feasible.

(iii) Define an alternating path P wrt a feasible allocation a, to be an
improving alternating path wrt a, if rematching a using P leads
to an allocation a' whose ranked cost vector is lexico smaller than
that of a.

Prove that a feasible allocation corresponds to a lexico minimum
ranked cost vector iff there exists no improving alternating path
wrt it.



3.7. Exercises 307

(iv) Develop an algorithm which finds an optimum allocation by step-

v)

wise improvement of a feasible allocation.

Consider the following instance that arises in the army. m = 2,
the jobs are driving and cooking. n = 3600 candidates who are
reservists. Of the 3600; 900 can only drive, 2100 can only cook,
and the remaining 600 can do both.

The army needs 1200 man months of driving time and 1800
man months of cooking time annually. Let r{,ry be the number
of candidates allocated to driving, cooking respectively. Then
fi(r1) = 1200/ry, this is the months of army service per annum
for drivers. Likewise fa(r3) = 1800/ry is the months of army
service for cooks. Beginning with the feasible allocation with
r1 = 900, 7o = 2700, obtain an optimum allocation.

(Cramer and Pollatschek [1979)])

3.43 A problem of interest in core management of pressurized water
nuclear reactors is to find an optimal allocation of the given fuel as-
semblies which may be differing on their burn-up states, to particular
locations in the reactor, such that each full assembly is assigned to a
location and vice versa, under a constraint on the power distribution
form factor. This gives rise to an assignment problem subject to one
additional constraint, of the following form

n n
minimize z = Z Z Cij Tij

i=1j=1

n
subject toz zi; =1li=1ton
j=1

Z Tij :1,j:1t07’b
Tij =20, for all 7,5 (3.23)
> diy zy =

and z;; integer for all 7, j



308 Ch. 3. Primal-Dual and Dual Algorithms

where, without any loss of generality, we can assume that c;;, d;; =0
for all 4,7 and b > 0. (3.23) is an integer program. Show that it is an
NP-hard problem. Develop a practically efficient method for solving
it, based on Lagrangian relaxation and assignment ranking. Apply
this method to solve the numerical problem with the following data:
n =4,b= 26.

15 7 4 9 6 4 8
97 9 9 75 9 6
)=15 511 5 [@)=|5¢g 7 11
87 8 5 6 3 2 10

(Aggarwal [1985], Gupta and Sharma [1981))

3.44 In some transportation models, the costs of different shipments
are borne by different individuals, and the sum of all the costs is not
a good objective to minimize. In these models, a better objective is to
minimize the maximum cost incurred by any single individual, called
the bottleneck objective function. This leads to:

minimize (max {¢;; : (¢,7) such that z;; > 0})
n
subject to > x;; = a;,i=1tom (3.24)
j=1

Z‘rij ; bj _]thOn
=1

lIv

Tij 0, for all 1,7

(i) Develop an efficient algorithm for this problem. Apply this algo-
rithm on the numerical problem with the following data.

Cij
ji=|l1 2 3 4 5 6 7|a
t=1110 6 4 8 8 10 0 |27
2 4 2 2 2 8 1 0126
3 14 12 9 4 9 3 0126
4 4 7 6 9 1 4 0|27
b; 19 17 17 15 10 8 20



3.7. Exercises 309

(ii) A commonly encountered constraint in distribution problems is
the requirement that the entire demand of each customer must be
supplied from a single source or supplier. Consider the problem
(3.24) with such an additional constraint. Develop a practical
approach for solving this combined problem. Apply this approach
on the numerical problem with the data given above.

(Nagalhout and Thompson [1984])

3.45 Classroom Allocation to Courses A big university has
a total of L classrooms of varying capacities (the capacity of a room
is the number of students it can accommodate) spread over various
buildings. In a term the university is planning to offer a total of N
courses. Each course meets for a total of 2, 3, or 4 hours per week
(this is known as the number of credit hours for the course) and this
may all be in a single session on one day of the week, or split into
several sessions (each of the sessions are either one, or one and a half,
or three hours in length) over several days of the week. For example a
3 credit hour course may meet in one session of three hours say from
7-10 PM on one day; or in three hourly sessions say from 2 to 3 PM
on three different days of the week; etc. For each course the number
of credit hours, and the sessions in which they will meet (i.e. on which
days the course meets and the beginning and ending time of the session
on each day) has already been determined and all this information is
given. The expected enrollment in each course is available, and using
this and other information, the university has compiled a subset X; of
classrooms in which they would prefer to hold course 7, i = 1 to N.

