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Chapter 3

Primal-Dual and Dual
Algorithms for the
Assignment and
Transportation Problems

The assignment and transportation problems are single commodity
minimum cost flow problems on pure bipartite networks. Primal-
dual algorithms are a class of methods for LPs with the following
characteristic features:

1. They maintain a dual feasible solution, and a primal vector (this
vector is primal infeasible until termination) that together sat-
isfy all the complementary slackness optimality conditions for the
original problem throughout the algorithm. This primal vector
is usually feasible to a relaxation of the primal problem (typi-
cally this is obtained by changing the equality constraints in the
problem to “

<
=” inequalities).

2. In each step, the algorithm either performs (a) below, or (b) if
this is not possible.

(a) Keeps the dual solution fixed, and tries to alter the primal
vector to bring it closer to primal feasibility while continuing
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228 Ch. 3. Primal-Dual and Dual Algorithms

to satisfy the complementary slackness conditions together
with the present dual solution.

(b) Keeps the primal vector fixed, and changes the dual feasible
solution. The aim of this is to get a new dual feasible solu-
tion satisfying two conditions. The first is that the new dual
feasible solution satisfies the complementary slackness con-
ditions together with the present primal vector. The second
is that it makes it possible to get a new primal vector closer
to primal feasibility when the algorithm continues.

3. As the algorithm progresses, the primal vector moves closer and
closer to primal feasibility. In other words, there is a measure
of primal infeasibility which improves monotonically during the
algorithm.

There are two possible conclusions at termination. One occurs if
the primal vector being maintained becomes primal feasible at some
stage; then it is an optimum solution. The second occurs if a primal
infeasibility criterion is satisfied at some stage.
For the assignment and transportation problems it is easy to obtain

an initial dual feasible solution. And the task in (a) above is a maxi-
mum value flow problem on a subnetwork known as the admissible or
equality subnetwork wrt the present dual feasible solution. These
facts make the primal-dual methods particularly attractive to solve
them. The blossom algorithms discussed in Chapter 10 for match-
ing and edge covering problems are primal-dual algorithms that are
generalizations of the Hungarian method of the next section to those
problems. The primal-dual approach can be used to solve a general
LP, however, for these general problems it seems to offer no particular
advantage over the primal simplex algorithm.

3.1 The Hungarian Method for the As-

signment Problem

The data in an assignment problem of order n is the cost matrix c =
(cij) of order n × n. Given c the problem is to find x = (xij) of order
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n× n to

Minimize z(x) =
n3
i=1

n3
j=1

cijxij

Subject to
n3
j=1

xij = 1 for i = 1 to n (3.1)

n3
i=1

xij = 1 for j = 1 to n

xij
>
= 0 for all i, j

and xij = 0 or 1 for all i, j (3.2)

Every feasible solution of (3.1) and (3.2) is an assignment of order
n and vice versa. See (1.17) for an assignment of order 4. Every BFS of
(3.1) satisfies (3.2). So, if (3.1) is solved by the simplex method ignoring
(3.2), the optimum solution obtained will satisfy (3.2) automatically.
The Hungarian method does not use basic vectors for (3.1), but it
maintains (3.2) throughout.
In an assignment x, if a particular xij = 1, the cell (i, j) is said to

have an allocation (in this case row i is said to be allocated to, or
matched with, column j in x). A partial assignment of order n is a
0-1 square matrix of order n which contains at most one nonzero entry
of 1 in each row and column. Here is a partial assignment of order 3.⎛⎜⎝ 0 1 0

0 0 0
0 0 0

⎞⎟⎠
Clearly, a partial assignment is a feasible solution for a relaxed ver-

sion of (3.1) and (3.2) in which the equality constraints in (3.1) are re-

placed by the corresponding “
<
=” inequalities. The Hungarian method

moves among partial assignments in which the number of allocations
keeps on increasing as the algorithm progresses.
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Represent each row and each column of an n× n array by a node.
Join each row node to each column node by an edge, leading to a com-
plete bipartite network (see Figure 3.1). Make the cost of the edge
joining row node i with column node j, cij. The set of allocated cells
in any partial assignment (assignment) corresponds to a matching (per-
fect matching) in this bipartite network, and vice versa. For example,
the dashed subnetwork in Figure 3.1 (a) is the perfect matching corre-
sponding to the assignment in (1.17). Hence, the assignment problem
(3.1) and (3.2) is equivalent to that of finding a minimum cost perfect
matching in this bipartite network. That’s why it is also known as the
bipartite minimum cost perfect matching problem.
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Figure 3.1:

Direct all the lines in this bipartite network from the row node to
the column node. Treat all the row nodes as sources each with a supply
of one unit, and the column nodes as sinks with a demand of one unit.
Then (3.1) is the problem of finding a minimum cost feasible flow in this
network. An allocation in cell (i, j) corresponds to a flow of one unit
on the arc connecting row node i with column node j and vice versa.
We can introduce a supersource s and supersink t and transform this
into a minimum cost flow problem on the network in Figure 3.1 (b), in
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which all the arcs incident at s, t are required to be saturated.
In large scale applications, for each i, a subset of {1, . . . , n} is usu-

ally specified, and xij can be equal to 1 only when j is in that subset;
otherwise it has to be 0. This can be handled by defining cij to be
+∞ whenever xij is required to be 0. In the corresponding networks
in Figures 3.1 (a) and (b), the arc (i, j) (i.e., (Ri,Cj)) is included only
if xij can be equal to 1 in the problem. Thus the network is no longer
the complete bipartite network. Let m denote the number of arcs in
the network (i.e., the number of variables xij which can assume the
value 1). The assignment problem is said to be sparse if m is small
compared to n2, and dense if m is close to n2.
In this section we present an implementation of the primal-dual ap-

proach for the assignment problem known as theHungarian method.
It is described using arrays for ease of understanding, but computer im-
plementations are usually based on the corresponding network. The arc
joining row node i to column node j is omitted if xij is required to be
0 in the problem. The dual of (3.1) is

Maximize
n3
i=1

ui +
n3
j=1

vj

Subject to ui + vj
<
= cij, i, j = 1 to n (3.3)

Denote the objective value of assignment x with c as the cost matrix
by zc(x). Let c

I be the matrix obtained by subtracting a real number
α from every element in a row or a column of c. Since each assignment
contains a single nonzero entry of 1 in each row and column, we have
zc(x) = α+ zcI(x). So, the set of optimum assignments that minimize
zc(x) is the same as the set of optimum assignments that minimize
zcI(x). Hence, for solving the assignment problem, we can replace c by
cI. We use this idea repeatedly. Let u = (u1, . . . , un), v = (v1, . . . , vn)
be such that c0ij = cij−ui−vj >= 0, i, j = 1 to n. This is the condition for
u, v to be dual feasible, and in this case c0ij are the dual slacks, c

0 = (c0ij)
is known as the reduced cost matrix, and r0 =

�n
i=1 ui +

�n
j=1 vj as

the total reduction wrt u, v. The matrix c0 is obtained by subtracting
ui from each entry in row i of c for i = 1 to n, and then subtracting vj
from each entry in column j of the resulting matrix, for j = 1 to n. By
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the above argument, for each assignment x we have zc(x) = r0+zc0(x).

Since c0
>
= 0, zc0(x)

>
= 0, and so r0 is a lower bound for the minimum

objective value in (3.1) whenever u, v is dual feasible. If we can find
an assignment x which has allocations only in those cells in which the
entries in c0 are zero, then zc0(x) = 0, and hence x is an optimum
assignment. To find such an assignment, we define the cell (i, j) or
the corresponding arc (i, j) (we will use this notation to denote the arc
joining row node i to column node j) in the network in Figure 3.2 to
be admissible (or an equality cell or equality arc respectively) if
c0ij = cij−ui−vj = 0. When all inadmissible arcs are removed from the
network in Figure 3.1 (b), we get the admissible subnetwork or the
equality subnetwork wrt the dual feasible solution u, v. A maximum
value flow from s to t in the equality subnetwork corresponds to a
partial assignment having the maximum number of allocations among
admissible cells. If this is an assignment, it is clearly optimal to (3.1)
and (3.2); otherwise we get a partial assignment x satisfying

xij(cij − ui − vj) = 0, for all i, j (3.4)

The complementary slackness optimality conditions for (3.1) and its
dual (3.3) are (3.4). The Hungarian method maintains x, (u, v) always
satisfying (3.2), dual feasibility constraints in (3.3), and (3.4). When
x satisfies (3.1), it is an optimum assignment and the method termi-
nates. If the maximum value flow in the equality subnetwork does not
saturate all the arcs incident at t, there exists no assignment which
has allocations among admissible cells only. In this case the Hungar-
ian method goes to a dual solution change routine. After this change
the new reduced cost matrix will contain some new cells with zero
entries in columns which have no allocations at present, and the pro-
cedure is repeated. During the method, each row and column of the
array (i.e., each node in the network implementation) may be in three
possible states: unlabeled, labeled and unscanned, labeled and
scanned. The list is always the set of current labeled and unscanned
rows and columns.

THE HUNGARIAN METHOD

Step 0 The initial dual feasible solution If some dual feasible
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solution is available, use it as the initial one; otherwise define it
to be (u1 = (u1i ), v

1 = (v1j )) where u
1
i = min {cij : j = 1 to n},

v1j = min {cij − u1i : i = 1 to n}, for i, j = 1 to n. List = ∅. Go
to Step 1 with any partial assignment containing allocations only
among admissible cells in the reduced cost matrix wrt the initial
dual solution (this could be 0, containing no allocations).

Step 1 Tree growth routine

Substep 1 Label each row without an allocation with (s, +),
and include it in the list.

Substep 2 If list = ∅, tree growth has terminated and there is
a nonbreakthrough. The present set of allocations contains
the maximum number possible among admissible cells; go
to Step 3. Otherwise, select a row or column from the list
for scanning and delete it from the list.

Forward labeling Scanning row i consists of labeling each
unlabeled column j for which (i, j) is an admissible cell, with
the label (row i, +).

Reverse labeling To scan column j, check whether it has
an allocation. If the row in which that allocation occurs is
unlabeled so far, label it with (column j, −).
If any column without an allocation has been labeled, there
is a breakthrough; go to Step 2. Otherwise, include all newly
labeled rows and columns in the list, and repeat this Substep
2.

Step 2 Allocation change routine Suppose column j, which does
not have an allocation, has been labeled. Trace its predecessor
path using the labels. Delete present allocations in cells corre-
sponding to reverse arcs, and add allocations in cells correspond-
ing to forward arcs of this path. If all the columns have allocations
now, these allocations define an optimum assignment; terminate.
Otherwise, chop down the present trees (i.e., erase the labels on
all the rows and columns) and go back to Step 1.
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Step 3 Dual solution change routine Compute δ, minimum value
of reduced cost coefficient among cells in labeled rows and unla-
beled columns. δ will be > 0. If δ = +∞; this can only happen
if some xij are constrained to be 0 in the problem; there is no
feasible assignment, terminate. If δ is finite, add it to the value
of ui in all labeled rows and subtract it from the value of vj in
all labeled columns. Compute the new reduced cost coefficient in
each cell. Retain the present labels on all the labeled rows and
columns, but include all the labeled rows in the list, and resume
tree growth by going to Substep 2 in Step 1.

Discussion

When solving small problems by hand, a good initial partial as-
signment in Step 0 can be obtained by making an allocation in an
admissible cell in the initial reduced cost matrix that is not yet struck
off, in a row or column containing only one such cell if possible, or in
any admissible cell not yet struck off otherwise; striking off all other ad-
missible cells in the row and column of the allocated cell; and repeating
this process with the remaining admissible cells.
Also, to find δ in Step 3, draw a straight line in the present reduced

cost matrix through each unlabeled row and each labeled column, then
these straight lines cover all the admissible cells (if there is an admissi-
ble cell without a line through it, its column would have been labeled
when its row was scanned, a contradiction, see Array 3.1). Hence every
reduced cost coefficient not covered by a straight line is > 0, and δ is
the minimum of these entries. So, δ will always be > 0. The number
of allocations at this stage can be verified to be equal to the number of
straight lines drawn. To get the new reduced cost coefficients, subtract
δ from the entry in the present reduced cost matrix in each cell in a la-
beled row and unlabeled column (i.e., those cells without a straight line
through them), and add δ to the entry in each cell in an unlabeled row
and labeled column (i.e., those cells at the intersection of two straight
lines). From the definition of δ this implies that all the new reduced

cost coefficients are
>
= 0, i.e., the new dual solution is dual feasible. Let

α be (the number of labeled rows − the number of labeled columns)
at present. Add δα to the total reduction; this updates it.
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Array 3.1 Summary of Position When Hungarian
Method Reaches Dual Solution Change Routine.

(ũ, ṽ,
l
c= (

l
cij= cij − ũi − ṽj)), are the dual solution and

reduced cost matrix before change. (û, v̂, ˆ̄c = (ˆ̄cij = cij −
ûi − v̂j)) are the corresponding things after change.

Block of la-
beled cols.

Block of un-
labeled cols.

Alloca-
tions

St.
lines

Dual
change

Block
of la-
beled
rows

Each col.
here has an
allocation
among labeled
rows (there is
breakthrough
otherwise).
ˆ̄cij =

l
cij here,

so, admissi-
bility pattern
remains un-
changed.

No admissible
cells here (one
col. would
be labeled
otherwise).
l
cij> 0, here.

δ = Min.{lcij:
(i, j) here}>0.
ˆ̄cij =

l
cij −δ

here. New
admissible cells
created here,
this allows tree
growth.

Some
rows
have
no
alloca-
tion.

ûi =
ũi + δ
for i
here.

Block
of
unla-
beled
rows

No allocation
here (otherwise
a row here
could be
labeled).
ˆ̄cij =

l
cij +δ

here. All cells
here become
inadmissible
next.

Each row here
contains an
allocation in
these cols.
ˆ̄cij =

l
cij here,

so admissibi-
lity pattern
remains un-
changed here.

Each
row
has
alloca-
tion.

Draw
through
each
row.

ûi =
ũi for i
here.

Alloca-
tions

Each col. has
allocation.

Some cols.
have no alloca-
tion.

St.
lines

Draw through
each col.

Dual
change

v̂j = ṽj − δ for
j here

v̂j = ṽj for j
here.
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Cells that have allocations at present remain admissible in the new
reduced cost matrix, and hence (3.4) continues to hold. New admissible
cells are created among labeled rows and unlabeled columns, so, when
the list is made equal to the set of all labeled rows, and tree growth
resumed, at least one new column will be labeled. See Array 3.1

Suppose δ came out to be +∞ in Step 3 at some stage. Let J be
the set of all cells (i, j) with row i labeled, and column j unlabeled at
this stage. So, the present reduced cost coefficient c̄ij = +∞ for all
cells (i, j) ∈ J (i.e., xij is required to be 0 for every (i, j) ∈ J). Even if
all cells not in J are made admissible, no more labeling can be carried
out, and the current nonbreakthrough continues to hold. This implies
that the present partial assignment contains the maximum number of
allocations possible under the constraint that xij must be 0 for all
(i, j) ∈ J, hence there is no feasible assignment in the problem.
Consider the Hungarian method applied to solve an assignment

problem of order n. Whenever Step 2 is carried out, the number of
allocations increases by 1. Thus Step 2 is carried out at most n times
in the algorithm. From Array 3.1 we see that at least one new column
gets labeled when tree growth is resumed after a dual solution change
step. Thus Step 3 can occur at most n times between two consecutive
occurrences of Step 2. The effort needed to carry out Step 3 (updating
the reduced cost coefficients) and the following tree growth, before
going to Step 2 or 3 again is at most O(n2). Thus the effort between
two consecutive occurrences of Step 2 is O(n3), and therefore the entire
method takes at most O(n4). Later on we show that the method can be
implemented so that its worst case computational complexity is at most
O(n3). If the infeasibility criterion is never satisfied, at termination we
will have an assignment x and a dual feasible solution (u, v) which
together satisfy the complementary slackness conditions (3.4), so x is
an optimum assignment, and (u, v) is an optimum dual solution.

EXAMPLE 3.1 Illustration of the allocation change routine

In this example n = 6 and Array 3.2 contains all the relevant infor-
mation. Admissible cells are those with a zero in the upper left corner.
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Allocations are marked with a in the cell. All other information is
omitted.
When column 6 without an allocation is labeled (Row 6, +) we had

a breakthrough, so we put a new allocation in the cell (6, 6). Now
look at the label on row 6, which is (Col 1, −). Thus we delete the
allocation in cell (6, 1). Continuing this way using the labels, we put
a new allocation in (3, 1), delete the one in (3, 4), add on allocation
in (4, 4), and reach row 4 labeled (s,+), implying that the allocation
change routine is complete. The allocation change path indicated by
the labels on Array 3.2 is shown in Figure 3.2. The wavy edges in
Figure 3.2 correspond to allocated cells in Array 3.2, on this allocation
change path. This path is clearly an alternating path (nodes in it
correspond alternatively to unallocated cells, allocated cells in Array
3.2). It is called the alternating predecessor path of column 6 traced
by the labels.

Array 3.2

j = 1 2 3 4 5 6 Row labels
i = 1 0

2 0 Col. 3,−

3 0 0 Col. 4,−

4 0 0 (s,+)

5 0 0 (s,+)

6 0 0 0 Col 1,−

Column Row 3 Row 4 Row 4 Row 6
Labels + + + +

The allocation change routine reverses the roles of unallocated and
allocated cells along this path. It has the effect of increasing the number
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Col. 6 Row 6 Col. 1 Row 3 Col. 4 Row 4

The row with

label (s, +) at

the end of

the path

The column

whose labeling

lead to the

breakthrough.

Figure 3.2: Allocation change path.

Array 3.3

j = 1 2 3 4 5 6
i = 1 0

2 0

3 0 0

4 0 0

5 0 0

6 0 0 0

of allocations by 1. Hence a path like this is called an augment-
ing path in the admissible network. An augmenting path in the
admissible network wrt the present allocations is an alternating path
of unallocated and allocated arcs, joining a column node and a row
node both of which have no allocated arcs incident at them. The tree
growth routine discussed above is an efficient scheme to look for such
an augmenting path. When a breakthrough occurs, it is an indication
that an augmenting path has been identified. In this case the tree
is said to have become an augmenting tree. The augmenting path
is the predecessor path of the column node without an allocated arc
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incident at it, whose labeling lead to the breakthrough. If a nonbreak-
through occurs, it is an indication that no augmenting path exists in
the admissible network wrt the present allocations.
The new allocations after the allocation change are shown in Array

3.3. The new partial assignment has five allocations, one more than the
previous. Now the labels on all the rows and columns are erased, and
the algorithm begins another labeling cycle to see whether yet another
allocation can be squeezed in among the present admissible cells.