The constraints in allotting classrooms to courses are the following;:
At any point of time there can be only one course allotted to a class-
room; also, if a course consists of several sessions during a week, all the
sessions must meet in the same classroom. It is required to allot class-
rooms to courses from their preferred subset, in such a way that the
number of courses for which allocations are made is maximized (i.e.,
the number of courses for which you are unable to allot a classroom
from its preferred subset, should be as low as possible). Model this
problem.



310 Ch. 3. Primal-Dual and Dual Algorithms

3.46 Bottleneck Assignment Problem with Node Weights Let
ai, ..., ay; by, ..., b, be weights associated with the rows; and columns
of the n x n assignment array corresponding to a bipartite network G.
For each i = 1 to n, let S; = {j : (¢;7) is an edge in G}, and corre-
spondingly for each j = 1 to n let P; = {i: 7 € S;}. Consider the
following bottleneck assignment problem: find z = (z;;) to

minimize (maximum {(a; +b;) z;; :4,j =1ton})
subject to Z zi; =1l,i=1tom
JES;
Y oz =1lj=1ton (3.25)
1€P;
ziy; =0or1, forall 4,j
Tij = 0, for j ¢ Si

(i) Show that this is a special case of the bottleneck assignment
problem discussed in Section 3.1.5 in which ¢;; = a; + b; for
jESi,OOfOI'j ¢82

(ii) Consider the special case of (3.25) in which all S; and P, are
{1,...,n}. In this case order the a;s in nonincreasing order, and
b;s in nondecreasing order. Suppose these orders are a;, = a;, =
.Za;, and b;, = bj, = ... = b; . In this case, show that the
assignment { (i1, j1), (i2,72), .- -, (in, jn)} is an optimum solution

of (3.25).

(iii) Consider cell (i,7) of the n x n assignment array admissible if
J € S;, inadmissible otherwise. Develop a dual algorithm for
(3.25) which starts with an infeasible assignment (i.e., one con-
taining some allocations in inadmissible cells), while maintaining
optimality conditions, and tries to reduce the infeasibility in each
iteration.

(iv) LetZ = (z;;) be a feasible assignment to (3.25), and M= {(3; j); Z;; =
1} be the corresponding matching in G. The cell (r,s) is said to
be a bottleneck cell (corresponding to a bottleneck edge in G)
with respect to z if Z,; = 1 and a, + b, = max{a; + b;; (4, j) such
that ‘fij = 1}



3.7. Exercises 311

A decreasing alternating path from r to s is G with respect to
M or 7 is a path from r to s satisfying the following properties:
(1) it does not contain (7;s), (2) edges in it are alternately in M
and not in M, (3) for every edge (i; j) on it which is not from M,
we have a; + b; < a, + bs. When (r;s) is a bottleneck cell with
respect to T and there is no decreasing alternating path from r
to s, prove that Z is an optimum solution for (3.25)

If a decreasing alternating path exists from r to s, define & = (&)
by

1 —2z;; for all (4,7) on the path.
Tij =1 0, for (i, ) = (r,s).
Tij for all (7, ) # (r, s) not on the path.

Then show that & is a better assignment for (3.25) than z. Us-
ing these results develop a primal algorithm for (3.25) that starts
with and maintains feasible assignments and strictly decreases
the objective value in each iteration by finding a decreasing al-
ternating path and using it as above. Discuss an initialization
phase for this algorithm if an initial feasible assignment is not
available.

(Lawler [1976 of Chapter 1], Carraresi and Gallo [1984])

3.47 The Bus Driver Rostering Problem Consider an m day
time horizon, with n shifts in each day. Each shift on each day is to
be manned by a single bus driver. w,; denotes the weight of the jth
shift on day p, 7 = 1 to n,p = 1 to m, this may be the time duration or
some other measure of the workload for that shift. There are n drivers.
This problem is concerned with the assignment of drivers to shifts over
the days of the horizon so that each driver receives an even balance of
each type of shift. It can be formulated as a bottleneck problem, to
minimize the maximum total weight of the shifts assigned to a driver.

Represent the jth shift of pth day by a node numbered (p, j). This
node has weight w,;. Let S,(j) be the set of shifts in day p + 1 that
can be assigned to a driver who has been assigned shift j in day p by
union rules or other work constraints. Draw an arc from node (p, j) to



312 Ch. 3. Primal-Dual and Dual Algorithms

Figure 3.11:

each node (p+ 1,7) for i € S,(j). Let P,(¢) be the set of shifts in day
p which could have been assigned in day p to a driver to whom shift ¢
has been assigned in day p+ 1. The results is a layered acyclic network
of the form shown in Figure 3.11.

A feasible work assignment to a single worker corresponds to a
chain from a node in the first layer to a node in the mth layer in this
network. Its total workload being given by the sum of the weights of
the nodes on the chain. The problem of finding work assignments to
all the n workers, such that the maximum workload is minimized, can
be formulated as the problem of finding, in the network in Figure 3.11,
n node disjoint chains from layer 1 to layer m so as to minimize the
longest among these chains. Give a mathematical formulation of this
problem using 0-1 variables.

Prove that a feasible solution to this problem exists iff for each
p=1tom — 1, the constraints

Zjesp(i) .’EZ — 1,7/: 1 tO n
Yiep, () T = L,j=1ton
xi; =0or 1, for all 4,j

are feasible. If m = 2, show that this problem reduces to a bottleneck
assignment problem of the form discussed in Exercise 3.46.



3.7. Exercises 313

When m > 2, develop a heuristic algorithm for this problem based
on the bottleneck assignment problem discussed in Exercise 3.46. (Car-
raresi and Gallo [1984))

3.48 A Vehicle Scheduling Application This application is con-
cerned with the optimal assignment of vehicles to time-tabled trips so
that each trip is carried out by one vehicle subject to some constraints.
A trip is defined by a quadruple (7;,l;, 0;, d;) where

7; = scheduled start time of the ith trip.

l; = duration or length of the 7th trip.

0; = the origin or the start terminal for the ith trip.
d; = the destination terminal for the ith trip.

Suppose the time-table consists of n trips, denoted by (i,...,(,. In
addition to these regular trips, deadheading trips are allowed between
terminals. d;; denotes the duration of a deadheading trip from d; to
0j,i,7 = 1 ton, i # j. The ordered pair of trips ((;,(;) is said to be
a compatible pair if 7, +1; + ;5 + € = 7;, where € Z () is a tolerance
parameter to absorb possible delays. If (;, ¢;) is compatible, it is clearly
feasible to have trips (;,(; operated in sequence by the same vehicle.
A wvehicle duty is a sequence ¥ = ((;y, iy, - -+, G,) of trips satisfying
the property that every consecutive pair of trips in this sequence is
compatible, all these trips can be operated by the same vehicle. A
feasible vehicle schedule is a family {¢;,...,9,} of vehicle duties such
that each trip (i,...,(, belongs to exactly one ¥,,h =1 to g.

Construct a bipartite network G=(S, T, .A) where S={sq, ..., s,},
T={t:, ..., t,} and A = {(s;,¢;); for all ¢,j such that ((;,¢;) is a
compatible pair}.

(i) A vehicle duty ¢ = ({iy, Gy, - -+, G,) can be represented in G by
the set of arcs {(si,,ti,), (Siy, tis), -, (Si,_y,ti,)} which can be
verified to be a matching in G. A vehicle duty containing only
one trip {¢;} can be represented by leaving both nodes s;,t; as
exposed nodes in G. Using this, show that there is a one-to-one
correspondence between vehicle schedules and matchings in G.



314

(ii)

Ch. 3. Primal-Dual and Dual Algorithms

Consider the example in which there are 4 terminals a,b,c,d, and
5 trips with the following data: € =0

Trip T; l; (minutes) | o; | d;
(1 | 7:10 a.m. 20 a|b
(o | 7:20 a.m. 20 c|d
(3 | 7:40 a.m. 25 b | a
(4 | 800 a.m. 30 d| c
(5 | 8:35 a.m. 30 c|d

to a b ¢ d
from a 0 15 20 20

(055) = b 15 0 25 10.
c 20 25 0 15
d 20 10 15 0

Construct the network G for this example and obtain the vehicle
schedule corresponding to the matching {(s1,%3), (s2,t4), (S4,t5)}
in it.

Define the set of arcs A* = {(s;,t;); (si,t;) € A defined above,
and either i = j or 7; = 7; +1; + d;;}. Let G’ denote the network
obtained by augmenting G with the additional arcs A*, and in-
troducing a unit exogenous supply at each s;,i = 1 to n (these
are now source nodes), and a unit demand at each ¢;,j = 1 to n,
and lower bound of 0 and capacity of 1 on each arc in AU A*.