EXAMPLE 3.2

Here we solve the assignment problem of order 4 with the original cost
matrix c = (cij) given below.

cij Initial cij − ui
j = 1 2 3 4 ui j = 1 2 3 4
i = 1 15 22 13 4 4 11 18 9 0

2 12 21 15 7 7 5 14 8 0
3 16 20 22 6 6 10 14 16 0
4 6 11 8 5 5 1 6 3 0

vj → 1 6 3 0
Total Reduction = 32

1st reduced cost matrix with initial allocations

j = 1 2 3 4 ui Row labels
i = 1 10 = c̄11 12 6 0 s,+

4
2 4 8 5 0 Col. 4, −

7
3 9 8 13 0 s,+

6
4 0 0 0 0

5
vj 1 6 3 0 Nonbreakthrough

Col. labels Row δ = 4. Resume labeling
3,+



240 Ch. 3. Primal-Dual and Dual Algorithms

2nd reduced cost matrix
j = 1 2 3 4 ui Row labels
i = 1 6 8 2 0 s,+

8
2 0 4 1 0 Col. 4, −

11
3 5 4 9 0 s,+

10
4 0 0 0 4

5
vj 1 6 3 −4 Breakthrough, col. 1 labeled

Col. labels Row 2 Row 3 Total reduction 40
+ 3,+

2nd reduced cost matrix, new allocations, labels
j = 1 2 3 4 ui Row labels
i = 1 6 8 2 0 s,+

8
2 0 4 1 0

11
3 5 4 9 0 Col. 4, −

10
4 0 0 0 4

5
vj 1 6 3 −4 Nonbreakthrough

Col. labels Row 1 δ = 4. Resume labeling
1,+
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Third reduced cost matrix
j = 1 2 3 4 ui Row labels
i = 1 4 6 0 0 s,+

10
2 0 4 1 2

11
3 3 2 7 0 Col. 4, −

12
4 0 0 0 6 Col. 3, −

5
vj 1 6 3 −6 Breakthrough, col. 2 labeled

Col. labels Row 4 Row 1 Row Total reduction 42
+ + 1,+

3rd reduced cost matrix, new allocations
j = 1 2 3 4 ui
i = 1 4 6 0 0

10
2 0 4 1 2

11
3 3 2 7 0

12
4 0 0 0 6

5
vj 1 6 3 −6

Now we have a full assignment, {(1, 3), (2, 1), (3, 4), (4, 2)} among
the admissible cells, which is an optimum assignment for the problem.
Its cost (wrt the original cost matrix) can be verified to be 42, which
is also the total reduction at this stage. An optimum dual solution is
the (u, v) from the final reduced cost matrix.

An O(n3) Implementation of the Hungarian Method

An O(n3) implementation of the Hungarian method is obtained by
not updating the entire reduced cost matrix but only portions of it
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that are needed, after each dual solution change step. In this imple-
mentation an index is maintained on each unlabeled column. It is an
ordered pair of the form [tj , pj ] for column j, where pj is the minimum
current reduced cost coefficient in this column among labeled rows, and
tj is the number of a labeled row in which this minimum occurs. The
index is maintained in each column as long as it remains unlabeled.
The moment the column gets labeled in the method its index is erased.
So, at each visit to Step 3 in the method, δ = min {pj : over columns
j unlabeled at that time}.
Define a stage in the Hungarian method to begin either after get-

ting the initial partial assignment or after an allocation change has
been carried out, and to end when the next allocation change has been
completed. So there are at most n stages in the method, and Step 3
occurs at most n times in each stage. All reduced cost coefficients are
computed once at the beginning of each stage using the dual solution
at that time. The reduced cost coefficient is not computed again during
this stage in any cell in this implementation.

We will now describe how the work in a stage is organized in this
implementation. At the beginning of the stage, compute the entire
reduced cost matrix c̄ = (c̄ij = cij − ui − vj) wrt the present (u, v).
Then carry out Step 1 as usual, and if this leads to Step 2, this stage
is completed after it. On the other hand, if this leads to Step 3, before
going there, compute for each unlabeled column j, pj = min {c̄ij : row
i labeled}, and let tj be an i that ties for this minimum (break ties
arbitrarily), and index this column with [tj, pj]. Then enter Step 3.
Each time you have to carry Step 3 in this algorithm, compute δ =
min {pj : over columns j unlabeled at that time}. Subtract δ from the
pj index of each unlabeled column j. Let L be the set of all unlabeled
columns j for which pj became 0 as a result of this operation. For each
j ∈L, (tj, j) is a new admissible cell. Put all labeled rows in the list, and
resume tree growth (scanning the present labeled rows first) treating
{(tj, j) : j ∈ L} as the set of new admissible cells among the unlabeled
columns. In this tree growth step, each column j ∈ L will get labeled.
Whenever a column gets labeled, erase its index. Whenever a new
row, say row i, is labeled do the following. Because of the way the dual
variables are changed in Steps 3 of the algorithm, for each unlabeled
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column j the present vj is the same as at the beginning of this stage,
and the same thing is true for ui since row i remained unlabeled so far
and got labeled just now. So, the present reduced cost coefficient in
cell (i, j) in unlabeled columns j in this row i is the same as at the
beginning of this stage, c̄ij. For each unlabeled column j at this time
let [tj , pj ] be the present index on it. If c̄ij = 0 label column j with
the label (row i, +). If pj > c̄ij > 0 change the index on column j to

[i, c̄ij ]; if pj
<
= c̄ij > 0 leave the index on column j unchanged. Repeat

this same process each time Step 3 has to be carried out in this stage.

The efficiency of this implementation stems from the fact that it
updates the indices on unlabeled columns during a stage without re-
computing the reduced cost coefficients after each dual solution change.
Since the reduced cost coefficient in any cell is computed once only in
each stage, the computational effort per stage can be verified to be at
most O(n2). Since there are at most n stages, the overall computa-
tional complexity of the Hungarian method with this implementation
is at most O(n3).

Algorithm to Obtain a Maximum Cardinality
Independent Set of Admissible Cells

Suppose we are given a subset of cells of the p × n transportation
array called admissible cells. A subset of admissible cells is said to
be independent if no two cells in it lie in the same row or column.
Let a line refer to either a row or column of the array. A subset of lines
is said to cover all the admissible cells (or to form a covering set
of lines) if each admissible cell is contained in a row or column (or
both) from the subset. Every subset of an independent set is obviously
independent, but an independent set may loose its independence when
a new cell is introduced into it. So, the problem of finding a maximum
cardinality independent set is mathematically interesting. Similarly, a
covering set of lines continues to possess this property when new lines
are introduced into it, but may no longer remain a covering set if lines
are deleted from it. Hence the problem of finding a minimum car-
dinality covering set of lines is a mathematically interesting problem.
The famous König-Egerváry Theorem in bipartite network theory (see
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Exercise 3.13) states that the cardinalities of maximum cardinality in-
dependent sets of cells and minimum cardinality covering sets of lines
are always equal.
When an allocation is made in each cell of an independent set, we

get a partial assignment. So, a maximum cardinality independent set
can be obtained by finding a partial assignment with the maximum
number of allocations among admissible cells. For this we can start
with 0 allocations in the p×n array, and carry out Steps 1 and 2 of the
Hungarian method until the tree growth routine ends in a nonbreak-
through. The set of cells with allocations at termination is a maximum
cardinality independent set, and the set consisting of unlabeled rows
and labeled columns is a minimum cardinality covering set of lines.

Exercises

3.1 Solve the assignment problems with the following cost matrices,
to minimize cost.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 11 10 5 6 4 3
5 26 14 18 15 10 10
6 22 18 17 15 8 8
2 14 16 16 24 25 12
4 15 19 10 8 14 11
10 22 22 15 28 24 12
8 18 21 18 18 18 14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

121 6 17 9 8 10
8 33 45 15 20 31
5 19 30 16 14 22
7 22 35 25 27 26
2 10 24 18 31 14
4 12 31 17 18 18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2 The coach of a swim team needs to assign swimmers to a 200-
yard medley relay team. The “best times” (in seconds for 50 yards)
achieved by his five swimmers in each of the strokes are given below.
Which swimmer should the coach assign to each of the four strokes?

Stroke Carl Chris Ram Tony Ken
Backstroke 37.7 32.9 33.8 37.0 35.4
Breast Stroke 43.4 33.1 42.2 34.7 41.8
Butterfly 33.3 28.5 38.9 30.4 33.6
Freestyle 29.2 26.4 29.6 28.5 31.1
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3.3 There are n boys and n girls. Friendship between boys and girls
is a mutual relationship (i.e., a boy and a girl are either friends of each
other or not). bj is the number of boys among the n who are friends
of girl j, and ai is the number of girls among the n who are friends of
boy i,i, j = 1 to n. If all the ai and bj are equal to a positive number
γ, prove that it is possible to form n boy-girl friendly couples.

3.4 A colonel has five positions to fill and five eligible candidates to
fill them. The number of years of experience of each candidate in each
field is given in the following table. How should the candidates be
assigned to positions to give the greatest total years of experience for
all jobs?

Position
Candidate Adjutant Intelli. Operations Supply Training

1 3 5 6 2 2
2 2 3 5 3 2
3 3 0 4 2 2
4 3 0 3 2 2
5 0 3 0 1 0

3.5 Find a minimum cost assignment wrt the cost matrix given below.
No allocations are allowed in cells with a dot in them.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. 12 . 6 9 6 . .

. 8 . 4 3 8 . .

. 3 . 18 3 19 . .

. 1 . 6 5 11 . .
5 1 13 4 5 6 1 2
. 13 . 12 3 1 . .
3 12 3 7 13 6 8 3
13 4 1 5 5 5 4 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3.6 Let c = (cij) where cij = (i− 1)(j− 1), for i, j = 1 to n; c̄ = (c̄ij),
where c̄ij = (i + j − n)(i + j − n − 1)/2, for i, j = 1 to n; x̄ = (x̄ij)
where x̄ij = 1 if i+ j = n+ 1, 0 otherwise, for i, j = 1 to n.
For n = 5, solve the assignment problem with c as the cost matrix

by the Hungarian method. Show that c̄ is the final reduced cost matrix
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at termination, and that x̄ is the optimum assignment. Show that these
results are true for any n

>
= 2, and that the Hungarian method goes

through (n − 1)(n − 2)/2 breakthroughs and nonbreakthroughs put
together before solving this problem. (Silver [1960], Machol and Wien
[1977]).

3.7 Prove that every feasible solution x of (3.1) can be expressed as
a convex combination of assignments of order n.

3.8 The HQ of a large company has n gates, each of which is manned
by a night watchman every night. There are n night watchmen on the
payroll, and they are rotated among the gates for security reasons. A
planning period consists of r nights, and x = (xij) is a nonnegative
integral matrix satisfying

�n
j=1 xij = r,

�n
i=1 xij = r, for all i, j = 1 to

n. It is required to assign night watchman to gates over the period (one
watchman per gate per night) so that the ith watchman is assigned to
watch the jth gate for exactly xij nights. Prove that an assignment
like that exists, and develop an efficient algorithm to find it. Apply
your algorithm on the problem in which n = 5, r = 30 and x is the
following matrix, and generate an assignment of the 5 night watchman
to the 5 gates over the 30 nights of the planning period, satisfying the
conditions mentioned above.

x =

⎛⎜⎜⎜⎜⎜⎜⎝
3 10 9 5 3
8 2 5 10 5
11 4 10 5 0
0 7 3 4 16
8 7 3 6 6

⎞⎟⎟⎟⎟⎟⎟⎠
(D. Gale)

3.9 An assignment problem of order 9 is being solved by the O(n3)
implementation of the Hungarian method discussed above. Relevant
information on the array when a nonbreakthrough has just occurred is
given in the following array. indicates an allocation in that cell in
the present partial assignment. In some of the cells the original cost
coefficient is given at the bottom right corner. The present labels on all
the labeled rows and labeled columns, and the indices on the unlabeled
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columns are given. The present dual feasible solution is also given.
Continue the application of the method until the next breakthrough
occurs.

j = 1 2 3 4 5 6 7 8 9 la- ui
bel

i = 1 s,+
200

2 s,+
200

3 1, −
200

4 3, −
200

5 2, −
200

6
400 400 400 400 400 200

7
400 400 400 400 350 200

8
400 400 400 400 400 200

9
400 400 400 400 400 200

la- 1, + 1, + 2, +
bel
in- [2,40] [3,40] [2,80] [4,100] [5,110] [5,110]
dex
vj 100 100 100 100 100 100 100 100 100

3.10 Prove that the number of labeled columns plus the number of
unlabeled rows is equal to the number of allocated cells, at the occur-
rence of a nonbreakthrough in the Hungarian method. At the same
point in the method, prove that the number of labeled rows minus
the number of labeled columns is

>
= the number of rows without al-

locations. Using this prove that the total reduction strictly increases
whenever the dual solution changes in the method.
Give a proof of the primal infeasibility criterion in the Hungarian

method (that there is no feasible assignment if δ = +∞ in some dual
solution change step) using the duality theorem of LP.

3.11 Consider an assignment problem of order n in which xij is re-
quired to be 0 whenever j W∈ Si for each i = 1 to n, where S1, . . . ,Sn are
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all subsets of {1, . . . , n} which are given. Determine the necessary and
sufficient conditions that these sets have to satisfy, for the existence of
a feasible assignment to the problem.

3.12 Evaluate the worst case computational complexity of the Hun-
garian method to solve a sparse assignment problem of order n as a
function of order n and m (n2−m is the number of variables required
to be 0 in the problem).

3.13 Let Q be a specified subset of admissible cells in the p×n array.
Set up a directed network G = (N ,A) whereN = {s̆, R1, . . . , Rp, C1, . . . ,
Cn, t̆} (s̆, t̆, are the supersource, supersink respectively, and Ri, Cj cor-
respond to row i, col j of the array, for i = 1 to p, j = 1 to n), A =
{(s̆, Ri) : i= 1 to p}∪{(Ri, Cj) : i, j s. t. cell (i, j) ∈ Q } ∪{(Cj, t̆) : j
= 1 to n}, as in Figure 3.2. Make the lower bound for flow on all the
arcs in A zero, and the capacities for flow on all the arcs (s̆, Ri) and
(Cj, t̆) equal to 1, and ∞ for all the arcs of the form (Ri, Cj) ∈ A.
(i) Prove that the maximum cardinality among independent sets of

admissible cells in the array is equal to the maximum value of flow
from s̆ to t̆ in G. Given an integral maximum value flow vector in
G, discuss how to construct a maximum cardinality independent
set of admissible cells in the array from it, and vice versa.

(ii) Let [X,X̄] be a cut separating s̆ and t̆ in G. Prove that the capacity
of this cut is finite iff there are no arcs of the form (Ri, Cj) ∈
A with Ri ∈ X, Cj ∈ X̄ and (i, j) ∈Q. Using this prove that
in this case, the set of lines {Row i : i ∈ X̄} ∪ {Column j :
j ∈ X} is a covering set of lines, and that the cardinality of
this covering set is equal to the capacity of this cut [X,X̄] in G.
Conversely, given a covering set of lines in the array, prove that
[X,X̄], where X = {s̆}∪ {Row i: row i is not in the covering
set} ∪{Column j: column j is in the covering set}, and X̄ = N\
X, is a cut separating s̆ and t̆ in G whose capacity is equal to
the cardinality of this covering set of lines. Using these prove
that the problem of finding a minimum cardinality cover for Q
in the array is equivalent to that of finding a minimum capacity
cut separating s̆ and t̆ in G.
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(iii) Using these prove the König-Egerváry Theorem which states
that the maximum cardinality among independent sets is equal
to the minimum cardinality among covering sets of lines, by ap-
plying the maximum flow minimum cut theorem on G.

(iv) Prove that the covering set of lines obtained at termination of
the algorithm discussed above is a minimum cardinality covering
set of lines.

3.14 c = (cij) is the original cost matrix for an assignment problem
of order n. For any cell (i, j) in the n × n array, let a(i, j) denote a
minimum cost assignment among those containing an allocation in cell
(i, j). For a given r, the following method finds a(r, 1), . . . , a(r, n).

Step 1 Find a minimum cost assignment with c as the cost ma-
trix by the Hungarian method. Let a1 = {(1, j1), . . . , (n, jn)} be
the optimum assignment obtained, and c̄ the final reduced cost
matrix.

Step 2 Let α be a positive number > every entry in c̄. Add α to
all the elements in row r of c̄. In the resulting matrix, subtract
α from each entry in column jr.

Step 3 Find a most negative entry in the present matrix. Suppose it
appears in row i and has absolute value β. Add β to every entry
in row i of the present matrix. In the resulting matrix subtract
β from every entry in column ji.

Step 4 Repeat Step 3 as often as necessary, until the present matrix
becomes

>
= 0. Then go to Step 5.

Step 5 Let c̃ = (c̃ij) be the matrix obtained at the end. For 1
<
= q

<
= n, there exists an assignment with an allocation in cell

(r, q) and all the other allocations in cells (i, j) with c̃ij = 0. Any
such assignment is a(r, q).

(i) Prove that Step 3 has to be repeated exactly n− 1 times before
going to Step 5 in this method.
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(ii) Prove the statement in Step 5, that for each q = 1 to n, there
exists an assignment with an allocation in cell (r, q), and all other
allocations in cells with 0 entries in c̃, and any such assignment
is indeed a minimum cost assignment among those with an allo-
cation in (r, q).

(iii) Derive the worst case computational complexity of this method.
Apply the method on the problem with n = 5, r = 1 and

c =

⎛⎜⎜⎜⎜⎜⎜⎝
0 3 9 4 0
2 0 7 0 11
5 15 0 16 12
4 0 18 0 17
0 20 21 13 0

⎞⎟⎟⎟⎟⎟⎟⎠
(Kreuzberger and Weiterstadt, [1971], “Eine Methode zur Bestimmung
mehrerer Losungen Furdas Zuordnungsproblem,” Angewandte Infor-
matik, 13, no. 9 (407-414), in German)

Comment 3.1 The Hungarian method for the assignment problem
is due to Kuhn [1955]. The name for the method recognizes the work of
the Hungarian mathematicians J. Egerváry and D. König (the König-
Egerváry Theorem, see Exercise 3.13) which is the basis for the method.
Each maximum value flow problem encountered in the method is of the
König-Egerváry type (i.e., that of finding a maximum cardinality set
of independent admissible cells). The O(n3) implementation of the
Hungarian method is due to Lawler [1976 of Chapter 1].

**************************************************************

3.1.1 Minimal Chain Decompositions in Partially
Ordered Sets

Suppose we are given a finite set of n elements, P. We will number
the elements serially and represent each element by its number, thus
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P = {1, . . . , n}. A strict partial order on P is an order relation between
some pairs of elements of P, denoted by 1, satisfying : i W1 i for all i;
i 1 j implies j W1 i ; and the following property called transitivity :
for i, j, h, i 1 j, j 1 h implies i 1 h. This relationship makes P a
partially ordered set or poset, which we also denote by the same
symbol P. The partial order can be represented by a directed network
with the elements in P as its nodes and arcs (i, j) if i 1 j. Normally if
i 1 j and j 1 h, we have i 1 h by transitivity, but we do not include
the arc (i, h) in this network, even though it is quite harmless to do
so. Thus whenever i 1 j, either there is an arc (i, j), or there exists a
chain from node i to node j in the network; and conversely. Thus i 1 j
iff there exists a chain from i to j in this network representation. The
network thus constructed has no directed circuits by the properties of
the partial order, see Figure 3.3 for an example.