If f = (fs.,) is an integer feasible flow vector in G', it defines an
assignment or perfect matching in G'. If f;,;, = 1 then the arc
(si,t;) is in the perfect matching; and in addition if (s;,¢;) € A
make the trips ¢; and (; belong in that order to the same vehicle
duty, and if (s;,t;) € A* then make ¢; and (; to be the last and
first trips respectively of a vehicle duty (in this case they may or
may not belong to the same vehicle duty). Also, if f;,;, = 1 then
make (; as the only trip of a vehicle duty. Under this convention,
show that every feasible integer flow vector in G’ (or a perfect
matching in G’) corresponds to a feasible vehicle schedule where



3.7. Exercises 315

(iii)

(iv)

the number of vehicles used is equal to the number of units of
flow (or arcs in the perfect matching) on arcs from the set A*
and vice versa. Draw the network G’ for the example given in (i)
and illustrate this point.

Now consider the case in which all the vehicles are housed in one
depot (common in small size transit companies, or those in which
the service area is partitioned into zones with each zone assigned
to one single depot). Assume that there are no constraints other
than compatibility and that all vehicles are of the same type.

Formulate the problem of finding a vehicle schedule to minimize
the fleet size as an assignment problem.

If it is required to find a vehicle schedule that minimizes the
operational costs (these include deadheading travel costs, and
cost of any idle time between the end of a trip and the starting of
the next), formulate the problem of finding it as an assignment
problem.

Also discuss how one can find a vehicle schedule that minimizes
a combination of the above two costs, or one that minimizes the
operational cost subject to the constraint that the fleet size is the
minimum.

Now consider the case in which there are multiple depots, each
with a given capacity for the number of vehicles it can house.
Formulate this multiple depot problem as a 0-1 integer program
and discuss heuristic approaches to obtain reasonable solutions
for it.

(Carraresi and Gallo [1984])

3.49 Let G=(S,T; A) be a bipartite network with [S| = |T|. EC A
is a specified subset of edges in G. It is required to determine whether
there exists a perfect matching in G containing at most r edges from
E. Formulate this as a minimum cost network flow problem.

3.50 Let G=(N,.A) be a directed acyclic network. Define a chain
cover for G to be a node disjoint union of chains in G (degenerate



316

Ch. 3. Primal-Dual and Dual Algorithms

chains consisting of a single node by itself being admissible) which
contains all the nodes in V. The size of a chain cover for G is defined
to be the number of chains in it. The chain covering number for G is
the size of a minimum size chain cover.

(i)

(ii)

Show that a chain cover for G is of minimum size iff it contains
the maximum number of arcs among all chain covers.

Based on the result in (i), a greedy approach for finding a min-
imum size chain cover in G, consists of successively determining
longest chains. Show that this greedy approach fails to give a
minimum size chain cover in the following network in Figure 3.12
(minimum size is 4, greedy approach gives a cover of size 5).

(iii)

(iv)

>0

Figure 3.12:

Obtain a new network G’ = (N’, A’) from G by the following
procedure. Replace each node ¢ in A by a pair of nodes 7' and
i”. Each are incident into 7 in G becomes an arc incident into
7, and each arc incident out of 7 becomes an arc incident out of
7", in G'. So, every node in G’ has either zero in-degree or zero

out-degree. Show that G’ is bipartite.

Show that the transformation in (iii) converts the arcs in any col-
lection of node-disjoint chains in G into a matching in G’. Using
the fact that G is acyclic, show that every matchings in G’ cor-
responds to a unique set of arcs of some node-disjoint collection
of chains in G.



3.7. Exercises 317

From these results show that a minimum size chain cover in G

can be obtained by finding a maximum cardinality matching in
G

(Boesch and Gimpel [1977))

3.51 Let G=(N, A, fs“,f) be an acyclic network with § as the source
node with in-degree zero, and t as the sink node with out-degree zero.
An § — ¢ chain cover for the nodes of G is a collection of chains from
§to ¢ in G such that each node i € A is contained on at least one
chain in the collection, its size is defined to be the number of chains in
it. A minimum § — { chain cover for nodes in G is one of the smallest
possible size, let a denote its size.

A pair of distinct nodes i, 5 € N are said to be incomparable in G,
if there exists no chain from ¢ to j or from j to 7 in G. A subset X C
N is an incomparable node set in G if every pair of distinct nodes in
X is incomparable. Let 3 be the cardinality of a maximum cardinality
incomparable node set in G.

Transform G into G’ by splitting each node i € M\{5,f} into two
nodes 4’,i" and adding the arc (i’,7”), all arcs incident into (out of) 4
in A will be incident into i’ (out of i) in G’. Define lower bounds for
flows on arcs in G’ to be 1 for all arcs of the form (i’,7”) and 0 for all
other arcs, and capacities to be 400 on all the arcs. Find a minimum
value feasible flow vector f in G, let its value be . Then prove that
v = a = 3. Use this to develop an algorithm for finding a minimum
§ —t chain cover for nodes in G.