2

3

4

5

7

8

9

10

1 6

Figure 3.3:

We define a chain in this poset to be a set of one or more elements
i1, i2, . . . , it of P satisfying i1 1 i2 1 . . . 1 it; thus it corresponds
to a chain in the network when there are two or more elements in
it. However, a single element by itself (that is, a single node in the
network) is also considered a chain of the poset.
A decomposition of this poset is a partition of the set P into

chains which are mutually disjoint. The trivial decomposition of P into
n one-element chains is an example of a decomposition. A decomposi-
tion with the smallest number of chains in it is said to be a minimal
decomposition. We will use the symbol P to denote decompositions
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and |P| to denote the number of disjoint chains in P.
A subset N ⊂ P is said to be a set of unrelated elements in

the poset if for every pair i, j ∈ N, neither i 1 j, nor j 1 i.
As an example, consider the poset on P = {1 to 10} represented

by the network in Figure 3.3. In this poset, the set of all j satisfying
2 1 j is {4, 5, 6, 7, 8, 9, 10}. The sets {1, 2, 3}, {6, 7, 8} are both
sets of unrelated elements, but the set {5, 6, 7, 8} is not since 5 1 6.
{C1, C2, C3, C4} is a chain decomposition of this poset where

C1 = 1, (1, 4), 4, (4, 7), 7, (7, 9), 9

C2 = 2, (2, 5), 5, (5, 8), 8, (8, 10), 10 (3.5)

C3 = 3; C4 = 6

In any decomposition, each node in a set of unrelated elements N
has to appear on a different chain (as otherwise there will be two nodes
i, j in N such that either i 1 j or j 1 i, a contradiction). Hence the
number of disjoint chains in any decomposition ofP is

>
= the cardinality

of any set of unrelated elements in P. Hence we have the result.

no. of chains in minimal
decomposition of P

�
>
=
+ maximum no. of mutually
unrelated elements of P

(3.6)

The finite case of the well-known Dilworth’s chain decomposition
theorem for posets asserts that equality holds in (3.6). Here we show
how to prove this result as a corollary of the König-Egerváry theorem,
through a bipartite network formulation. Also, we show that a mini-
mal decomposition of P and a maximum cardinality set of unrelated
elements in P can both be obtained using the algorithms discussed
earlier. These results are due to Fulkerson [1956].
Construct the bipartite network G = (N1, N2; A) where N1 =

{R1, . . . , Rn}, N2, = {C1, . . . , Cn}, and A = {(Ri, Cj) : i 1 j}. Notice
that G contains arcs corresponding to all order relations implied by
transitivity, that is, (Rj, Cj) ∈ A whenever i, j ∈ P are such that i 1 j.
Corresponding to G, set up an n×n array with Ri, Cj associated with
row i, column j of the array, and the arc (Ri, Cj) in G associated with
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the cell (i, j) in the array. Make the cell (i, j) in the array admissible iff
(Ri, Cj) is an arc in G. Then an independent set of admissible cells in
the array corresponds to a matching in G and vice versa. IfM ={(Ri1 ,
Ci2), (Ri3 , Ci4), . . ., (Ri2l−1 , Ci2l)} is a matching in G with |M| = l,
{(i1, i2), (i3, i4), . . ., (i2l−1, i2l)} is the corresponding independent set of
admissible cells in the associated array, and vice versa. We can group
the distinct elements in the set {i1, i2, . . . , i2l} into chains, each one
passing through two or more elements. Since M is a matching in G,
these chains will be disjoint. Let r be the number of these chains, and
let p1, p2, . . . , pr be the numbers of elements on them. So, the numbers
of arcs on these chains are p1 − 1, . . . , pr − 1 respectively, and hence
l = |M| = (p1 − 1) + . . .+ (pr − 1). The total numbers of elements of
P which do not appear on any of these chains is n − (p1 + . . .+ pr)
= n1. Add a one-element chain at each of these elements to the set of
r chains obtained above. This leads to a decomposition P of P, with
|P| = n1 + r. Now, n = (n− (p1 + . . .+ pr)) + p1 +. . . + pr = n1 +
r+ ((p1 − 1) + . . . + (pr − 1)) = |P| + |M|. So, corresponding to any
matchingM in G, we can construct a decomposition P of P such that
|P| = n− |M|.
As an example, consider the poset represented by the acyclic net-

work in Figure 3.3. Here n = 10, and the array corresponding to this
partially ordered set is given below, with admissible cells marked by a
x.

Array 3.4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
R1 x x x
R2 x x x x x x x
R3 x x x x x
R4 x x
R5 x x x x
R6 x
R7 x
R8 x
R9
R10
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An independent set of admissible cells in Array 3.4 isM = {(1, 4),
(2, 5), (4, 7), (5, 8), (7, 9), (8, 10)}. This independent set of admissible
cells corresponds to the chain decomposition P = {C1, C2, C3, C4} of
the partially ordered set, where C1, C2, C3, C4 are given in (3.5). It can
be verified that |M|+ |P| = n = 10 here.
Let X = {Rt1 , . . . , Rtw , : Cj1, . . . , Cjq} be a set of lines (rows and

columns) in the array corresponding to the poset P, which covers all
the admissible cells. Suppose X is a proper cover, that is, no subset
of X covers all the admissible cells in the array. Then we claim that
t1, . . . , tw, j1, . . . , jq are all distinct. To see this, suppose t1 = j1. Since
X is a proper cover, there must exist an r such that Rr W∈ X and
(Rr, Cj1) is an admissible cell. Similarly there must exist an s such that
Cs W∈ X and (Rt1 , Cs) is admissible. By transitivity and the assumption
that t1 = j1, it follows that (Rr, Cs) is an admissible cell, and since
neither Rr, nor Cs is in X, this contradicts the assumption that X
covers all admissible cells. So, elements in {t1, . . . , tw; j1, . . . , jq} are
all distinct. LetU = {1, . . . , n}\{t1, . . . , tw; j1, . . . , jq}. SinceX covers
all admissible cells, the elements in U are mutually unrelated, and by
the definition of U we have {t1, . . . , tw, j1, . . . , jq} ∪U = P, and hence
|X|+ |U| = n. So, corresponding to any covering set X of lines in the
array, we can construct a mutually unrelated set of elements U of P
such that |U| = n− |X|.
As an example, consider the poset represented by the acyclic net-

work in Figure 3.3. Array 3.4 corresponds to it. In Array 3.4, all ad-
missible cells are covered by the set of lines {R1, R2, R3, R4, R5, R8, C9}.
This covering set of lines leads to the set of unrelated elements U={6,
7, 10} in P.
THEOREM 3.1 (Dilworth’s Theorem) The number of chains in a
minimal decomposition of a finite poset P is equal to the maximum
number of mutually unrelated elements in P.

Proof Construct the array corresponding to P as described above.
In this array find a maximum cardinality set of independent admissi-
ble cells M̂, and a minimum cardinality set of covering lines L̂ cov-
ering all the admissible cells. Obtain the chain decomposition P̂ of
P corresponding to M̂, and a set Û of mutually unrelated elements
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of P corresponding to L̂ by the procedures described above. We have
|P̂| = |P| − |M̂| and |Û| = |P| − |L̂|, and by König-Egerváry theo-
rem |M̂| = |L̂|. So |P̂| = |Û|. But by (3.6) we have |P| >= |U| for
every chain decompositionP and set of unrelated elements Û in P and
|P̂| = |Û|. This implies that P̂ is a minimal decomposition of P and
Û is a maximum cardinaltiy set of mutually unrelated elements in P,
and since |P̂| = |Û|, the theorem is proved.

Hence to find a minimal chain decomposition of a finite poset P, we
construct the array corresponding to it as described above, and then
find a maximum cardinality set of independent admissible cells,M, in
it, using the algorithm discussed earlier. A minimal chain decomposi-
tion of P is obtained directly using M as described above.

3.1.2 The Bottleneck Assignment Problem

In the assignment problem (3.1), the objective function is the sum of
the costs of all the allocations. This objective function may not be
appropriate in some practical applications. As an example, consider
the application discussed in Exercise 3.15 at the end of this section.
Minimizing the sum of the inconvenience of all the salesmen may not
please a particular salesman if his own individual inconvenience turns
out to be large in the optimum assignment. A better objective in this
case, is to minimize the maximum inconvenience experienced by any
salesman. This leads to a problem known as the bottleneck assign-
ment problem or the min-max assignment problem. If c = (cij)
is the square cost matrix of order n, in this problem our aim is to find
an assignment x = (xij) that minimizes the function f(x) = maximum
{cij : i, j such that xij = 1} over the set of all assignments of order
n. We discuss an algorithm for this problem now. It uses the tree
growth steps in the Hungarian method. To avoid confusion we refer to
steps in this method as items. In this method the value of zr is like
a threshold. At each stage, all cells with cost coefficient

<
= threshold

are admissible. If there is no assignment among the set of admissible
cells, the threshold is increased to the next higher level. The method
terminates as soon as a full assignment is located among the set of ad-
missible cells. Hence, this method is known as the threshold method
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for the bottleneck assignment problem. It is due to Gross [1959]. The
assignment at termination is an optimum assignment, and the terminal
value of zr is the optimum objective value in the bottleneck problem.

THE THRESHOLD METHOD

Item 0 Define ui = min. {ci1, . . . , cin}, i = 1 to n, vj = min.
{c1j, . . . , cnj}, j = 1 to n, z1 = max. {u1, . . ., un; v1, . . . , vn}. De-
fine the set of admissible cells to be {(i, j) : i, j s. t. cij <= z1}.
With this set of admissible cells and any partial assignment with
allocations only among admissible cells (for example, the 0 partial
assignment), enter the tree growth routine (Step 1) of the Hun-
garian method and make allocation changes as breakthroughs
occur, until either a full assignment is obtained or a nonbreak-
through occurs. If a full assignment is obtained, it is an optimum
assignment; terminate. If a nonbreakthrough occurs, go to Item
1.

Item 1 Let r be the number of the present visit to this iteration.
Define zr+1 = min.{cij : (i, j) is inadmissible at this stage}. Let
the new set of admissible cells be {(i, j) : cij <

= zr+1}. Make the
list = set of all labeled rows, and resume tree growth by going to
Substep 2 in Step 1 of the Hungarian method, and continuing as
in Item 0.

Exercises

3.15 There are n salesmen to be assigned to n markets on a one to
one basis. cij measures the inconvenience experienced by the ith sales-
man if he is assigned to market j (for example, cij may be the daily
commuting distance for him under this assignment). It is required to
find an assignment that minimizes the maximum inconvenience experi-
enced by any salesman. Solve this problem when c = (cij) is the matrix
given below.
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c =

⎛⎜⎜⎜⎜⎜⎜⎝
3 9 15 20 5
13 16 7 8 9
19 12 13 14 15
7 17 8 9 13
9 15 16 12 11

⎞⎟⎟⎟⎟⎟⎟⎠
3.16 Each visit to Item 1 in the the threshold method increases the
number of admissible cells in the array by at least one. Hence Item 1
occurs at most n 2 times in the method. Using this, derive the worst
case computational complexity of this method.

3.17 An assembly line consists of workstations 1, . . . , n, each staffed
by an operator. Each unit is processed on each workstation as it passes
along, it cannot move past a workstation until its processing there is
completed. There are n laborers, and cij is the number of seconds that
the jth laborer takes to process a unit at workstation i. It is required
to determine how the laborers should be assigned to the workstations
on a one to one basis, so as to maximize the productivity of the line.
Formulate this problem. Obtain an optimum solution when c = (cij)
is the following matrix.

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 7 18 13 14 16
16 12 11 23 5 19
13 9 25 19 17 18
18 16 10 9 13 11
12 12 8 18 8 9
6 11 7 19 9 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2 The Primal-Dual Method for the Un-

capacitated Balanced Transportation

Problem

A commodity has to be shipped from p sources (ith source has ai units
available to ship, i = 1 to p) to n markets (jth market needs bj units,
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j = 1 to n). cij is the unit transportation cost ($/unit) on the route
from source i to market j, i = 1 to p, j = 1 to n. The data satisfies

ai, bj > 0, for all i, j; and
3
ai =

3
bj

xij denotes the amount of material shipped from source i to market
j. These xij are the decision variables in the problem. It is

Minimize z(x) =
p3
i=1

n3
j=1

cijxij

Subject to
n3
j=1

xij = ai, i = 1 to p (3.7)

p3
i=1

xij = bj, j = 1 to n

xij
>
= 0, for all i, j

It is the problem of finding a minimum cost flow vector saturating
all the arcs leading to the super sink in the bipartite network in Figure
3.4. All lower bounds are 0. Data on each arc is capacity; unit cost
coefficient in that order. xij is the flow on the arc joining source i
and market j. By identifying the cell (i, j) in the p× n transportation
array with the arc joining source i to market j in the network, all the
computations can actually be carried out on the array itself.
In practical applications, each source may not be able to ship to

all the sinks. If sink j is too far away from source i, it is realistic to
specify that source i cannot ship to sink j (i.e., that xij = 0). There
may also be other practical reasons why a source cannot ship to some
sinks. Thus, for each source, a subset of sinks to which it can ship
is specified, and all flows from that source to sinks outside that set
are required to be zero. This can be handled by defining cij to be
+∞ whenever xij is required to be zero in the formulation (3.7). In
the corresponding bipartite network in Figure 3.4, the arc (i, j) is not
included if xij is required to be 0; thus it is no longer the complete
bipartite network. We denote by m the number of source to market
arcs in this network. Clearly m

<
= pn, the transportation problem is
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Figure 3.4:

said to be sparse if m is small compared to pn, and dense if m is close
to pn.
The primal-dual algorithm is described using arrays for ease of un-

derstanding, but computer implementations are usually based on the
network formulation as described above, this saves in memory require-
ments and running time for solving practical problems which are almost
always sparse. The dual problem is

Maximize
3
aiui +

3
bjvj

Subject to ui + vj
<
= cij for all i, j (3.8)

Let c̄ij = cij − ui − vj, for i = 1 to p, j = 1 to n. These are the
reduced cost coefficients wrt (u, v), and (u, v) is dual feasible iff they

are all
>
= 0. The complementary slackness conditions for optimality in

these problems are

xij c̄ij = 0 for all i, j. (3.9)

The cell (i, j) in the array (the corresponding arc (i, j) in the bi-
partite network in Figure 3.4) is said to be an admissible or equality
cell (admissible or equality arc) wrt (u, v) if c̄ij = 0; otherwise it is
inadmissible. The network obtained by deleting all the inadmissible
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arcs from Figure 3.4 is known as the admissible or equality sub-
network wrt (u, v). The complementary slackness conditions require
that the flow amounts should be 0 on all the inadmissible arcs. The
flow problem, known as the restricted primal at this stage, is to find
a maximum value flow from the super source to the super sink in the
equality subnetwork. It is equivalent to

Maximize
3
(xij : over (i, j) admissible )

Subject to
n3
j=1

xij
<
= ai, i = 1 to p

p3
i=1

xij
<
= bj , j = 1 to n (3.10)

xij
>
= 0, if (i, j) admissible, 0 otherwise

The primal-dual algorithm maintains vectors x, (u, v) which always
satisfy the constraints in (3.10), (3.8), (3.9). When the x vector satisfies
the equality constraints in (3.7), it is an optimum solution and the
method terminates.

THE CLASSICAL PRIMAL-DUAL METHOD FOR THE
UNCAPACITATED BALANCED TRANSPORTATION PROBLEM

Step 0 Initialization If some dual feasible solution is available, use
it as the initial one, otherwise define it to be (u1 = (u1i ), v

1 = (v1j ))
where u1i = min { cij : j = 1 to n }, v1j = min { cij − u1i : i = 1
to p }, for i = 1 to p, j = 1 to n. List = ∅. Define x1 = 0. Go to
Step 1.

Step 1 Tree growth routine Let x̃ = (x̃ij) be the present flow.

Substep 1 Label each row i satisfying
�
j x̃ij < ai with (s,

+), and include it in the list.

Substep 2 If list = ∅, tree growth has terminated and there
is a nonbreakthrough. The present flow is a maximum value
flow in the admissible subnetwork, go to Step 3. Otherwise,
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select a row or column from the list for scanning and delete
it from the list.

Forward labeling Scanning row i consists of labeling each
unlabeled column j such that (i, j) is an admissible cell, with
the label (row i, +).

Reverse labeling To scan column j, label all unlabeled
rows i
satisfying x̃ij > 0 with (column j, −).
If any column without an allocation has been labeled, there
is a breakthrough, go to Step 2. Otherwise, include all newly
labeled rows and columns in the list, and repeat this Substep
2.

Step 2 Flow change routine Suppose column j satisfying α =
bj−�i x̃ij > 0 has been labeled. Trace its predecessor path using
the labels, suppose it ends with row i with the label of (s,+). This
path is an FAP from row i to column j in the equality subnetwork.
Call it P . Let β = ai −�j x̃ij, and 6 the residual capacity of P .
Define γ = min{ α, β, 6 }. Carry out flow augmentation by the
amount γ on the FAP P , and get the new flow x̂. If x̂ is feasible
to (3.7), it is an optimum solution; terminate. Otherwise, chop
down the present trees (i.e., erase the labels on all the rows and
columns) and go back to Step 1.

Step 3 Dual solution change routine Same as Step 3 of the
Hungarian Method.

EXAMPLE 3.3

Consider the balanced transportation problem with data given in
the following array. An initial dual feasible solution (u = (ui), v = (vj))
is also given in the array.
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j = 1 2 3 4 5 6 ai ui
i = 1 4

c11 = 5 3 7 3 8 5 3

2 3
5 6 12 5 7 11 5

3 3
2 8 3 4 8 2 2

4 7
9 6 10 5 10 9 5

bj 3 3 6 2 1 2
vj 0 0 1 0 2 0

The reduced cost coefficients, c̄ij = cij − ui − vj are entered in the
upper left corners of the cells in the following array. All cells in which
c̄ij = 0 are admissible cells, and they are marked with a little box in
the middle. An initial flow among the admissible cells is obtained by
inspection, and the flow amounts, when nonzero, are entered in the
little boxes.

j = 1 2 3 4 5 6 ai ui Row
label

2 = c̄11 0 3 0 3 2

i = 1 3 1 4 Col. 4, -
3

0 1 6 0 0 6

2 +θ 1 3 s, +
5

0 6 0 2 4 0

3 3 −θ +θ 3 Col. 1, -
2

4 1 4 0 3 4

4 1 7 s, +
5

bj 3 3 6 2 1 2
vj 0 0 1 0 2 0

Col. Row 2 Row 3 Row 2 Row 2
label + + + +
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j = 1 2 3 4 5 6 ai ui Row
label

2 = c̄11 0 3 0 3 2

i = 1 3 1 4 Col. 4, -
3

0 1 6 0 0 6

2 2 1 3
5

0 6 0 2 4 0

3 1 2 3
2

4 1 4 0 3 4

4 1 7 s, +
5

bj 3 3 6 2 1 2
vj 0 0 1 0 2 0

Col. Row 1 Row 4
label + +

In the first array at the top, rows 2 and 4 have additional material
to be shipped, so they are labeled with (s,+). Columns 3 and 6 have
unfulfilled requirements. The labeling routine is applied, and it ends
in a breakthrough with column 3 labeled. We move to the flow change
routine. Entries of +θ and −θ are made in admissible cells as indicated
by the labels. The value of θ should be min.{6 = unfulfilled requirement
in column 3; 2 = additional material available at row 2; 3 = flow amount
in cell (3, 1) with a −θ entry} = 2. The new flow vector is recorded in
the next array together with the present reduced cost coefficients. The
old labels are erased and the labeling routine is applied again. The row
and column labels obtained are recorded on the array.
We have a nonbreakthrough. So, we move to the dual solution

change routine. δ = 2. The new dual feasible solution is û, v̂ marked
in the following array. In this array we show the new reduced cost
coefficients in each cell. The new admissible cells are marked with a
little box in the middle. Notice that all the cells with positive flow
amounts in the present flow vector remain admissible. The present
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flow amounts in cells with positive flow are entered inside the box in
them.

j = 1 2 3 4 5 6 ai ûi

0 0 1 0 1 0

i = 1 3 1 4
5

0 3 6 2 0 6

2 2 1 3
5

0 8 0 4 4 0

3 1 2 3
2

2 1 2 0 1 2

4 1 7
7

bj 3 3 6 2 1 2
v̂j 0 -2 1 -2 2 0

The algorithm now resumes labeling using the new admissible cells.
It can be continued in the same manner until an optimum solution is
obtained.

Discussion

If δ turned out to be +∞ in Step 3 at some stage, the flow at that
stage is a maximum value flow, not only in the equality subnetwork
at that stage but in the entire original bipartite network. This case
can only occur if some of the xij were required to be 0 in the original
problem. Since this flow leaves the demand at some markets unfulfilled,
it implies that there is no feasible solution to the problem.
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Array 3.5 Summary of Position at Occurrence of

Nonbreakthrough. (ũ, ṽ,
l
c= (

l
cij= cij − ũi − ṽj), are the

dual solution and reduced cost matrix before the change.
(û, v̂, ˆ̄c = (ˆ̄cij = cij − ûi − v̂j) are the corresponding things
after the change. x̃ = (x̃ij) is the present flow.

Block of la-
beled cols.

Block of unla-
beled cols.

Supply
position

Dual
change

Block
of la-
beled
rows

ˆ̄cij =
l
cij here,

so admissi-
bility pattern
remains
unchanged

No admissible
cells here (a
col. would
be labeled
otherwise).

So
l
cij> 0

here. δ =
Min{lcij: (i, j)
here}> 0.
ˆ̄cij =

l
cij −δ

here. New
admissible cells
created here,
and their cols.
get labeled
next.

Material
avail-
able at
some
rows
here.

ûi =
ũi + δ
here.

Block
of un-
la-
beled
rows

x̃ij = 0 here
(otherwise
a row could
be labeled).
ˆ̄cij =

l
cij +δ

here. All cells
here become
inadmissible
next.

ˆ̄cij =
l
cij here,

so admissi-
bility pattern
remains
unchanged.

�
j x̃ij =

ai here;
other-
wise
a row
could be
labeled.

ûi = ũi
here.

Require-
ment
posi-
tion

�
i x̃ij = bj

here; oth-
erwise it
would be a
breakthrough.

Some cols.
with un-
fulfilled
requirements.

Dual
change

v̂j = ṽj − δ
here

v̂j = ṽj here.
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For arbitrary c and arbitrary (i.e., not necessarily rational) positive
ai, bj sat- isfying

�
ai =

�
bj , the method terminates in a finite number

of steps if the list is maintained as a queue and the node for scanning
in Substep 2 of Step 1 is selected by the FIFO (first in first out) rule.
To see this, we notice from the facts in Array 3.5 that when labeling is
resumed after each occurrence of Step 3, at least one new column gets
labeled. So, in this algorithm, after at most n consecutive occurrences
of Step 3, Step 2 must occur, and then the total flow

��
xij strictly

increases.

Each equality subnetwork appearing in the algorithm consists of all
the nodes (source nodes with their availabilities, sink nodes with their
requirements) and equality arcs corresponding to the subset of equality
cells wrt the dual feasible solution at that stage. We can associate
any equality subnetwork with the subset of cells corresponding to the
equality arcs in it. Denote by ϑ(E) the value of the maximum value
flow in the equality subnetwork associated with the subset of cells E.

The equality subnetwork changes in the algorithm after each oc-
currence of Step 3. The first time that Step 3 occurs after an equality
subnetwork associated with a subset E of cells appears for the first
time in the algorithm, the total flow

��
xij becomes equal to ϑ(E),

and this happens after at most O(m(p + n)) consecutive occurrences
of Steps 1 and 2, by the results in Section 2.3.3. If the algorithm did
not terminate then, Step 3 will occur, and it could repeat at most n
times consecutively, followed by another occurrence of Steps 1 and 2,
at which time the total flow strictly exceeds ϑ(E).

So, after the equality subnetwork defined by the subset of cells E
first appears in the algorithm, there is a consecutive run of at most
O(m(p + n)) Steps 1 and 2 ; followed by a consecutive run of at most
n Steps 3, and then another occurrence of Steps 1 and 2. After these
are over, the equality subnetwork defined by the subset of cells E can
never reappear in the algorithm. Since there are only a finite number
of subsets of cells, this implies that the algorithm is a finite algorithm.

This primal-dual method for the transportation problem is practi-
cally efficient and is useful for doing sensitivity analysis when the ai
and bj change. Experience indicates that in solving large problems,
computer implementations of the primal algorithm using tree labels,
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discussed in Chapter 5, are superior to those of the primal-dual method
discussed here. Newer variants of the primal-dual method are discussed
in Chapter 5, they are competitive with other algorithms for solving
large scale minimum cost flow problems.

To study the worst case computational complexity of this algo-
rithm, we will assume that all the ai and bj are positive integers and
let
�
i ai =

�
j bj = γ. In this case, every breakthrough leads to an in-

crease in the total flow value,
�
i

�
j xij , by at least 1. When tree growth

is resumed after each dual solution change, at least one new column
gets labeled. Hence between two consecutive breakthroughs, there are
at most n nonbreakthroughs. It can be verified that the overall compu-
tational effort in the primal-dual method in this case is bounded above
by O(γ(n+p)2). This grows exponentially with the size of the problem,
since γ grows exponentially with the number of digits needed to store
the ai, bj . However there is a scaling or digit-by-digit implementa-
tion of the primal-dual method which is polynomially bounded, which
we discuss next.

Polynomially Bounded Scaling Implementation

Consider the case where the ai, bj are all rational numbers. By se-
lecting the unit for measuring the commodity appropriately, the prob-
lem can then be modified into one in which all the ai, bj are positive
integers. We assume that this has been done. Let

�
i ai =

�
j bj = γ.

No assumptions are made about cij.

Let q be the smallest positive integer such that ai and bj
<
= 2q for all

i, j (i.e., each ai, bj have at most q digits in its binary expansion, and q
is the smallest integer with this property). The scaling implementation
deals with a sequence of q+1 problems called subproblems all of which
are transportation problems with the same cost matrix (and hence the
same set of nodes and arcs) as (3.7), but with scaled down availabilities
and requirements which approximate those of (3.7) to successively more
digits of precision. Initially availabilities and requirements, and hence
flow augmentations are on a coarser scale than in the original problem,
but by the end of the sequence all the data converts to the original
data, and the terminal solution, if one is obtained, will be an optimum
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solution of the original problem. The final solution of each approximate
problem leads to a good initial flow for the next approximate problem in
the sequence. The worst case computational complexity of the scaling
implementation is proportional to the number of digits in the binary
encoding of the ai, bj.
We consider the general problem in which some of the xij may be

required to be 0. For i = 1 to p, let Γi = {j: xij can have a positive
value in the solution}; and for j = 1 to n, let Ωj = {i: xij can have a
positive value in the solution}. So, source i is allowed to ship only to
sinks in Γi for all i, and sink j can receive shipments only from sources
in Ωj for all j. Let F = {(i, j) : xij can have a positive value in the
solution} = ∪pi=1{(i, j) : j ∈ Γi} = ∪nj=1{(i, j) : i ∈ Ωj}. So, the cost
coefficients cij are only defined for (i, j) ∈ F in the problem, for (i, j) W∈
F we treat cij to be +∞. Hence the original problem to be solved is

Minimize
3

(i,j)∈F
cij xij

Subject to
3
j∈Γi

xij = ai, i = 1 to p3
i∈Ωj

xij = bj, j = 1 to n (3.11)

xij
>
= 0, for (i, j) ∈ F

Let di, gj , i = 1 to p, j = 1 to n, be non-negative integers. In the
scaling implementation, the subproblems are all transportation models
in the form (3.12), where ∆ is a specified positive integer. In the algo-

rithm, di will be of the form u ai2s J and gj will be of the form u bj2s J, where
s ranges from q to 0 in stages. When some of the xij are required to
be zero even if the original problem (3.11) is feasible, the subproblems
in some stages may be infeasible for some ∆. In any feasible solution
of (3.12), ∆ is known as the total flow in that solution. It is the
total amount of material reaching the sinks from the sources in that
solution.

Minimize
3

(i,j)∈F
cij xij
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Subject to
3
j∈Γi

xij
<
= di, i = 1 to p

3
i∈Ωj

xij
<
= gj , j = 1 to n (3.12)

3
i

3
j

xij = ∆

xij
>
= 0, for (i, j) ∈ F

The dual of the original problem (3.11) is

Maximize
3
aiui +

3
bjvj

Subject to ui + vj
<
= cij for all (i, j) ∈ F (3.13)

Denoting the dual variables corresponding to the constraints in
(3.12) by πi, µj , δ in that order, the dual of (3.12) is

Maximize δ∆−3 diπi −
3
gjµj

Subject to − πi − µj + δ
<
= cij, for all (i, j) ∈ F (3.14)

πi, µj
>
= 0, for all i, j.

The complementary slackness optimality conditions in the primal
dual pair (3.12), (3.14) are

(cij + πi + µj − δ)xij = 0, for all (i, j) ∈ F (3.15)

πi(di −
n3
j=1

xij) = 0, i = 1 to p (3.16)

µj(gj −
p3
i=1

xij) = 0, j = 1 to n (3.17)

We call the pair (x, (π, µ, δ)) feasible to (3.12), (3.14) an extreme
pair if they together satisfy (3.15), whether they satisfy (3.16), (3.17)
or not. An extreme pair for (3.12),(3.14) is said to be a maximum
extreme pair if the total flow

�
(xij : over (i, j) ∈ F) is the maximum
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value that can be attained with the supply at source (row) node i
limited to at most di, and the amount that can be shipped to sink
(column) node j limited to at most gj , i = 1 to p, j = 1 to n.
If (x, (π, µ, δ)) is a maximum extreme pair when di = ai, gj = bj

for all i, j, and the total flow in x is γ =
�
ai, then (3.16), (3.17) hold

automatically in this pair. In this case, let ui = δ−πi, vj = −µj for all
i, j, then (x, (u, v)) is an optimum pair for the original problem. This
fact is used in this implementation.
For r = 0 to q, define

dri = u
ai
2q-r
J, grj = u

bj
2q-r
J, i = 1 to p, j = 1 to n.

The scaling implementation solves a sequence of (q + 1) subprob-
lems. For r = 0 to q, the rth subproblem is (3.12) with di = d

r
i , gj = g

r
j

for all i, j. Each subproblem is solved by the primal dual algorithm,
walking along extreme pairs only, until a maximum extreme pair is ob-
tained for it. This will be recognized in the algorithm when, either the
capacity at all the source (row) nodes is used up, or all the capacity
at the sink (column) nodes is used up, or if δ = ∞ in a dual solution
change step. It then moves to the next subproblem, beginning with an
initial extreme pair for it constructed from the last pair for the present
subproblem. In the qth (i.e., final) subproblem, we have di = ai, gj = bj
for all i, j, and since

�
ai =

�
bj, a maximum extreme pair for it leads

to a solution for the original problem (3.11) if it is feasible, as shown
later.
For r < q we may not have

�
i d
r
i =
�
j g

r
j , but we apply the primal

dual algorithm to find a maximum extreme pair for the rth subproblem.
While solving this problem the algorithm maintains the pair (x, (u, v))
where x satisfies (3.12) with di = dri , gj = grj for all i, j; u, v satisfy
(3.13) always, and these vectors together satisfy (3.9). There is a vector
(π, µ, δ) feasible to (3.14) and satisfying −πi − µj + δ = ui + vj for all
i, j; that can be obtained from (u, v) by the formulas πi = ν − ui, µj =
ν − vj, δ = 2ν for all i, j, where ν = max.{u1, . . . , up; v1, . . . , vn}, and
the pair (x, (π, µ, δ)) will then be an extreme pair for (3.12), (3.14).
Let G denote the bipartite network for the original problem (3.11)

as in Figure 3.5, in which the arc joining source node i to market node
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j exists iff (i, j) ∈ F. For r = 0 to q, let Gr denote the same network as
G, but with the capacities ai replaced by d

r
i , and capacities bj replaced

by grj , for all i, j.
Subproblem 0 begins with x0 = 0, u0 = (u0i = min.{cij : j = 1 to

n}), v0 = (v0j = min.{cij−u0i : i = 1 to p}). The rth subproblem is ter-
minated when flow value in the network Gr from the supersource to the
supersink (which is the total flow in the solution x at that stage) reaches
the maximum value possible in Gr recognized as described above. If the
original problem is on the complete bipartite network (i.e., all variables
xij are allowed to take positive values), this will happen when either
the supply dri at each source i is used up or the demand g

r
j at each mar-

ket j is met. If some variables are required to be zero in the original
problem, another signal for the termination of the rth subproblem is δ
becoming∞ in a dual solution change step. Let x̃r, (ũr, ṽr) be the pair
at the termination of subproblem r. The total flow in x̃r is

3
i

3
j

x̃r = γr (3.18)

Define, for r = 0 to q

∆r = min. {3
i

dri ,
3
j

grj} (3.19)

So, ∆q = γ, and γr
<
= ∆r for all r. For r = 0 to q−1, if γr < ∆r−(n+

p), terminate the algorithm. In this case the original problem (3.11) has
no feasible solution (see Lemma 3.2 given below). Otherwise, initiate
subproblem r + 1 with the pair xr+1 = 2x̃r, (ur+1 = ũr, vr+1 = ṽr),
this pair satisfies (3.13), (3.9) since x̃r, (ũr, ṽr) do. Thus all the pairs
obtained during the implementation will be extreme pairs. At the end
of subproblem q, we have the maximum extreme pair x̃q, (ũq, ṽq) in G,
with total flow = γq. If γq = γ, x̃q, (ũq, ṽq) together satisfy (3.11),
(3.13), (3.9), so they form an optimum primal dual pair for the original
problem (3.11). If γq < γ, the original problem (3.11) is infeasible.
Flow changes occur at most ∆0 times in subproblem 0. If the algo-

rithm is continued after subproblem r, 2x̃r is the initial primal vector
for solving the (r+1)th subproblem. By Lemma 3.2 given below, there
will be at most ∆r+1 − 2∆r + 2(n + p) flow changes while solving the
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(r+1)th subproblem. So, the total number of flow augmentations dur-
ing the entire scaling implementation is at most ∆0+

�q−1
r=0(∆r+1−2∆r)

+ 2q(n+ p).

i a d0 d1 d2 d3 d4 d5 d6

1 38 0 1 2 4 9 19 38
2 41 0 1 2 5 10 20 41
3 23 0 0 1 2 5 11 23
4 15 0 0 0 1 3 7 15

j 1 2 3 4 Total 117 0 2 5 12 27 57 117
b 25 29 30 33 117
g0 0 0 0 0 0 Pr = 0,1,5,12,27,57,117
g1 0 0 0 1 1 respectively for r = 0 to 6.
g2 1 1 1 2 5
g3 3 3 3 4 13
g4 6 7 7 8 28
g5 12 14 15 16 57
g6 25 29 30 33 117

As an example we consider a problem with p = n = 4. The cost
matrix is not shown, but the vectors a, b, and dr, gr are given for all r
in the table above. γ =

�
ai =

�
bj = 117. Max.{ai, bj : all i, j} = 41,

and the smallest integer q satisfying the property that all ai, bj
<
= 2q is

6. So, we have to solve seven subproblems, these correspond to r = 0
to 6.
In this example ∆0 +

�q−1
r=0(∆r+1 − 2∆r) = 15. So, to solve this

problem, the scaling implementation needs at most 15 + 96 = 111 flow
augmentations, this compares with the maximum of 117 that may be
needed in the direct implementation of the primal dual method.

LEMMA 3.1 0
<
= ∆0

<
= max.{p, n}; 0 <

= ∆r+1 − 2∆r
<
= max.{ p, n },

for all r
>
= 0.

Proof From the definition of q, all d0i , g
0
j are 0 or 1. So, 0

<
= ∆0

<
=

max.{p, n}.
Let ξ, η be any positive integers. We have

2u η
2ξ
J <= u η

2ξ − 1
J <= 2u η

2ξ
J+ 1
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Applying this we conclude that

0
<
=

p3
i=1

u ai
2q−r−1

J − 2
p3
i=1

u ai
2 q-r
J <
= p

0
<
=

n3
j=1

u bj
2q−r−1

J − 2
n3
j=1

u bj
2q−r
J <
= n

These inequalities, and the definitions of∆r,∆r+1, imply this lemma.

LEMMA 3.2 If the original problem (3.11) has a feasible solution,

then γr
>
= ∆r − (p + n), for all r.

Proof Let x̂ = (x̂ij) be a feasible solution for (3.11). Then, for all
i, j

3
j∈Γi

(x̂ij/2
r) = ai/2

q−r

3
i∈Ωj

(x̂ij/2
r) = bj/2

q−r

So, if the amount of material that can leave source (row) node i
is ai/2

q−r, and that reaching market (column) node j is bj/2q−r, for
all i, j; then all the arcs incident at the supersource and the supersink
will be exactly saturated in a maximum value flow (x̂/2r is such a
flow). However, the maximum amount of material that can leave source

(row) node i is limited to at most dri = uai/2q−rJ >
= (ai/2

q−r) − 1,
and that reaching market (column) node j is limited to at most grj =

ubj/2q−rJ >
= (bj/2

q−r)− 1 in Gr. So the maximum flow value in Gr is
>
= ∆r − (p + n), i.e., γr >

= ∆r − (p+ n).
THEOREM 3.2 Assuming that all the ai, bj are positive integers, the
overall computational effort for solving (3.11) by the scaling implemen-
tation of the primal dual algorithm is at most O(L(n+p)2(max.{p, n})),
where L is the sum of the binary digits in all the ai and bj.
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Proof q defined earlier is < L. Lemmas 3.1 and 3.2 imply that
the total number of flow changes in any subproblem is at most 4 max.{
p, n }. So, the total number of flow augmentations in the scaling im-
plementation is at most 4(q+1)(max.{ p, n }) <= 4L(max.{ p, n }). We
have already seen that the computational effort between two consec-
utive occurrences of flow augmentation in any subproblem is at most
O(p+ n)2. Hence the result follows.

So, the scaling implementation of the primal dual algorithm is a
polynomially bounded algorithm for solving the transportation prob-
lem (3.7) with some specified subset of variables xij set equal to 0 if
desired, in which the overall computational effort is bounded above by
a low degree polynomial in the size of the problem.