This provides a method based on the minimum value flow problem
for finding o and (3. An alternate method for the same based on max-
imum cardinality matching is discussed in Section 3.1.4. (Ntafos and
Hakimi [1979))

3.52 Let G =(N,A, 3,1) be an acyclic network with § = the source
node with in-degree zero, and ¢ = the sink node with out-degree zero.
An § — ¢ chain cover for arcs in G is a collection of chains from § to £
in G that contains all the arcs in A, its size is the number of chains in
it. Let ¥ be the size of a minimum size § — ¢ chain cover for arcs in G.

Two arcs ey, e in G are said to be incomparable if there is no chain
from % to ¢ containing both of them. An incomparable arc set in G



318 Ch. 3. Primal-Dual and Dual Algorithms

is a set of arcs every pair of which are incomparable. Let § be the
cardinality of a maximum cardinality incomparable arc set in G.

Prove that ¢ = §. As in Exercise 3.51, show that a minimum size
§—1 chain cover for arcs in G can be found by the minimum value flow
method by applying it directly on G by placing a lower bound of one
unit on each arc in G.

Let {ei,..., e} be the arcs in A, and N = {1,...,|A|} with j €
N corresponding to the arc e; in A. Define A" = {(i,7) : 4,5 € N7,
and there is a chain in G from the head node of e; to the tail node of
e;}. Let G" = (N, A").

Show that G” is also acyclic. Show that a minimum size § — £ chain
cover for arcs in G, and a maximum cardinality incomparable arc set
in G, can both be found by applying the maximum matching method
discussed in Section 3.1.1 to the network G”. (Ntafos and Hakimi
[1979])

3.53 Let G = (N, A) be a directed connected network. Define a chain
cover for the nodes in G to be a set of chains (not necessarily simple
or even elementary) such that each node in A is contained on at least
one chain in the set. Let Py(G) denote the cardinality of a minimum
cardinality chain cover for nodes in G.

A node i € N reaches (is reached from) a node j if there is a
chain from 7 to j (from j to 7) in G. A set X C N of nodes in an
incomparable node set if there is no chain in G between any pair of
distinct nodes in X. Let In(G) denote the cardinality of a maximum
cardinality incomparable node set in G.

Since any two vertices in a strongly connected component are mutu-
ally reachable, it follows that there always exists a chain containing all
the nodes in a strongly connected component. Hence, for the purpose
of finding a minimum cardinality chain cover for nodes, each strongly
connected component in G can be replaced by a single new vertex.

Find all the strongly connected components (SCCs) in G; sup-
pose there are r of them. Construct a new network G’ with node set
{1,...,r}, in which node i corresponds to the ith SCC in G. Introduce
an arc (i, 7) in G’ if there exists a chain from some node in the ith SCC
in G, to some node in the jth SCC. Show that G’ is acyclic. Prove
that Py(G) = Py(G’) and that In(G) = In(G’). Using this prove that



3.7. Exercises 319

Pn(G) = IN(G). Discuss an efficient algorithm for finding a minimum
cardinality chain cover for nodes, and a maximum cardinality incom-
parable node set in G, using the results in Exercise 3.52. (Ntafos and
Hakimi [1979))

3.54 Let G = (N, A) be a connected directed network. Define chain
covers for arcs in G, reachability among arcs, incomparable arc sets,
the same way it was done for nodes in Exercise 3.53. Let P4(G) be
the cardinality of a minimum cardinality chain cover for arcs, and let
I4(G) be the cardinality of a maximum cardinality incomparable arc
set in G. Prove that P4(G) = I4(G), and discuss an efficient method for
finding a minimum cardinality chain cover for arcs, and a maximum
cardinality incomparable arc set in G, using the results in Exercises

3.52, 3.53. (Ntafos and Hakimi [1979])

Comment 3.4 The Hungarian method for the assignment problem,
a combinatorial procedure, was developed by H. Kuhn [1955]. Since
the main ideas underlying the method came from Egervary’s proof of
the Konig-Egervary theorem concerning bipartite graphs, he called it
the “Hungarian method.” The primal-dual setting has made it possi-
ble to solve this problem by combinatorial methods through a sequence
of maximum value flow problems. The method generalizes directly to
the transportation problem, and to minimum cost flow problems in
capacitated networks which are not necessarily bipartite (see Chapter
5). The extension of the primal-dual approach to solve minimum cost
matching problems in nonbipartite networks required a new technique,
namely the characterization of the convex hull of matching incidence
vectors by a system of linear inequalities. This was done by J. Ed-
monds [1965 of Chapter 10], the resulting combinatorial algorithms for
matching problems are discussed in Chapter 10.