Comment 3.2 This scaling technique was introduced by Edmonds
and Karp [1972 of Chapter 2]. It led to the first polynomial time
algorithm for minimum cost flow problems.

Exercises

3.18 Complete the solution of the problem in Example 3.3 by the
primal-dual algorithm

3.19 Develope a primal-dual method to solve the following capaci-
tated transportation problem.

Minimize z(x) =
p3
i=1

n3
j=1

cijxij

Subject to
n3
j=1

xij
<
= ai, i = 1 to p

p3
i=1

xij = bj , j = 1 to n

0
<
= xij

<
= kij, for all i, j
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3.20 Whenever a nonbreakthrough occurs in the primal-dual algo-
rithm for the balanced transportation problem (3.7), prove that the
quantity

�
(ai : over labeled rows i) −�(bj: over labeled cols. j) > 0.

Using this prove that the dual objective function
�
i aiui +

�
j bjvj

strictly increases whenever the dual solution changes in this algorithm.
Also prove the following using the duality theorem of LP: While solving
(3.7) with some variables xij constrained to be 0, by the primal-dual
algorithm, if δ turns out to be +∞ in some dual solution change step,
the problem is infeasible.

3.3 Transformation of Single Commodity

Minimum Cost Flow Problem into Sparse

Balanced Transportation Problem

The balanced transportation problem is a special case of the single com-
modity minimum cost flow problem on a bipartite network. We will
now show that every single commodity minimum cost flow problem,
even on a nonbipartite network, can be transformed into an uncapaci-
tated balanced transportation problem which is sparse.

Consider the single commodity minimum cost flow problem on the
directed network G = (N ,A, 0, k, c, s̆, t̆, v̄) for shipping v̄ units from
s̆ to t̆ at minimum cost. Let |N | = n, |A| = m. Construct a bipartite
network H = (N1,N2; A) as follows. For each (i, j) ∈ A put a node
corresponding to it in N1 which we conveniently denote by the symbol
“ij.” So, |N1| = m. Make N2 = N . N1,N2 are respectively the sets
of source and sink nodes in H. Define A = {(ij, i), (ij, j): for each
(i, j) ∈ A}, so |A| = 2m. The lower bounds and capacities for arcs
in A are 0, +∞ respectively. For each (i, j) ∈ A, in H the unit cost
coefficient on the arc (ij, i) is 0, and that on the arc (ij, j) is cij ; and
the availability of material at the source node ij in N1 is kij. For each
i ∈ N , the requirement at the sink node i ∈ N2 in H is bi where
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k
ij

b
i

b
j

Sources Sinks

ij

0, , 0

0, , c
ij

.

.

.

.

.

.
.
.
.

.

.

.
8

8

Figure 3.5: Bipartite network H. Data on arcs is lower bound, capacity,
unit cost coefficient, in that order. Data by the side of the nodes is
availability (for sources), requirement (for sinks).

bi =

⎧⎪⎨⎪⎩
k(i,N )− v̄ if i = s̆
k(i,N ) + v̄ if i = t̆
k(i,N ) if i W= s̆ or t̆

Unless k(s̆,N ) >= v̄, the flow problem in G is infeasible. So, we assume
that this condition holds. This implies that all the availabilities at
the sources, and the requirements at the sinks, in H, are

>
= 0. In

H, each source node is joined to exactly two sink nodes. See Figure
3.5. The sum of all the availabilities at the source nodes in H, as well
as the sum of all the requirements at the sink nodes, are both equal
to k(N ,N ). Thus the minimum cost flow problem in H satisfying
all the availability, requirement constraints at the nodes, is a sparse
uncapacitated balanced transportation problem.
We will now prove the equivalence of the minimum cost flow prob-

lems in G and H. Let f = (fij) be a feasible flow vector in G. Define the
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corresponding flow vector in H to be x where for each (i, j) ∈ A, xij,j =
fij , and xij,i = kij−fij . Then it can be verified that x is a feasible flow
vector in H, having the same cost as f in G. Conversely, if x is a feasi-
ble flow vector in H, define the flow vector f = (fij) in G by: for each
(i, j) ∈ A, fij = xij,j . It can be verified that f is a feasible flow vector in
G which has the same cost as x in H. So, the minimum cost flow prob-
lem in G is equivalent to the minimum cost flow problem in H, which
is a sparse uncapacitated balanced transportation problem. Using this
transformation, and the scaling implementation to solve the resulting
transportation problem, we get a polynomially bounded algorithm for
the minimum cost flow problem in G. Primal-dual algorithms that solve
the minimum cost flow problem in G directly will be discussed later in
Chapter 5.

3.4 Dual Simplex Signature Methods for

the Assignment Problem

Consider the LP

Minimize cBxB + cDxD

Subject to BxB + DxD = b

xB , xD
>
= 0

in which the coefficient matrix A = (B
...D) is of orderm×n and rankm.

The LP is written with the variables partitioned into basic, nonbasic
parts, xB, xD. The primal basic solution associated with the basic
vector xB is x̄ = (x̄B = B

−1b, x̄D = 0). It is primal feasible if x̄
>
= 0.

The dual basic solution associated with this basic vector is π̄ = cBB
−1.

This basic vector is dual feasible if the associated reduced cost vector
c̄ = (c̄B, c̄D) = (0, cD−π̄D) >= 0. The dual simplex algorithm for solving
this LP is always initiated with a dual feasible basic vector xB. If xB is
also primal feasible, it is an optimum basic vector, and the algorithm
terminates. Otherwise, the algorithm checks to see if a condition for
primal infeasibility is satisfied, and if so, it again terminates. If neither
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of these two events has occurred, it selects a primal variable xj whose
value x̄j in the primal basic solution x̄ associated with xB satisfies
x̄j < 0, as the dropping variable from the present basic vector xB,
for a dual simplex pivot step. The nonbasic variable to replace it, called
the entering variable is selected by the dual simplex minimum ratio
test, whose function is to guarantee that the next basic vector will also
be dual feasible. Then the whole process is repeated with the new basic
vector. In the dual simplex algorithm, the dual objective function πb is
monotone nondecreasing. See Murty [1983 of Chapter 1] for a detailed
description of the dual simplex algorithm. In this section we will discuss
a new class of algorithms for the assignment problem called signature
methods, which are related to the dual simplex algorithm in spirit.

We consider the assignment problem (3.1) of order n associated
with the cost matrix c = (cij), a minimum cost flow problem on the
bipartite network G = (NR,NC ,A), where NR = {R1, . . . , Rn} = set
of row nodes, NC = {C1, . . . , Cn} = set of column nodes, and A =
{ (Ri, Cj): i, j s.t. an allocation is allowed in cell (i, j)}. The arc
(Ri, Cj) in G is associated with the variable xij in the problem. The
dual variables are ui, vj associated with the nodes Ri, Cj respectively,
i, j = 1 to n. Each basic vector for (3.1) corresponds to a spanning
tree in G and vice versa, in-tree arcs are associated with basic variables,
and out-of-tree arcs with nonbasic variables. A spanning tree dd in G
has exactly 2n − 1 arcs, and the dual basic solution corresponding to
it, denoted by u(dd) = (ui(dd)), v(dd) = (vj(dd)), can be obtained by
arbitrarily fixing the value of one dual variable (e.g. u1(dd) = 0) and
then solving the equations

up(dd) + vq(dd) = cpq, for each in-tree arc (Rp, Cq)

by back substitution. The matrix c̄(dd) = (c̄ij(dd)), where c̄ij(dd) =
cij−ui(dd)−vj(dd) is the matrix of reduced or relative cost coefficients
wrt dd. dd is dual feasible if c̄ >= 0, dual infeasible otherwise.
The primal basic solution of (3.1) corresponding to dd, x(dd) =

(xij(dd)) is obtained by setting xij(dd) = 0 whenever (Ri, Cj) is an
out-of-tree arc, in the system of equality constraints in (3.1), and then
solving the remaining system by back substitution. x(dd) is integer,
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but it may not be
>
= 0. dd is primal feasible if x(dd) >= 0 (in this case

x(dd) will be an assignment), primal infeasible otherwise.
We denote by P(p, q,dd), the unique path between the nodes p, q in

dd.
The row signature vector (column signature vector) of a

spanning tree in G is the vector of its row node degrees (column node
degrees). If (d1, . . . , dn) is the row or column signature vector of a

spanning tree in G, clearly, di
>
= 1 for all i = 1 to n, and

�n
i=1 di =

2n − 1. Hence, in every signature vector there is at least one entry
equal to 1. It corresponds to a terminal node. For example, the row,
column signature vectors of the spanning tree in Figure 3.9 are (2, 1,
2, 2, 2, 2), (1, 3, 4, 1, 1, 1) respectively. Both these vectors have at
least one entry of 1.

THEOREM 3.3 A spanning tree dd in G which contains exactly one
entry of 1 in either its row or column signature vectors is a primal
feasible spanning tree.

Proof Let d = (d1, . . . , dn) be the row signature vector of dd,
and suppose it contains a unique 1 entry. A similar proof holds if the
column signature vector contains a single 1 entry.
Let i∗ be the unique number such that di∗ = 1. Since di

>
= 1 for

all i and
�n
i=1 di = 2n − 1, the hypothesis implies that di = 2 for

all i W= i∗. For each i W= i∗, the path P(Ri∗, Ri,dd) contains exactly
one edge incident at Ri, and since di = 2, there must be exactly one
edge in dd incident at Ri which is not on the path P(Ri∗, Ri,dd). Let
σi∗ = j

∗, where (Ri∗, Cj∗) is the unique in-tree arc incident at Ri∗, and
for i W= i∗, let σi be j, where j is such that (Ri, Cj) is the unique in-tree
arc incident at Ri not on P(Ri∗, Ri,dd). Clearly, σi W= σh for any i W= h,
as otherwise there will be a cycle in dd, a contradiction. So, {(i, σi) : i
= 1 to n } is an assignment, and since all these cells correspond to in-
tree edges, this assignment is the basic solution of (3.1) corresponding
to dd, hence dd is a primal feasible tree.
As an example consider the spanning tree in Figure 3.9 with its row

signature vector (2, 1, 2, 2, 2, 2). R2 is the unique terminal row node.
The primal basic solution corresponding to this tree is the assignment
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{(1, 1), (2, 3), (3, 2), (4, 5), (5, 4), (6, 6)}, which corresponds to the
set of solid lines in Figure 3.9.
Signature methods are always initiated with a dual feasible span-

ning tree in G and dual feasibility is maintained throughout. They go
through a sequence of pivot steps; each pivot step moves from a tree
to an adjacent tree that differs from it in a single arc. The dropping
arc from the present tree is always selected by a special dropping arc
selection rule described in the algorithm. The entering arc to replace
the dropping arc is determined so as to maintain dual feasibility. Ter-
mination occurs when either primal infeasibility is established, or when
a spanning tree with exactly one terminal row node, or one terminal
column node is obtained. In the latter case the primal basic solution
corresponding to the final tree is an optimum assignment. The method
tries to reduce the number of terminal row nodes (or terminal column
nodes) to one. This number is monotone nonincreasing during the
method.
A stage in a signature method begins with a dual feasible spanning

tree in G with more than one terminal row node (or column node, if the
method works with column signature vectors) and is completed when
this number decreases by 1. Each stage may consist of several pivot
steps. Since G is bipartite and dd has 2n− 1 arcs, the total number of
terminal row nodes, or column nodes in any spanning tree in G, is at
most n− 1. So, the algorithm has at most n− 2 stages.
The dropping arc choice is defined by the method, but once the

dropping arc is selected, the choice of the entering arc to replace it is
carried out by the same procedure in all the signature methods. We
describe this next.

The Entering Arc Choice Rule

Let dd be the present dual feasible spanning tree in G, and let (w, l)
denote the in-tree arc that has been selected as the dropping arc, w, l
are the row and column nodes on it. Deletion of the arc (w, l) from
dd leaves two distinct subtrees, a ddw containing node w, and a ddl
containing node l. If dd is drawn as a rooted tree with w as the root
node, the family of node l is exactly the set of nodes inddl, and the set of
nodes in ddw is the complement of this set. Let X = Rw, X̄ = Rl (Y =
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Cw, Ȳ = Cl) be the set of row (column) nodes in ddw,ddl respectively.
(X, X̄), (Y, Ȳ), are the partitions of row, column nodes in this pivot
step. They are uniquely determined by dd and (w, l).
Since (w, l) is an in-tree arc, ˜̄cwl, its present relative cost coefficient,

is 0, but it becomes nonnegative in the next tree. Suppose its new value
is δ. Let ũi, ṽj , ˜̄cij denote the present quantities in the tree dd. It can be
verified that the unique solution of the system: u1 = 0, cpq−up−vq = 0
for each arc (Rp, Cq) ∈ dd except the arc (w, l), and = δ for arc (w, l),
is (û, v̂) marked in the following Array 3.6, and ˆ̄cij are the reduced cost
coefficients wrt it.

Array 3.6

Block of cols.
Block Y = Cw Ȳ = Cl New dual
of rows ↓ solution û

X = Rw ˆ̄cij = ˜̄cij ˆ̄cij = ˜̄cij + δ ûi = ũi
in this block in this block in this block

X̄ = Rl ˆ̄cij = ˜̄cij − δ ˆ̄cij = ˜̄cij ûi = ũi + δ
in this block in this block in this block

New dual v̂j = ṽj v̂j = ṽj − δ
solution v̂ in this block in this block

Dual feasibility is maintained in the new tree if ˆ̄cij
>
= 0 for all i, j.

For this we must choose

δ = min.{˜̄cij = cij − ũi − ṽj : Ri ∈ X̄, Cj ∈ Y}
Since the present tree dd is dual feasible, this δ will be >

= 0. Con-
sequently, the entering arc in this pivot step is selected to be an arc
(g, h) with g ∈ X̄ and h ∈ Y, which attains the minimum for δ in the
above equation. The new tree is obtained by replacing (w, l) in dd with
(g, h).
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In the above equation, δ will be ∞ only if all the cells (i, j) with
i ∈ X̄, and j ∈ Y are constrained to have no allocation in them. As
before, this is an indication that there exists no feasible assignment,
and the method terminates if this happens.

Selection of the Initial Dual Feasible Spanning Tree

If the assignment problem being solved is on the complete bipartite
network (i.e., every variable xij is eligible to have value 1), an initial
dual feasible spanning tree can be taken to be the tree dd0 consisting
of the following arcs: all arcs (Rp, Cj), j = 1 to n, for some p, and arcs
(Ri, Cqi) for i W= p, where qi is an index attaining the minimum for u0i
= min. { cij− cpj : j = 1 to n }. Let u0p = 0, and v0j = cpj, for j = 1 to
n. It can be verified that (u0, v0) is the dual basic solution associated
with dd0, and that it is dual feasible. The row signature vector of dd0
is (n, 1, . . . , 1). Hence it has n− 1 terminal row nodes.
In dense or sparse problems, other methods for obtaining an initial

dual feasible spanning tree are discussed in Murty and Witzgall [1977],
and Section 13.6, Chapter 13 in Murty [1983 of Chapter 1]. In highly
sparse problems, it may be necessary to include some artificial arcs
(among those which correspond to cells that are constrained not to
have any allocations) in the network, associated with very large positive
cost coefficients (equal to β = 1 + n(max. {|cij| : (i, j) can have an
allocation})), in order to get an initial dual feasible spanning tree.
If any of these artificial cells have an allocation in the final optimum
assignment, it is an indication that the original problem has no feasible
assignment.
The only remaining thing needed to describe a signature method

is the dropping arc selection strategy to be used. We discuss several
signature methods next.

3.4.1 Signature Method 1

This method is initiated with a dual feasible spanning tree. It is entirely
guided by the row signature vector, the column signature vector and
the primal basic solution are never explicitly used in carrying out the
algorithm.
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The method seeks a tree whose row signature vector contains a
single 1 and otherwise 2s. Given a dual feasible spanning tree dd with
more than one terminal row node, it selects one of these nodes, say t,
and designates it as the target row node. There must be at least
one row node in dd of degree >

= 3. It selects one of these, say s, as the
source row node. Once the target row node t and the source row
node s in the tree dd are selected, the dropping arc in this method is
always the arc incident at s on the path P(s, t,dd). If it is the arc (s, l),
l is a column node with degree

>
= 2 in dd, as the path P(s, t,dd) itself

contains two arcs incident at l. Let (g, h) be the entering arc to replace
(s, l), determined as described above, and dd1 the new tree obtained
after this pivot step. Let d(s), d(g), d1(s), d1(g) be the degrees of s, g
in dd,dd1 respectively. Then d1(s) = d(s) − 1, d1(g) = d(g) + 1. So, g
which is the row node on the entering arc, is not a terminal row node
in dd1. If g was a terminal row node in dd, the number of terminal
row nodes has decreased by one in this pivot step, this completes a
stage in the method. If the number of terminal row nodes in dd1 is one,
it is primal feasible, and hence optimal, and the method terminates.
Otherwise, it goes to the next stage with dd1.
If g was not a terminal row node in dd, continue the stage with dd1.

Keep the same target row node t, but make g the next source row node
and carry out the next pivot step. In the next pivot step, the set X̄ in
the row partition becomes smaller (it loses node g) and the set Y in
the column partition becomes larger.

So, the target row node remains the same in a stage, but the source
row node keeps changing. The set X̄ gets smaller, and the set Y gets
larger, until in the last pivot step of the stage the row node in the
entering arc is a terminal row node before that arc enters. The row
nodes that drop off from X̄ during this stage are all nonterminal row
nodes, so, if the initial tree in this stage had r terminal row nodes, the
number of pivot steps in it will be

<
= n− r. If carried out directly, the

computational effort in each pivot step (to compute δ and update all the
reduced cost coefficients) is at most O(n2), and hence the total effort in
this stage may be O((n−r)n2), or O(n3). However, using the technique
described under the O(n3) implementation of the Hungarian method,
this stage can be implemented in such a way that the computational
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effort in it is at most O(n2). In this implementation, all the reduced
cost coefficients are computed in the first pivot step of the stage, and
for each row node Ri in the set X̄ at that time an index of the form
[wi, pi] is defined, where pi = minimum current reduced cost coefficient
in Ri among columns in the present set Y, and wi is a column in Y
where this minimum occurs. In each pivot step of the stage, we do the
following work.

(i) δ = minimum of pi in the indices of rows in the set X̄ in that
step. Computing this δ therefore takes only O(n) effort using
these indices and if the row Rq ∈ X̄ attains this minimum (break
ties arbitrarily) and the present index on Rq is [wq, pq], then the
arc (Rq, wq) is the entering arc in this pivot step.

(ii) Update the dual solution as indicated in Array 3.6

(iii) Get the new sets X̄, Y. Eliminate the indices on all the rows no
longer in X̄.

(iv) Subtract δ from the pi entry in the index of each row node in the
new X̄.

(v) For each column Cj that just joined the set Y, compute the
correct reduced cost coefficient c̄Iij = cij−uIi−vIj , where (uI, vI) is
the new dual solution, for rows Ri in the new set X̄ only, and if
the present pi on this row satisfies pi > c̄

I
ij change the index for

Ri to [Cj, c̄
I
ij ]; otherwise leave this index unchanged.

Under this implementation, in each cell, the reduced cost coefficient
is computed once at the beginning of the stage, and at most once more
during the entire stage. It can be verified that the overall computational
effort during a stage is at most O(n2) under this implementation. Each
stage reduces the number of terminal row nodes by one, hence there
can be at most n stages in the method. So, the overall computational
effort in this method is at most O(n3), which is of the same order as
that of the Hungarian method.
As an example consider the problem in which n = 6, and the dual

feasible spanning tree dd at the beginning of a stage is the one in Figure
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Figure 3.6: DA, EA denote the dropping arc, entering arc respectively.

3.6. Orientations of the arcs are not shown in the figure, each line is
directed from the row node to the column node on it. To keep the
presentation simple, we do not include the arc cost coefficients in this
illustration, but we give the entering arc in each step. dd has two
terminal row nodes, R2 and R6, of which R6 has been selected as the
target row node t. R1 of degree 3 in dd has been chosen as the source
row node s. (R1, C3), the first arc on the path P(R1, R6,dd) is the
dropping arc in this pivot step. We have Rs = X = {R1}, Cs = Y = {
C1, C2}, Rl = X̄ = {R2, R3, R4, R5, R6 }, Cl = Ȳ = { C3, C4, C5, C6}.
Suppose the arc (R3, C2) marked with a dashed line in Figure 3.7 is the
entering arc. So, in the notation used above for describing the pivot
step, g = R3, h = C2. Since g = R3 is not a terminal row node in
Figure 3.6, the stage continues. The next tree dd1 is drawn in Figure
3.7.

R6 continues to be the target row node t. The new source row
node is R3. The dropping arc is (R3, C4). X̄ = {R5, R6}. Y =
{C1, C2, C3, C5}. It can be verified that the set X̄ became smaller, and
Y became larger. In dd1 the entering arc is (R5, C2), so g = R5. This is
not a terminal row node in dd1, so the stage continues. The next tree
dd2 is drawn in Figure 3.8. In dd2, X̄ = {R6}, Y = {C1, C2, C3, C4, C5},
and (R6, C3) is the entering edge. Since g = R6 is a terminal row node
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Figure 3.7: DA, EA denote the dropping arc, entering arc respectively.

in dd2 (it is actually the target row node), with the pivot step in it, the
stage is completed. The next tree dd3 is drawn in Figure 3.9. The row
signature vector in this tree is (2, 1, 2, 2, 2, 2), so this is an optimum
tree. The solid arcs in Figure 3.9 define an optimum assignment.

The method is executed without ever computing the primal basic
solution corresponding to any tree, except for the very last tree to get
the optimum assignment. Let d̃d, d̂d be two consecutive trees obtained
in the method in that order, with x(d̃d) = (xij(d̃d)), x(d̂d) = (xij(d̂d)),
the associated primal basic solutions. Let (s, l) be the dropping arc
from d̃d, which is replaced by the entering arc (g, h) in the pivot step
that led to d̂d. Let CC be the fundamental cycle of (g, h) wrt d̃d. It
contains the dropping arc (s, l). Orient CC so that the dropping arc
(s, l) is a reverse arc. Let θ be the flow amount on the arc (s, l) in
x(d̃d). In x(d̃d), add θ to the flow amounts on all the forward arcs
of CC, and subtract θ from the flow amounts on all the reverse arcs
of CC, this leads to x(d̂d). In the same way, the primal basic solution
corresponding to each tree obtained in the method can be computed
by updating the previous basic solution along the fundamental cycle of
the entering arc.

We will now show that if this method is initiated with the dual
feasible spanning tree dd0 discussed above, then it is very similar to
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Figure 3.8: DA, EA denote the dropping arc, entering arc respectively.

the dual simplex algorithm in its choice of the dropping arc in each
pivot step. This follows from the following results. We assume that
the initial spanning tree is dd0 constructed with p = 1.

1. Let dd be a tree obtained during the method, and (X, X̄) the
partition of row nodes in the pivot step carried in it. Then every
row node in X̄ has degree 1 or 2 in dd. The reason for this is the
following. From the initial spanning tree dd0 and the manner in
which the method is executed, it is clear that R1 is the only row
node whose degree can be > 2 in any tree obtained during the
method. If dd is the first tree in any stage, X contains the source
row node s which is R1, as this is the only row node with degree
> 2 in dd, the result holds. If dd is not the first tree in a stage, the
result follows from this and the fact that the set X̄ gets smaller
as we move from one pivot step to the next in a stage.

2. Let (s, l) be the dropping arc in a pivot step carried out on a

spanning tree dd in this method. Then xsl(dd) <= 0. To see this,
let (X, X̄), (Y, Ȳ) be the row node and column node partition
in the pivot step carried out on dd. X̄, Ȳ are the sets of row,
column nodes in the component ddl containing column node l
when (s, l) is deleted from dd. By 1, each node in X̄ has degree 1
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Figure 3.9:

or 2 in dd, let n1, n2 be the numbers of these nodes with degrees
1, 2 respectively. This implies that ddl has n1+n2 row nodes, and
n1+2n2 arcs. Sinceddl is a tree, these facts imply that the number
of column nodes in it, |Ȳ| = n1 + 2n2 + 1− (n1 + n2) = n2 + 1.
x(dd) is obtained by substituting xij = 0 for all (i, j) correspond-
ing to arcs not in dd in the system of equality constraints in (3.1)
and then solving the remaining system for the values of xij for
(i, j) corresponding to arcs in dd. From this, and the fact that |X̄|
= n1 + n2, |Ȳ| = 1 + n2, and that node l is the column node on
the dropping arc (s, l), we get the following relations by summing
the equality constraints in (3.1) over rows in ddl, and columns in
ddl separately.

3
(xij(dd) : over (i, j) ∈ ddl) = n1 + n23
(xij(dd) : over (i, j) ∈ ddl) = n2 + 1− xsl(dd)

So, n2+1−xsl(dd) = n1+n2, which implies that xsl(dd) = 1−n1 <
=

0, since ddl contains the target node which has degree 1 in dd.
3. The dual objective value is nondecreasing during the method.
This follows from the result in 2.
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These results imply that if Signature method 1 is initiated with the
spanning tree dd0, then it can be viewed as a dual simplex method,
even though it does not always choose pivots in the usual dual simplex
way, since the primal basic value associated with the dropping arc may
sometimes be 0 instead of being < 0.
Signature method 1 can of course be initiated with any dual fea-

sible spanning tree in G. However, in this case the primal basic value
associated with the dropping arc may not be

<
= 0 in some pivot steps

(the proof of this property given above is based on the fact that all
the trees obtained under the method have at most one row node of
degree > 2 which may not hold in this general case). So, the dual
objective value may increase, decrease, or remain unchanged in a pivot
step in this general version, and hence this general version cannot al-
ways be interpreted as a dual simplex method, even though it moves
from a dual feasible tree to an adjacent dual feasible tree in each pivot
step. This general version also takes no more than n stages, and the
computational effort in it is bounded above by O(n3).

Exercises

3.21 Let dd be a spanning tree in G whose row signature vector d =
(di) contains a unique entry equal to 1, which is dp. For each j = 1 to
n, define µj to be the i where i is such that (Ri, Cj) is the arc incident
at Cj on the path P(Rp, Cj,dd). Prove that the primal basic solution
associated with dd is the assignment {(µj, j): j = 1 to n}.
3.22 Prove that if two spanning trees of G correspond to different
assignments, they cannot have the same signature vectors.

3.23 Let dd be a spanning tree in G whose row signature vector con-
tains a single 1 entry, and d̄d the corresponding cotree. Prove that
(dd, d̄d, ∅) is a strongly feasible partition (see Section 5.5.1 for defini-
tion) for (3.1) when the root node is the unique terminal row node in
dd.
3.24 Solve the assignment problem of order 5 with the following cost
matrix, to find a minimum cost assignment.
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⎛⎜⎜⎜⎜⎜⎜⎝
14 18 15 10 10
18 17 15 8 8
16 16 24 25 12
19 10 8 14 11
22 15 28 24 12

⎞⎟⎟⎟⎟⎟⎟⎠
3.25 Consider a spanning treedd in G, in which all row nodes R2 to Rn
have degree

<
= 2, and only R1 has degree > 2. Prove that the associated

primal basic solution (xij(dd)) is primal feasible iff x1j(dd) >
= 0 for all

j. (Balinski [1985])

3.26 A Worst Case Example Consider the assignment problem of
order n with the cost matrix c = (cij) where cij = (n−i)(j−1) for each
i, j. When initiated with the dual feasible spanning tree dd0 discussed
above, corresponding to p = 1, show that Signature method 1 requires
(n− 1)(n− 2)/2, or O(n2) pivot steps to solve this problem. (Balinski
[1985, 1986])

3.4.2 An Inductive Signature Method

Consider an assignment problem of order n with c = (cij : i, j = 1 to
n) as the cost matrix. For r = 1 to n, define cr = (cij : i, j = 1 to r),
and the assignment problem of order r to be the one with row nodes
R1, . . . , Rr, column nodes C1, . . . , Cr, and cost matrix c

r.
Suppose we have an optimum tree dd(r) for problem r. Let ur =

(ur1, . . . , u
r
r), v

r = (vr1, . . . , v
r
r) be the dual basic solution associated with

dd(r). Define ûr+1 = min { cr+1,j − vrj : j = 1 to r}, and let q be a
j which attains this minimum, break ties arbitrarily. Define ûr+1 =
(ur1, . . . , u

r
r, ûr+1). Define v̂r+1 = min { ci,r+1 − ûr+1i : i = 1 to r + 1

}, and let w be r + 1 if it attains this minimum, otherwise w is any i
which attains this minimum. Define v̂r+1 = (vr1, . . . , v

r
r , v̂r+1). In the

bipartite network for problem r+1 define the spanning tree dd(r+1) to
be the one consisting of all the arcs in dd(r) and the two arcs (Rr+1, Cq)
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and (Rw, Cr+1). The dual basic solution corresponding to dd(r + 1) in
problem r+1 is (ûr+1, v̂r+1). This can be verified to be dual feasible. If
w = r+1, dd(r+1) has exactly one terminal row node (the one which
is a terminal row node in dd(r), since Rr+1 has degree 2 in dd(r+ 1) in
this case), and hence an optimum tree for problem r+1. If w W= r+1,
dd(r + 1) has exactly two terminal row nodes (these are Rr+1 and the
terminal row node in dd(r)). So, problem r + 1 can be solved in this
case by Signature method 1 initiated with dd(r + 1), in just one stage,
this takes a computational effort of at most O(r2).

This method proceeds inductively on r. It is initiated with the
problem of order 2 for which the solution is trivially obtained. For r
= 2 to n− 1, it solves problem r + 1 beginning with an optimum tree
obtained for problem r. The final problem is the original problem. The
overall computational effort is

�
O(r2) = O(n3).

Suppose we are solving a sparse assignment problem using this
method. After solving problem r, it may be necessary to rearrange
the remaining rows (and columns in the same order) and select row
r + 1 among them appropriately, in order to guarantee that dd(r) can
be extended to an initial dual feasible spanning tree for problem r+1,
using only cells in which allocations are permitted; or artificial cells
can be introduced as mentioned earlier.

The worst case upper bound on the computational effort of this
inductive version can be shown to be achieved on the problem with
cost matrix c = (cij) where cij = ij for all i, j. The Hungarian method
and Signature method 1 initiated with dd0 also require the worst case
upper bound computational effort on this problem.

3.4.3 Signature Method 2 : A Dual Simplex Method

We now discuss signature methods which are strictly dual simplex
methods on all counts. In these methods, the initial dual feasible span-
ning tree in G is dd0 discussed above constructed with p = 1. Here all
the trees will be treated as rooted trees with R1 permanently desig-
nated as the root node (because in the initial tree, R1 has degree n).
These methods use both the row and column signature vectors.

An arc e in a spanning tree in G is said to be an odd arc if the
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son(e) is the column node on it, even arc otherwise. Also given two
nodes p, q we say that p is higher (lower) than q if p is an ancestor
(descendent) of q. Likewise, given two in-tree arcs e, eI, we say that e
is higher (lower) than eI if e is on the predecessor path of parent(eI)
(eI is on the predecessor path of parent(e)).

We discuss two versions of this method based on the following drop-
ping arc choice rules.

DROPPING ARC CHOICE RULE 1 If a stage has just been
completed and the present spanning tree is dd, terminate if it has a
unique terminal column node, since dd is optimal then. Otherwise,
select any odd arc (Ri, Cj) in dd where Cj has degree >

= 3 in dd, as the
dropping arc in the initial pivot step for the next stage. If you are not
at the beginning of a stage, the preceding pivot step must have caused
the degree of the column node, say l, on the entering arc in that step
to increase to 3 or more. Select the dropping arc to be the unique odd
arc incident at l in dd.

DROPPING ARC CHOICE RULE 2 Let dd be the present dual
feasible but primal infeasible spanning tree in G. Define PC(dd) to be
the set of all in-tree arcs that tie for the most negative primal basic
value among all in-tree arcs on which the column node has degree

>
= 3.

If you are beginning a new stage, select the dropping arc to be the
highest arc in PC(dd). If you are not at the beginning of a stage, the
preceding pivot step must have caused the degree of the column node,
say h, of the entering arc in that step to increase to 3 or more. Choose
the dropping arc to be the unique odd arc on which the column node
has degree

>
= 3 that is highest above h in dd.

Dropping arc choice rule 2 helps to increase the sets X, Y very
rapidly, and thus gain efficiency. See Balinski [1986] for a proof that in
both these versions, the primal basic value associated with the dropping
arc is always

<
= −1. Hence these versions are strictly dual simplex

methods. Balinski [1985, 1986] initiated the signature methods, and the
Signature methods 1,2 are both due to him. The inductive signature
method is due to Goldfarb [1985].
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3.5 Other Methods for the Assignment

Problem

There are several other methods for the assignment problem. The
algorithms of Chapter 5 can be specialized to the assignment problem.
For example the specialization of the algorithms of Section 5.6 leads to
relaxation methods for the assignment problem (Bertsekas [1981]). The
method of Section 5.8.1 specialized to the assignment problem leads to
the shortest augmenting path algorithm for it.

3.6 Algorithm for Ranking Assignments

in Nondecreasing Order of Cost

Consider the assignment problem of order n with c = (cij) as the cost
matrix. Here we discuss an efficient method that actually ranks the
assignments in nondecreasing order of cost starting with a minimum
cost one. In each step it obtains one new assignment in the ranked
sequence with a computational effort of at most O(n3), and can be
continued as long as necessary, and terminated whenever a sufficient
number of assignments in the ranked sequence have been obtained.
We will denote the assignment x = (xij) by the set {(i, j) : xij = 1}.

Correspondingly, we write (i, j) ∈ x, or W∈ x to indicate that xij = 1
or 0 respectively. Let a(1) denote a minimum cost assignment, and
a(1), a(2), . . . , a(r), . . . the ranked sequence of assignments satisfying

for all r
>
= 2

a(r) = a min. cost assignment excluding a(1), . . . , a(r − 1)
In the algorithm we will use subsets of assignments called nodes.

A node is a nonempty subset of assignments a of the form

N = {(i1, j1), . . . , (ir, jr); (m1, p1), . . . , (mu, pu)}
= {a : (i1, j1) ∈ a, . . . , (ir, jr) ∈ a; (3.20)

(m1, p1) W∈ a, . . . , (mu, pu) W∈ a}
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The cells (i1, j1), . . . , (ir, jr) are specified to be contained in, and
the cells (m1, p1), . . . , (mu, pu) are specified to be excluded from
each assignment in N. In the definition of the node N, i1, . . . , ir will
all be distinct, and the same property will hold for j1, . . . , jr. Also,
in all nodes generated in the algorithm, all the specified to be ex-
cluded cells will belong to the same row of the array, i.e., m1 = m2 =
. . . = mu in N. The matrix obtained by striking off rows i1, . . . , ir
and columns j1, . . . , jr from c and replacing the entries in positions
(m1, p1), . . . , (mu, pu) by infinity or a very large positive number, is
known as the remaining cost matrix corresponding to node N and is
denoted by cN. A minimum cost assignment inN can be found by solv-
ing the assignment problem of order n− r with cN as the cost matrix.
Let xN, zN denote a minimum cost assignment in N and its objective
value.
One of the operations performed in the algorithm is that of parti-

tioning a node using a minimum cost assignment in it. LetN be
the node in (3.20) and xN = {(i1, j1), . . . , (ir, jr), (s1, t1), . . . , (sn−r, tn−r)}
be an optimum assignment in it. Each of (s1, t1), . . . , (sn−r, tn−r) should
be distinct from (m1, p1), . . . , (mu, pu) from the definition of N. Let

N1 = {(i1, j1), . . . , (ir, jr); (m1, p1), . . . , (mu, pu), (s1, t1)}
N2 = {(i1, j1), . . . , (ir, jr); (s1, t1); (m1, p1), . . . , (mu, pu), (s2, t2)}

...

Nn−r−1 = {(i1, j1), . . . , (ir, jr); (s1, t1), . . . , (sn−r−2, tn−r−2);

(m1, p1), . . . , (mu, pu), (sn−r−1, tn−r−1)}

The partitioning of N using xN generates the mutually disjoint
subnodes N1,. . ., Nn−r−1, and the partition itself is

N = {xN} ∪ ∪n−r−1v=1 Nv (3.21)

The algorithm maintains a list which is a set of nodes. Each node
in the list is stored together with a minimum cost assignment in it and
its objective value.
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THE ASSIGNMENT RANKING ALGORITHM

Initial step Find a minimum cost assignment a(1) = {(1, j1), . . . , (n, jn)},
say. Let the list at this stage be {(1, j1)}, {(1, j1); (2, j2)}, . . .,{(1, j1), . . .,
(n− 2, jn−2); (n− 1, jn−1)}. A minimum cost assignment in each
of these nodes is found, and it is stored together with the node
in the list. Go to the next step.

General step Suppose a(1), . . . , a(r) in the ranked sequence have
already been obtained, and the list of nodes at this stage is
M1, . . . ,Mf. From the manner in which these are generated,
M1, . . . ,Mf will be mutually disjoint, and their union will be the
set of all assignments excluding a(1), . . . , a(r). Let xMd

be an
optimum assignment in the nodeMd and zMd

its objective value,
for d = 1 to f. So, the next assignment in the ranked sequence
is a(r + 1) = xMd

for a d satisfying zMd
= min. {zM1 , . . . , zM }.

If a(r + 1) is the last assignment in the ranked sequence that is
required, the algorithm terminates here. Otherwise, delete Md

from the list, and partition it using xMd
. Let Md,1, . . . ,Md,f be

the subnodes generated. Find a minimum cost assignment in
each of them, add each of these subnodes to the list and go to
the next step.

Discussion

If a predetermined number, h, of assignments in the ranked se-
quence are required, only the h nodes that are associated with the
least objective values are stored in the list and the rest are pruned. If
it is desired to obtain all the assignments whose cost is

<
= some prede-

termined number, α, only those nodes in which the minimum objective
value is

<
= α are stored in the list, and the rest are pruned.