The O(n®) implementation of the Hungarian method is due to
Lawler [1976 of Chapter 1].

When the method of Section 5.8.1 for minimum cost flows is spe-
cialized to the assignment problem, it leads to a shortest augmenting
path method for it. This has been discussed by Derigs and Metz [1986],
Jonker and Volgenant [1987], and Tomizawa [1972]. Related methods
based on successive shortest chains using a relaxation approach have



320 Ch. 3. Primal-Dual and Dual Algorithms

been discussed by Dinic and Kronrod [1969], Engquist [1982], and Hung
and Rom [1980]. The primal algorithm of Balinski and Gomory [1964]
maintains a feasible assignment and reaches an optimum assignment
by augmenting flows along negative cost cycles, this method is again
based on shortest chain computations.

Several variants of the primal simplex method for solving the as-
signment problem have been discussed in the literature. Barr, Glover,
and Klingman [1977] discuss the finite version based on using strongly
feasible partitions (see Chapter 5), and report good computational per-
formance of it. Akgul [1987], Hung [1983], and Roohy-Laleh [1981] dis-
cuss polynomial time variants of the primal simplex algorithm for the
assignment problem.

Signature methods for the assignment problem have been proposed
by Balinski[1985, 1986]. Goldfarb [1985] developed the inductive sig-
nature method. Recently signature methods have been generalized to
solve transportation problems by Paparrizos [1990].

Computational studies on these different algorithms for the assign-
ment problem by different groups at different times have rated the Hun-
garian method, relaxation methods, shortest augmenting path meth-
ods, as having produced excellent performance. Carpento, Martello,
and Toth [1988], and Burkard and Derigs [1980 of Chapter 1] present
FORTRAN implementations of assignment algorithms for dense and
sparse cases.

Metric and Maybee [1973] present a FORTRAN implementation of
the assignment ranking algorithm.

The scaling technique for modifying the primal-dual method into a
polynomially bounded algorithm, by applying it on a sequence of bet-
ter and better approximations of the original problem, was introduced
by Edmonds and Karp [1972 of Chapter 2]. However, this technique is
mainly of theoretical interest, as the performance of the resulting algo-
rithm in computational tests does not compare favorably with that of
other minimum cost flow algorithms discussed in Chapter 5.

Algorithms for stable assignments are discussed in Gale and Shapley
[1962], Irving, Leather, and Gusfield [1987], Kapur and Krishnamoorty
[1981], and Wilson [1977]. These algorithms are not discussed in the
text, but are presented among various exercises given above.



3.8. References 321

3.8 References

V. AGGARWAL, 1985, “A Lagrangian Relaxation Method for the Constrained As-
signment Problem,” COR, 12, no. 1(97-106).

M. AKGUL, 1987, “A Genuinely Polynomial Primal Simplex Algorithm for the
Assignment Problem,” Working paper IEOR 87-07, Bilikent University, Ankara,
Turkey.

M. AKGUL, 1988, “A Sequential Dual Simplex Algorithm for the Linear Assign-
ment Problem,” OR Letters, 7(155-158).

M. AKGUL and O. EKIN, June 1990, “A Dual Feasible Forest Algorithm for
the Linear Assignment Problem,” Research Report IEOR-9011, Bilkent Univer-
sity, Ankara, Turkey.

M. L. BALINSKI, 1985, “Signature Methods for the Assignment Problem,” OR,
33(527-537).

M. L. BALINSKI, March 1986, “A Competitive (Dual)Simplex Method for the As-
signment Problem,” MP, 34, no. 2(125-141).

M. L. BALINSKI and R. E. GOMORY, 1964, “A Primal Method for the Assign-
ment and Transportation Problems,” MS, 10(578-593).

R. S. BARR, F. GLOVER and D. KLINGMAN, 1977, “The Alternating Path Basis
Algorithm for Assignment Problems” MP, 13(1-13).

D. BERTSEKAS, 1981, “A New Algorithm for the Assignment Problem,” MP,
21(152-171).

F. T. BOESCH and J. F. GIMPEL, April 1977, “Covering the Points of a Digraph
With Point-Disjoint Paths and its Application to Code Optimization,” JACM, 24,
no. 2(192-198).

G. CARPANETO, S. MARTELLO and P. TOTH, 1988, “Algorithms and Codes
for the Assignment Problem,” (193-224) in B. Simeone, et. al. (Eds.), FORTRAN
Codes for Network Optimization, AOR, 18.