As an example consider the assignment problem of order 10 with
the following cost matrix.
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c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 51 52 87 38 60 74 66 0 20
50 12 0 64 8 53 0 46 76 42
27 77 0 18 22 48 44 13 0 57
62 0 3 8 5 6 14 0 26 39
0 97 0 5 13 0 41 31 62 48
79 68 0 0 15 12 17 47 35 43
76 99 48 27 34 0 0 0 28 0
0 20 9 27 46 15 84 19 3 24
56 10 45 39 0 93 67 79 19 38
27 0 39 53 46 24 69 46 23 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.22)

The minimum cost assignment in this example is a(1) = {(1, 9), (2,
7), (3, 3), (4, 8), (5, 6), (6, 4), (7, 10), (8, 1), (9, 5), (10, 2)}, with an
objective value of 0. The list at the end of the initial step consists of
the following nodes. The minimum objective value in each node is also
recorded.

M1 = {(1, 9)}, zM1 = 10

M2 = {(1, 9), (2, 7)}, zM2 = 14

M3 = {(1, 9), (2, 7), (3, 3)}, zM3 = 14

M4 = {(1, 9), (2, 7), (3, 3), (4, 8)}, zM4 = 1

M5 = {(1, 9), (2, 7), (3, 3), (4, 8), (5, 6)}, zM5 = 15

M6 = {(1, 9), (2, 7), (3, 3), (4, 8), (5, 6), (6, 4)}, zM6 = 53

M7 = {(1, 9), (2, 7), (3, 3), (4, 8), (5, 6), (6, 4), (7, 10)}, zM7 = 45

M8 = {(1, 9), (2, 7), (3, 3), (4, 8), (5, 6), (6, 4), (7, 10), (8, 1)}, z M8 = 47

M9 = {(1, 9), (2, 7), (3, 3), (4, 8), (5, 6), (6, 4), (7, 10), (8, 1), (9, 5)}, zM9 = 56

Comparing the values of zM1 to zM9 , we find that a(2) is a minimum
cost assignment inM4. It is a(2) = {(1, 9), (2, 7), (3, 3), (4, 2), (5, 6),
(6, 4), (7, 8), (8, 1), (9, 5), (10, 10)} with an objective value of 1. If it
is required to find a(3), thenM4 should be partitioned using a(2) and
the algorithm continued.
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Comment 3.3 This ranking algorithm has been taken from Murty
[1968]. The same approach has been extended to rank the chains be-
tween a pair of nodes in a directed network (Section 4.7); to rank
the spanning trees in an undirected network(Section 9.3); to rank the
cuts in a capacitated network (Hamacher [1982], Hamacher, Picard and
Queyranne [1984]); and in general to rank the solutions of any discrete
optimization problem(Lawler [1972]).

.

3.7 Exercises

3.27 Consider the assignment ranking example given above for the
assignment problem of order 10 with the cost matrix c given in (3.22).
Find a(3) to a(6) in this example.

3.28 There are n jobs with given processing durations ti, i = 1 to n;
and job starting times, si, i = 1 to n. Each job must be processed
without interruption on any one of the unlimited set of identical ma-
chines. Each machine can process any job, but no more than one job
at a time. Formulate the problem of determining the smallest number
of machines to process all the jobs, as one of finding a minimal chain
decomposition of a poset. Solve the problem with the following data.
(Gertsbakh and Stern [1978]).

i 1 2 3 4 5 6 7 8 9 10
ti 30 25 10 18 65 7 9 10 3 18
si 4 30 50 68 7 19 8 110 150 88

3.29 An Application in Job Scheduling There are n jobs. For
i = 1 to n, the processing of the ith job has to start at specified time ai
and must be finished at time bi(> ai), ti = bi − ai being the processing
time for this job. All the jobs can be processed by a type of machine,
of which several copies are available. The set-up time required for a
machine to process job j after processing job i is rij

>
= 0, where the

(rij) satisfy the triangle inequality : rij
<
= rip+rpj, for all i, j, p. Define
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a partial order W≺ on the set of jobs by i W≺ j iff bi + rij <= aj (i.e., i W≺ j
iff j can be processed by the same machine after it processes job i).
Verify that this satisfies all the conditions for being a partial order. It is
required to find the minimum number of machines needed to meet the
given job schedule. Formulate this as the problem of finding a minimal
chain decomposition of a poset. Solve the numerical problem with the
following data: n = 7, rij = 4 for all i W= j,

i 1 2 3 4 5 6 7
ai 0 2 19 12 11 29 37
bi 9 8 23 25 22 33 47

(Ford and Fulkerson [1962 of Chapter 1]).

3.30 Consider n men and n women such that each man-woman pair
is either ‘compatible’ or ‘incompatible.’ If there is no way to match the
men and women into n compatible couples, then prove that for some
p > 0, there is a subset of p men who together are compatible with
only r women where r

<
= p− 1.

3.31 Consider the transportation problem with an additional con-
straint on the left-hand side, where n,M and (cij) are data. Prove
that this problem is equivalent to that of minimizing z subject to the
system of constraints on the right-hand side.

minimize z =
n3
i=1

n3
1=j

cijxij
n+13
j=1

xij = 1, i = 1 to n

subject to
n3
j=1

xij
<
= 1, i = 1 to n

n+13
i=1

xij = 1, j = 1 to n

n3
i=1

xij
<
= 1, j = 1 to n

n+13
j=1

xn+1,j =M + n

n3
i=1

n3
j=1

xij
<
= n−M

n+13
i=1

xi,n+1 =M + n

xij
>
= 0, for all i, j xij

>
= 0

0
<
= xn+1,n+1

<
= n.

(Glover, Klingman, and Phillips [1984])
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3.32 Let c be the cost matrix for an assignment problem of order n,
for which x̄ is an optimum assignment, and (ū, v̄) an optimum dual
solution. Let cI be a matrix obtained by changing the values in a single
row, or a single column of c. Beginning with x̄, (ū, v̄), show that an
optimum assignment with cI as the cost matrix can be obtained with
a computational effort of at most 0(n2). (Weintraub [1973])

3.33 Let a, b be two given vectors in IRn. It is required to find a per-
mutation of the vector b which brings it as close to a as possible. This
is equivalent to finding a permutation P of order n which minimizes
, a − Pb ,. For any p− norm (1

<
= p

<
= ∞) , · ,, show that this

problem can be transformed into an assignment problem.

3.34 Consider the cost minimizing assignment problem with the cost
matrix (cij) where cij = uivj , with u1

>
= u2

>
= . . .

>
= un > 0 and

0 < v1
<
= v2

<
= . . .

<
= vn. Prove that the unit matrix is an optimum

assignment for this problem.

3.35 Consider an m× n transportation problem. Let a block of cells
in this problem refer to a subset of cells in the array of the following
forms: a subset of cells within a single row or a single column of the
array, or the set of all cells in a subset of rows or a subset of columns
of the array. Suppose there are additional constraints in the problem,
where each constraint is either a lower bound or an upper bound on
the sum of flows in all the cells in some block. Show that the overall
problem can still be posed as a minimum cost network flow problem.

3.36 Consider the following school timetable problem. There are n
classes, m teachers, and p time periods in which lectures could be
scheduled every week. Each period is one hour long. Following data
is available. Discuss a method for constructing a timetable for class-
teacher meetings over the available periods each week, subject to the
constraints given, so that as many of the meetings as possible are sched-
uled. (DeWerra [1971])

αi = number of periods that class i should meet per week,
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i = 1 to n

βj = number of periods that teacher j should teach per week,

j = 1 to n

eit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if class i is unavailable for lecture during period t

every week (they may have other non-lecture
activities scheduled for that period), i = 1 to,n

0, otherwise

djt =

⎧⎪⎨⎪⎩
1, if teacher j is unavailable to lecture in period t

every week, j = 1 to m, t = 1 to p
0, otherwise.

3.37 Consider the assignment problem (3.1), (3.2). There may be
many assignments which are optimal to this problem. Define a second
best valued assignment in this problem to be an assignment whose
objective value is strictly greater than that of an optimum assignment
but has minimum cost among all such assignments. Develop a suitable
modification of the partitioning routine using an optimum assignment
to the problem, discussed in Section 3.6, to find a second best valued
assignment with a computational effort of at most O(n3). (Matsui,
Tamura, and Ikebe [1991]).

3.38 Assignment Using Choice Lists Giving numerical measures
for preferences is hard, it is more natural for preferences to be expressed
by choice lists without actual numerical measures. Consider a situation
involving people P1, . . . , Pn and items x1, . . . , xn. Each person gives
his/her choice list which is the list of the items in decreasing order of
preference.
A choice list is a linear ordering if each item in the list is strictly

preferred over those appearing later (example: x3, x2, x1, x4; here x3
is strictly preferred over x2, etc.) It is a weak preference ordering if
some set of consecutive items in the list are considered equal in the
individuals choice. We will enclose these within brackets (example:
x4, (x2, x3), x1; here x4 is strictly preferred over x2 or x3, x2 and x3 are
equally preferred and either of these is strictly preferred over x1).

(i) If each person gives his/her choice list, but items have no choice
lists for people, develop an algorithm for assigning each person
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a different item, so that each gets his/her highest favored item
as far as possible. Apply this algorithm to the problem in which
n = 4 and the choice lists are

P1 : x4, (x2, x3), x1
P2 : (x1, x3), (x2, x4)
P3 : x3, x2, x1, x4
P4 : (x1, x3, x4), x2.

(ii) Suppose each person may not list all items in his/her choice list,
or the number of people and items may not be equal. Modify
the algorithm developed above to assign at most one item per
person, so that as many people as possible are assigned their
highest favored items as far as possible.

(iii) Consider a case with n people, n items again. Each person gives
his/her choice list for items. Also, each item gives its choice list
of persons. With respect to these choice lists, an assignment a of
items to people is said to be a stable assignment if there exists
no pair (Pi, xj) without an allocation in a such that both Pi and
xj prefer each other to their partners in a. Develop an algorithm
for finding a stable assignment of items to people.

(Wilson [1977], Gale and Shapley [1962])

3.39 Stable Assignment Problem A group consists of boys,
b1, . . . , bn; and girls, g1 . . . , gn. Each person lists the persons of the
other sex in the order in which he/she prefers them, this is called that
person’s choice list. An assignment of boys to girls, a, is said to be a
stable assignment with respect to these choice lists, if there is no pair
(bi, gj) without an allocation in a, such that both bi and gj prefer each
other to their partners in a. Gale and Shapley [1962] proposed the
following algorithm for finding a stable assignment.
“To start, let each girl propose to her favorite boy. Each boy who

receives more than one proposal rejects all but his favorite from among
those proposed to him. However, he does not accept her yet, but keeps
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her on a string to allow for the possibility that someone better may
come along later.

We are now ready for the second stage. Those girls who were re-
jected now propose to their second choices. Each boy receiving propos-
als chooses his favorite from the group consisting of the new proposers
and the girl on his string, it any. He rejects all the rest and again keeps
the favorite in suspense.

We proceed in the same manner. Those who are rejected at the
second stage propose to their next choices, and the boys again reject
all but the best proposals they have had so far. As soon as the last boy
gets his proposal the “courtship” is declared over, and each boy is now
required to accept the girl on his string.” Remember that this algorithm
terminates as soon as every boy receives at least one proposal.

(i) Prove that this algorithm terminates with a stable assignment.

(ii) In the assignment obtained under this method, prove that at most
one girl ends up with her last choice as a partner.

(iii) Prove that this algorithm terminates after at most n2 − 2n + 2
stages.

(iv) Apply this algorithm when n = 5, and the choice lists are:

b1 : g4, g3, g2, g1, g5, g1 : b1, b2, b3, b4, b5
b2 : g3, g2, g1, g5, g4, g2 : b4, b1, b2, b3, b5
b3 : g2, g1, g5, g4, g3, g3 : b3, b4, b1, b2, b5
b4 : g1, g5, g4, g3, g2, g4 : b2, b3, b4, b1, b5
b5 : arbitrary g5 : b1, b2, b3, b4, b5

(v) Verify that the algorithm described above goes through exactly
n2 − 2n + 2 stages before termination when the choice lists are
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as specified below.

b1 : gn−1, gn−2, . . . , g1, gn, g1 : b1, b2, . . . , bn−1; bn
b2 : gn−2, gn−3, . . . , g1, gn, gn−1 g2 : bn−1, b1, b2, . . . , bn−2, bn
... g3 : bn−2, bn−1, b1, . . . , bn−3; bn

bn−1 : g1, gn, gn−1, . . . , g2
...

bn : arbitrary gn−1 : b2, b3, . . . , bn−1, b1; bn
gn : b1, b2, . . . , bn−1, bn

(vi) If the method described above goes through the upper bound of
n2−2n+2 stages before termination, prove that one girl must get
her last choice and the other girls must get their second to last
choices in the assignment obtained. Also, in this case prove that
the boy who received the last proposal must be the last choice of
all the girls. Also in this case prove that each boy, except possibly
the last one to receive a proposal, must get his first choice.

(vii) Show that the upper bound on the number of proposals made in
the above algorithm before termination is n+(n−1)2 = n2−n+1,
and that this is attained in the problem with the following data,
even though the method does not go through the upper bound
on the number of stages in this problem.

n = 4 and the choice lists are given below

b1 : g3, g2, g1, g4 g1 : b1, b3, b2, b4
b2 : g1, g4, g2, g3 g2 : b2, b1, b3, b4
b3 : g2, g1, g3, g4, g3 : b2, b3, b1, b4
b4 : arbitrary g4 : b1, b3, b2, b4

(viii) In the same manner consider the following choice lists.

b1 : g3, g4, g5, . . . , g1, g2, g1 : bn−1, b1, b2, b3, . . . , bn−2, bn
b2 : g4, g5, g6, . . . , g2, g3, g2 : b1, b2, b3, b4, . . . , bn−1, bn
b3 : g5, g6, g7, . . . , g3, g4, g3 : b2, b3, b4, b5 . . . , b1, bn
...

...
bn−1 : g2, g3, g4, . . . , gn, g1, gn−1 : bn−2, bn−1, b1, b2, . . . , bn−3, bn
bn : g1, g2, g3, . . . , gn−1, gn, gn : bn−1, b1, b2, b3, . . . , bn−2, bn
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For these lists prove the following: (1) in stage 1, all girls propose
and the only girl whose proposal is rejected is g1. (2) At every
stage at most one proposal is made. (3) At stage 1 < i < n2 −
2n + 2, girl gr will make her tth proposal to the boy bs where
r, s, t can be expressed in terms of i and n as

r =

l
(i− 1) mod n if (i− 1) mod n W= 0
n otherwise

t = 1 + {(i− 1)/nQ, and

s =

l
t+ r − 2 for t+ r − 2 < n
t+ r − 1− n otherwise.

This proposal is accepted and a girl grI is jilted by boy bs where
rI = r + 1, if r W= n; 1 otherwise. (4) At stage n2 − 2n + 2, g1
makes her nth proposal to bn and that proposal is accepted. (5)
This takes n2 − 2n+ 2 stages.

(Itoga [1978], Kapur and Krishnamoorty [1985])

3.40 Consider the problem discussed in Exercise 3.39. Each person
lists all the persons of the other sex in decreasing order of his/her
preference. Show that every stable assignment x = (xij) of boys to
girls is an extreme point of the set of feasible solutions of the following
system and vice versa.

n3
j=1

xij = 1, i = 1 to n

n3
i=1

xij = 1, j = 1 to n

xpq +
3
(xpj : over girls j preferred over girl q by boy p) +3
(xiq : over boys i preferred over boy p by girl q)

>
= 1, p, q = 1 to n

xij
>
= 0, for all i, j.

(Vande Vate [1989])
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3.41 The following (in Figure 3.10) is a minimum cost network flow
model for a 3-period production planning problem with inventory and
backorder bounds. k1, k2, k3 are production capacities; and d1, d2, d3
are the demands in the three periods. s1, s2 are respectively the in-
ventory limits from periods 1 to 2, and 2 to 3; b1, b2 are the backorder
bounds in periods 1 and 2. These data provide the capacities for arcs
in the following network, all lower bounds are 0. The cost data is
not shown. Transform this problem into an equivalent uncapacitated
transportation problem. (Evans [1985]).

s

s1
s2

- d
1

- d2 - d
3

b1
b2

21 3
d + d + d

k2 k3k1

Figure 3.10:

3.42 Allocation of Candidates to Jobs There are m jobs, and
n candidates. For each candidate, we are given a nonempty subset of
jobs (called candidate’s job-set) to which that candidate could be allo-
cated. Each candidate must be allocated to exactly one job in his/her
job-set, but each job can be allotted any number of candidates. Let
r1 . . . , rm be the number of candidates allocated to various jobs in an
allocation. For the ith job, we are given a monotonic strictly decreasing
cost function fi(ri), i = 1 to m. Arrange the costs f1(r1), . . . , fm(rm)
in non-increasing order. The resulting vector is called the ranked cost
vector associated with the allocation. It is required to find an alloca-
tion which corresponds to a lexico minimum of the ranked cost vector
subject to the conditions discussed above.
As a numerical example consider m = 3, n = 5, and the job-sets of

candidates 1 to 5 to be {1}, {1, 2}, {1, 3}, {2, 3}, {3} respectively. Let
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the cost functions fi(ri) for jobs i = 1 to 3 be 1
r1
, 2
r2
, 5
r3
respectively.

Consider the two allocations listed below

Job allocated to cand. j
Alloc. j = 1 2 3 4 5 r1 r2 r3 f1(r1) f2(r2) f3(r3)
a1 1 2 3 3 3 1 1 3 1 2 5

3

a2 1 1 1 2 3 3 1 1 1
3

2 5

The ranked cost vectors associated with the allocations a1, a2 are
(2, 5

3
, 1), (5, 2, 1

3
) respectively, and hence by the lexico minimum crite-

rion a1 is better than a2. In fact in this numerical example it can be
shown that a1 is an optimum allocation for the problem.

(i) Model this problem using a bipartite network. Show that each
allocation of candidates to jobs corresponds to a subnetwork of
this bipartite network.

(ii) Given an allocation a, define an alternating path wrt it, to be
a path beginning and terminating with job nodes, with succes-
sive edges having a common node and alternately belonging/not
belonging to a.

Given a feasible allocation a and an alternating path P wrt it, de-
fine the operation of rematching a using P to be that of obtaining
an allocation a1 by (A) including in a allocations corresponding
to edges in P which are not already in a, and (B) deleting all al-
locations common to a and P . Show that the resulting allocation
a1 will be feasible.

(iii) Define an alternating path P wrt a feasible allocation a, to be an
improving alternating path wrt a, if rematching a using P leads
to an allocation a1 whose ranked cost vector is lexico smaller than
that of a.

Prove that a feasible allocation corresponds to a lexico minimum
ranked cost vector iff there exists no improving alternating path
wrt it.
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(iv) Develop an algorithm which finds an optimum allocation by step-
wise improvement of a feasible allocation.

(v) Consider the following instance that arises in the army. m = 2,
the jobs are driving and cooking. n = 3600 candidates who are
reservists. Of the 3600; 900 can only drive, 2100 can only cook,
and the remaining 600 can do both.