G. CARPANETO and P. TOTH, 1987, “Primal-Dual Algorithms for the Assign-
ment Problem,” DAM, 18(137-153).

P. CARRARESI and G. GALLO, 1984, “Network Models for Vehicle and Crew
Scheduling,” EJOR, 16(139-151).

P. CARRARESI and G. GALLO, 1984, “A Multi-Level Bottleneck Assignment Ap-
proach to the Bus Drivers’ Rostering Problem,” EJOR, 16(163-173).

J. CRAMER and M. POLLATSCHEK, May 1979, “Candidate Job Allocation Prob-
lem With a Lexicographic Objective,” MS, 25, no. 5(466-473).



322 Ch. 3. Primal-Dual and Dual Algorithms

U. DERIGS and A. METZ, 1986, “An In-Core/Out-of-Core Method for Solving
Large Scale

Assignment Problems,” Zeitschrift fiir Operations Research, 30, no. 5(A181-A195).
U. DERIGS and U. ZIMMERMANN, 1978, “An Augmenting Path Method for
Solving Linear Bottleneck Assignment Problems,” Computing, 19(285-295).

D. DEWARRA, March 1971, “Construction of School Timetables by Flow Meth-
ods,” INFOR, 9, no. 1(12-22).

E. A. DINIC and M. A. KRONROD, 1969, “An Algorithm for Solution of the As-
signment Problem,” Soviet Math. Doklady, 10(1324-1326).

J. EGERVARY, 1931, “Matrixok Kombinatorikus Tulajdonsagair6l,” Mat. és Fiz.
Lapok , 38(16-28).

M. ENGQUIST, Nov. 1982, “A Successive Shortest Path Algorithm for the As-
signment Problem,” INFOR, 20, no, 4(370-384).

J. R. EVANS, March 1985, “On Equivalent Transportation Models for Production
Planning Problems,” IIE' Transactions, 17, no, 1(102-104).

L. R. FORD and D. R. FULKERSON, 1957, “A Primal-Dual Algorithm for the
Capacitated Hitchcock Problem,” NRLQ, 4(47-54).

D. R. FULKERSON, 1956, “Note On Dilworth’s Decomposition Theorem for Par-
tially Ordered Sets,” Proc. Amer. Math. Soc., 7(701-702).

D. GALE and L. S. SHAPLEY, 1962, “College Admissions and the Stability of
Marriage,” American Math. Monthly, 69(9-15).

I. GERTSBAKH and H. I. STERN, Jan. - Feb. 1978, “Minimal Resources for Fixed
and Variable Job Schedules,” OR, 26, no. 1(68-85).

F. GLOVER, D. KLINGMAN and N. PHILLIPS, 1984, “An Equivalent Subprob-
lem Relaxation for Improving the Solution of a Class of Transportation Scheduling
Problems,” EJOR, 17(123-124).

D. GOLDFARRB, 1985, “Efficient Dual Simplex Methods for the Assignment Prob-
lem,” MP, 33(187-203).

0. GROSS, March 1959, “The Bottleneck Assignment Problem,” P-1630, The
RAND Corp.

A. GUPTA and J. SHARMA, 1981, “Tree Search Method for Optimal Core Man-
agement of Pressurized Water Reactors,” COR, 8(263-266).

H. HAMACHER, Nov. 1982, “An O(kn4) Algorithm for finding the k Best Cuts in
a Network,” OR Letters, 1, no. 5(186-189).

H. HAMACHER, J. C. PICARD and M. QUEYRANNE, March 1984, “On Finding
the k Best Cuts in a Network,” OR Letters, 2, no. 6(303-305).



3.8. References 323

H. HAMACHER, J. C. PICARD and M. QUEYRANNE, 1984, “Ranking the Cuts
and Cut-Sets of a Network,” Annals of Discrete Applied Mathematics, 19(183-200).
M. S. HUNG, 1983, “A Polynomial Simplex Method for the Assignment Problem,”
OR, 31(595-600).

M. S. HUNG and W. D. ROM, 1980, “Solving the Assignment Problem by Relax-
ation,” OR, 28(969-982).

R. W. IRVING, P. LEATHER and D. GUSFIELD, July 1987, “An Efficient Algo-
rithm for the ‘Optimal’ Stable Marriage,” JACM, 34, n0. 3(532-543).

S. Y. ITOGA, Aug. 1978, “The Upper bound for the Stable Marriage Problem,”
JORS, 29, no. 8(811-814).

R. JONKER and T. VOLGENANT, Oct. 1986, “Improving the Hungarian Assign-
ment Algorithm,” OR Letters, 5, no. 4(171-175).

R. JONKER and A. VOLGENANT, 1987, “A Shortest Augmenting Path Algo-
rithm for Dense and Sparse Linear Assignment Problems,” Computing, 38(325-340).
D. KAPUR and M. S. KRISHNAMOORTHY, July 1981, “Worst Case Choice for
the Stable Marriage Problem,” IPL, 21, no. 1(27-30).

P. KLEINSCHMIDT, C. W. LEE, and H. SCHANNATH, Mar. 1987, “Transporta-
tion Problems Which Can be Solved by the Use of Hirsch Paths for the Dual
Problems,” MP, 37, no. 2(153-168).

D. KONIG, 1950, “Theorie der Endlichen und Unendlichen Graphen,” Chelsea
Publishing Co. NY.

H. W. KUHN, 1955, “The Hungarian Method for the Assignment Problem,” NRLQ,
2(83-97).

E. L. LAWLER, Mar. 1972, “A Procedure for Computing the k& Best Solutions to
Discrete Optimization Problems and its Application to the Shortest Path Prob-
lem,” MS, 18(401-405).

R. E. MACHOL and M. WIEN, April 1977, “Errata,” OR, 25, no. 2(364).

T. MATSUI, A. TAMURA, and Y. IKEBE, March 1991, “Algorithms for finding
a kth best valued assignment,” Tech. report, Dept. of Industrial Administration,
Science University of Tokyo, Tokyo, Japan.

L. B. METRICK and J. D. MAYBEE, 1973, “Assignment Ranking,” Tech. Report
73-7, Dept. IOE, University of Michigan, Ann Arbor, MI.

K. G. MURTY, May-June 1968, “An Algorithm for Ranking All the Assignments
in Order of Increasing Cost,” OR, 16, no. 3(682-687).

K. G. MURTY and C. WITZGALL, 1977, “Dual Simplex Method for the Unca-
pacitated Transportation Problem Using Tree Labelings” Tech. Report 77-9, Dept.



324 Ch. 3. Primal-Dual and Dual Algorithms

IOE, University of Michigan, Ann Arbor, MI.

R. V. NAGELHOUT and G. L. THOMPSON, 1984, “A Study of the Bottleneck
Single Source Transportation Problem,” COR, 11, no. 1(25-36).

S. C. NTAFOS and S. L. HAKIMI, Sept. 1979, “On Path Cover Problems in Di-
graphs and Applications to Program Testing,” IEEE Transactions on Software
Engineering, SE-5, no. 5(520-529).

K. PAPARRIZOS, 1990, “Generalization of a Signature Method to Transportation
Problems,” Math. Democritus University of Thrace, Xanthi, Greece.

E. ROOHY-LALEH, 1981, “Improvements to the Theoretical Efficiency of the Net-
work Simplex Method,” Ph. D thesis, Carleton University.

R. SILVER, 1960, “An Algorithm for the Assignment Problem,” CACM, 3(603-
606).

N. TOMIZAWA, 1972, “On Some Techniques Useful for Solution of Transportation
Network Problems,” Networks, 1(179-194).

J. H. VANDE VATE, 1989, “Linear Programming Brings Marital Bliss,” OR Let-
ters, 8(147-153).

A. WEINTRAUB, 1973, “The Shortest and the k-Shortest Routes as Assignment
Problems,” Networks, 3(61-73).

L. B. WILSON, 1977, “Assignment Using Choice Lists,” ORQ, 28, no. 3(569-578).



Index

For each index entry we provide
the page number where it is de-
fined or discussed first.

Admissible subnetwork 228,
232
Allocation 229
Change path 238
Augmenting 238
Path 238
Tree 238

Bottleneck assignment 255

Chain decomposition 250
Covering set 243

Dense 231

Digit by digit method 267
Dilworth’s theorem 254
Dual simplex method 291

Equality 232
Arc 232
Cell 232
Subnetwork 228, 232

Hungarian method 228, 231
O(n?) version 241

325

Independent cells 243
Index 242

Konig-Egervary Theorem 249,

250
List 232
Min-max assignment 255

Partial assignment 229
Perfect matching 230
Min cost 230
POS 251
Poset 251
Primal-dual algorithm 227
For transportation problem
257

Ranking algorithm 293
Restricted primal 260

Scaling 267
Signature methods 277
Inductive 290
Signature vector 279
Column 279
Row 279



326

Sparse 231
Stage 242, 280

Threshold method 255
Total reduction 231
Transitivity 251

Unrelated elements 252

Ch. 3. The Hungarian Method