The army needs 1200 man months of driving time and 1800
man months of cooking time annually. Let r1, r2 be the number
of candidates allocated to driving, cooking respectively. Then
f1(r1) = 1200/r1, this is the months of army service per annum
for drivers. Likewise f2(r2) = 1800/r2 is the months of army
service for cooks. Beginning with the feasible allocation with
r1 = 900, r2 = 2700, obtain an optimum allocation.

(Cramer and Pollatschek [1979])

3.43 A problem of interest in core management of pressurized water
nuclear reactors is to find an optimal allocation of the given fuel as-
semblies which may be differing on their burn-up states, to particular
locations in the reactor, such that each full assembly is assigned to a
location and vice versa, under a constraint on the power distribution
form factor. This gives rise to an assignment problem subject to one
additional constraint, of the following form

minimize z =
n3
i=1

n3
j=1

cij xij

subject to
n3
j=1

xij = 1, i = 1 to n

n3
i=1

xij = 1, j = 1 to n

xij
>
= 0, for all i, j (3.23)

n3
i=1

n3
j=1

dij xij
<
= b

and xij integer for all i, j
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where, without any loss of generality, we can assume that cij, dij
>
= 0

for all i, j and b > 0. (3.23) is an integer program. Show that it is an
NP-hard problem. Develop a practically efficient method for solving
it, based on Lagrangian relaxation and assignment ranking. Apply
this method to solve the numerical problem with the following data:
n = 4, b = 26.

(cij) =

⎛⎜⎜⎜⎝
1 5 7 4
9 7 9 9
5 5 11 5
8 7 8 5

⎞⎟⎟⎟⎠ , (dij) =
⎛⎜⎜⎜⎝
9 6 4 8
7 5 9 6
5 8 7 11
6 3 2 10

⎞⎟⎟⎟⎠
(Aggarwal [1985], Gupta and Sharma [1981])

3.44 In some transportation models, the costs of different shipments
are borne by different individuals, and the sum of all the costs is not
a good objective to minimize. In these models, a better objective is to
minimize the maximum cost incurred by any single individual, called
the bottleneck objective function. This leads to:

minimize (max {cij : (i, j) such that xij > 0})
subject to

n3
j=1

xij
<
= ai, i = 1 to m (3.24)

n3
i=1

xij
>
= bj , j = 1 to n

xij
>
= 0, for all i, j

(i) Develop an efficient algorithm for this problem. Apply this algo-
rithm on the numerical problem with the following data.

cij
j = 1 2 3 4 5 6 7 ai
i = 1 10 6 4 8 8 10 0 27
2 4 2 2 2 8 1 0 26
3 14 12 9 4 9 3 0 26
4 4 7 6 9 1 4 0 27
bj 19 17 17 15 10 8 20
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(ii) A commonly encountered constraint in distribution problems is
the requirement that the entire demand of each customer must be
supplied from a single source or supplier. Consider the problem
(3.24) with such an additional constraint. Develop a practical
approach for solving this combined problem. Apply this approach
on the numerical problem with the data given above.

(Nagalhout and Thompson [1984])

3.45 Classroom Allocation to Courses A big university has
a total of L classrooms of varying capacities (the capacity of a room
is the number of students it can accommodate) spread over various
buildings. In a term the university is planning to offer a total of N
courses. Each course meets for a total of 2, 3, or 4 hours per week
(this is known as the number of credit hours for the course) and this
may all be in a single session on one day of the week, or split into
several sessions (each of the sessions are either one, or one and a half,
or three hours in length) over several days of the week. For example a
3 credit hour course may meet in one session of three hours say from
7-10 PM on one day; or in three hourly sessions say from 2 to 3 PM
on three different days of the week; etc. For each course the number
of credit hours, and the sessions in which they will meet (i.e. on which
days the course meets and the beginning and ending time of the session
on each day) has already been determined and all this information is
given. The expected enrollment in each course is available, and using
this and other information, the university has compiled a subset Xi of
classrooms in which they would prefer to hold course i, i = 1 to N .

The constraints in allotting classrooms to courses are the following:
At any point of time there can be only one course allotted to a class-
room; also, if a course consists of several sessions during a week, all the
sessions must meet in the same classroom. It is required to allot class-
rooms to courses from their preferred subset, in such a way that the
number of courses for which allocations are made is maximized (i.e.,
the number of courses for which you are unable to allot a classroom
from its preferred subset, should be as low as possible). Model this
problem.
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3.46 Bottleneck Assignment Problem with NodeWeights Let
a1, . . . , an ; b1, . . . , bn be weights associated with the rows; and columns
of the n x n assignment array corresponding to a bipartite network G.
For each i = 1 to n, let Si = {j : (i; j) is an edge in G}, and corre-
spondingly for each j = 1 to n let Pj = {i: j ∈ Si}. Consider the
following bottleneck assignment problem: find x = (xij) to

minimize (maximum {(ai + bj) xij : i, j = 1 to n})
subject to

3
j∈Si

xij = 1, i = 1 to m

3
i∈Pj

xij = 1, j = 1 to n (3.25)

xij = 0 or 1, for all i, j

xij = 0, for j W∈ Si
(i) Show that this is a special case of the bottleneck assignment

problem discussed in Section 3.1.5 in which cij = ai + bj for
j ∈ Si,∞ for j W∈ Si.

(ii) Consider the special case of (3.25) in which all Si and Pj are
{1, . . . , n}. In this case order the ais in nonincreasing order, and
bjs in nondecreasing order. Suppose these orders are ai1

>
= ai2

>
=

. . .
>
= ain and bj1

<
= bj2

<
= . . .

<
= bjn . In this case, show that the

assignment {(i1, j1), (i2, j2), . . . , (in, jn)} is an optimum solution
of (3.25).

(iii) Consider cell (i, j) of the n × n assignment array admissible if
j ∈ Si, inadmissible otherwise. Develop a dual algorithm for
(3.25) which starts with an infeasible assignment (i.e., one con-
taining some allocations in inadmissible cells), while maintaining
optimality conditions, and tries to reduce the infeasibility in each
iteration.

(iv) Let x̄ = (x̄ij) be a feasible assignment to (3.25), andM= {(i; j); x̄ij =
1} be the corresponding matching in G. The cell (r, s) is said to
be a bottleneck cell (corresponding to a bottleneck edge in G)
with respect to x̄ if x̄rs = 1 and ar + bs = max{ai+ bj ; (i, j) such
that x̄ij = 1}.
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A decreasing alternating path from r to s is G with respect to
M or x̄ is a path from r to s satisfying the following properties:
(1) it does not contain (r; s), (2) edges in it are alternately inM
and not inM, (3) for every edge (i; j) on it which is not fromM,
we have ai + bj < ar + bs. When (r; s) is a bottleneck cell with
respect to x̄ and there is no decreasing alternating path from r
to s, prove that x̄ is an optimum solution for (3.25)

If a decreasing alternating path exists from r to s, define x̂ = (x̂ij)
by

x̂ij =

⎧⎪⎨⎪⎩
1− x̄ij for all (i, j) on the path.
0, for (i, j) = (r, s).
x̄ij for all (i, j) W= (r, s) not on the path.

Then show that x̂ is a better assignment for (3.25) than x̄. Us-
ing these results develop a primal algorithm for (3.25) that starts
with and maintains feasible assignments and strictly decreases
the objective value in each iteration by finding a decreasing al-
ternating path and using it as above. Discuss an initialization
phase for this algorithm if an initial feasible assignment is not
available.

(Lawler [1976 of Chapter 1], Carraresi and Gallo [1984])

3.47 The Bus Driver Rostering Problem Consider an m day
time horizon, with n shifts in each day. Each shift on each day is to
be manned by a single bus driver. wpj denotes the weight of the jth
shift on day p, j = 1 to n, p = 1 to m, this may be the time duration or
some other measure of the workload for that shift. There are n drivers.
This problem is concerned with the assignment of drivers to shifts over
the days of the horizon so that each driver receives an even balance of
each type of shift. It can be formulated as a bottleneck problem, to
minimize the maximum total weight of the shifts assigned to a driver.
Represent the jth shift of pth day by a node numbered (p, j). This

node has weight wpj . Let Sp(j) be the set of shifts in day p + 1 that
can be assigned to a driver who has been assigned shift j in day p by
union rules or other work constraints. Draw an arc from node (p, j) to
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1,n

2,1

2,2

2,n
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m,2

m,n

Figure 3.11:

each node (p + 1, i) for i ∈ Sp(j). Let Pp(i) be the set of shifts in day
p which could have been assigned in day p to a driver to whom shift i
has been assigned in day p+1. The results is a layered acyclic network
of the form shown in Figure 3.11.
A feasible work assignment to a single worker corresponds to a

chain from a node in the first layer to a node in the mth layer in this
network. Its total workload being given by the sum of the weights of
the nodes on the chain. The problem of finding work assignments to
all the n workers, such that the maximum workload is minimized, can
be formulated as the problem of finding, in the network in Figure 3.11,
n node disjoint chains from layer 1 to layer m so as to minimize the
longest among these chains. Give a mathematical formulation of this
problem using 0-1 variables.
Prove that a feasible solution to this problem exists iff for each

p = 1 to m− 1, the constraints�
j∈Sp(i) x

p
ij = 1, i = 1 to n�

i∈Pp(j) x
p
ij = 1, j = 1 to n

xpij = 0 or 1, for all i, j

are feasible. If m = 2, show that this problem reduces to a bottleneck
assignment problem of the form discussed in Exercise 3.46.
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When m > 2, develop a heuristic algorithm for this problem based
on the bottleneck assignment problem discussed in Exercise 3.46. (Car-
raresi and Gallo [1984])

3.48 A Vehicle Scheduling Application This application is con-
cerned with the optimal assignment of vehicles to time-tabled trips so
that each trip is carried out by one vehicle subject to some constraints.
A trip is defined by a quadruple (τi, li, oi, di) where

τi = scheduled start time of the ith trip.

li = duration or length of the ith trip.

oi = the origin or the start terminal for the ith trip.

di = the destination terminal for the ith trip.

Suppose the time-table consists of n trips, denoted by ζ1, . . . , ζn. In
addition to these regular trips, deadheading trips are allowed between
terminals. δij denotes the duration of a deadheading trip from di to
oj, i, j = 1 to n, i W= j. The ordered pair of trips (ζi, ζj) is said to be
a compatible pair if τi + li + δij + ε

<
= τj , where ε

>
= 0 is a tolerance

parameter to absorb possible delays. If (ζi, ζj) is compatible, it is clearly
feasible to have trips ζi, ζj operated in sequence by the same vehicle.
A vehicle duty is a sequence ϑ = (ζi1 , ζi2 , . . . , ζir) of trips satisfying
the property that every consecutive pair of trips in this sequence is
compatible, all these trips can be operated by the same vehicle. A
feasible vehicle schedule is a family {ϑ1, . . . ,ϑg} of vehicle duties such
that each trip ζ1, . . . , ζn belongs to exactly one ϑh, h = 1 to g.
Construct a bipartite network G=(S,T,A) where S={s1, . . ., sn},

T={t1, . . ., tn} and A = {(si, tj); for all i, j such that (ζi, ζj) is a
compatible pair}.
(i) A vehicle duty ϑ = (ζi1, ζi2, . . . , ζir) can be represented in G by

the set of arcs {(si1, ti2), (si2, ti3), . . . , (sir−1 , tir)} which can be
verified to be a matching in G. A vehicle duty containing only
one trip {ζj} can be represented by leaving both nodes sj, tj as
exposed nodes in G. Using this, show that there is a one-to-one
correspondence between vehicle schedules and matchings in G.
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Consider the example in which there are 4 terminals a,b,c,d, and
5 trips with the following data: ε = 0

Trip τi li (minutes) oi di
ζ1 7:10 a.m. 20 a b
ζ2 7:20 a.m. 20 c d
ζ3 7:40 a.m. 25 b a
ζ4 8:00 a.m. 30 d c
ζ5 8:35 a.m. 30 c d

(δij) =

to a b c d
from a 0 15 20 20

b 15 0 25 10
c 20 25 0 15
d 20 10 15 0

.

Construct the network G for this example and obtain the vehicle
schedule corresponding to the matching {(s1, t3), (s2, t4), (s4, t5)}
in it.

(ii) Define the set of arcs A∗ = {(si, tj); (si, tj) W∈ A defined above,

and either i = j or τi
>
= τj + lj + δji}. Let GI denote the network

obtained by augmenting G with the additional arcs A∗, and in-
troducing a unit exogenous supply at each si, i = 1 to n (these
are now source nodes), and a unit demand at each tj , j = 1 to n,
and lower bound of 0 and capacity of 1 on each arc in A ∪A∗.
If f = (fsi,tj ) is an integer feasible flow vector in G

I, it defines an
assignment or perfect matching in GI. If fsi,tj = 1 then the arc
(si, tj) is in the perfect matching; and in addition if (si, tj) ∈ A
make the trips ζi and ζj belong in that order to the same vehicle
duty, and if (si, tj) ∈ A∗ then make ζi and ζj to be the last and
first trips respectively of a vehicle duty (in this case they may or
may not belong to the same vehicle duty). Also, if fsi,ti = 1 then
make ζi as the only trip of a vehicle duty. Under this convention,
show that every feasible integer flow vector in GI (or a perfect
matching in GI) corresponds to a feasible vehicle schedule where
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the number of vehicles used is equal to the number of units of
flow (or arcs in the perfect matching) on arcs from the set A∗
and vice versa. Draw the network GI for the example given in (i)
and illustrate this point.

(iii) Now consider the case in which all the vehicles are housed in one
depot (common in small size transit companies, or those in which
the service area is partitioned into zones with each zone assigned
to one single depot). Assume that there are no constraints other
than compatibility and that all vehicles are of the same type.

Formulate the problem of finding a vehicle schedule to minimize
the fleet size as an assignment problem.

If it is required to find a vehicle schedule that minimizes the
operational costs (these include deadheading travel costs, and
cost of any idle time between the end of a trip and the starting of
the next), formulate the problem of finding it as an assignment
problem.

Also discuss how one can find a vehicle schedule that minimizes
a combination of the above two costs, or one that minimizes the
operational cost subject to the constraint that the fleet size is the
minimum.

(iv) Now consider the case in which there are multiple depots, each
with a given capacity for the number of vehicles it can house.
Formulate this multiple depot problem as a 0-1 integer program
and discuss heuristic approaches to obtain reasonable solutions
for it.

(Carraresi and Gallo [1984])

3.49 Let G=(S,T; A) be a bipartite network with |S| = |T|. E ⊂ A
is a specified subset of edges in G. It is required to determine whether
there exists a perfect matching in G containing at most r edges from
E. Formulate this as a minimum cost network flow problem.

3.50 Let G=(N ,A) be a directed acyclic network. Define a chain
cover for G to be a node disjoint union of chains in G (degenerate
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chains consisting of a single node by itself being admissible) which
contains all the nodes in N . The size of a chain cover for G is defined
to be the number of chains in it. The chain covering number for G is
the size of a minimum size chain cover.

(i) Show that a chain cover for G is of minimum size iff it contains
the maximum number of arcs among all chain covers.

(ii) Based on the result in (i), a greedy approach for finding a min-
imum size chain cover in G, consists of successively determining
longest chains. Show that this greedy approach fails to give a
minimum size chain cover in the following network in Figure 3.12
(minimum size is 4, greedy approach gives a cover of size 5).

Figure 3.12:

(iii) Obtain a new network GI = (N I,AI) from G by the following
procedure. Replace each node i in N by a pair of nodes iI and
iII. Each are incident into i in G becomes an arc incident into
iI, and each arc incident out of i becomes an arc incident out of
iII, in GI. So, every node in GI has either zero in-degree or zero
out-degree. Show that GI is bipartite.

(iv) Show that the transformation in (iii) converts the arcs in any col-
lection of node-disjoint chains in G into a matching in GI. Using
the fact that G is acyclic, show that every matchings in GI cor-
responds to a unique set of arcs of some node-disjoint collection
of chains in G.
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From these results show that a minimum size chain cover in G
can be obtained by finding a maximum cardinality matching in
GI.

(Boesch and Gimpel [1977])

3.51 Let G=(N ,A, s̆, t̆) be an acyclic network with s̆ as the source
node with in-degree zero, and t̆ as the sink node with out-degree zero.
An s̆ − t̆ chain cover for the nodes of G is a collection of chains from
s̆ to t̆ in G such that each node i ∈ N is contained on at least one
chain in the collection, its size is defined to be the number of chains in
it. A minimum s̆− t̆ chain cover for nodes in G is one of the smallest
possible size, let α denote its size.
A pair of distinct nodes i, j ∈ N are said to be incomparable in G,

if there exists no chain from i to j or from j to i in G. A subset X ⊂
N is an incomparable node set in G if every pair of distinct nodes in
X is incomparable. Let β be the cardinality of a maximum cardinality
incomparable node set in G.
Transform G into GI by splitting each node i ∈ N\{s̆, t̆} into two

nodes iI, iII and adding the arc (iI, iII), all arcs incident into (out of) i
in A will be incident into iI (out of iII) in GI. Define lower bounds for
flows on arcs in GI to be 1 for all arcs of the form (iI, iII) and 0 for all
other arcs, and capacities to be +∞ on all the arcs. Find a minimum
value feasible flow vector f̄ in GI, let its value be v̄. Then prove that
v̄ = α = β. Use this to develop an algorithm for finding a minimum
s̆− t̆ chain cover for nodes in G.
This provides a method based on the minimum value flow problem

for finding α and β. An alternate method for the same based on max-
imum cardinality matching is discussed in Section 3.1.4. (Ntafos and
Hakimi [1979])

3.52 Let G =(N ,A, s̆, t̆) be an acyclic network with s̆ = the source
node with in-degree zero, and t̆ = the sink node with out-degree zero.
An s̆ − t̆ chain cover for arcs in G is a collection of chains from s̆ to t̆
in G that contains all the arcs in A, its size is the number of chains in
it. Let ϑ be the size of a minimum size s̆− t̆ chain cover for arcs in G.
Two arcs e1, e2 in G are said to be incomparable if there is no chain

from s̆ to t̆ containing both of them. An incomparable arc set in G
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is a set of arcs every pair of which are incomparable. Let δ be the
cardinality of a maximum cardinality incomparable arc set in G.
Prove that ϑ = δ. As in Exercise 3.51, show that a minimum size

s̆− t̆ chain cover for arcs in G can be found by the minimum value flow
method by applying it directly on G by placing a lower bound of one
unit on each arc in G.
Let {e1, . . . , e|A|} be the arcs in A, and N II = {1, . . . , |A|} with j ∈

N II corresponding to the arc ej in A. Define AII = {(i, j) : i, j ∈ N II,
and there is a chain in G from the head node of ei to the tail node of
ej}. Let GII = (N II,AII).
Show that GII is also acyclic. Show that a minimum size s̆− t̆ chain

cover for arcs in G, and a maximum cardinality incomparable arc set
in G, can both be found by applying the maximum matching method
discussed in Section 3.1.1 to the network GII. (Ntafos and Hakimi
[1979])

3.53 Let G = (N ,A) be a directed connected network. Define a chain
cover for the nodes in G to be a set of chains (not necessarily simple
or even elementary) such that each node in N is contained on at least
one chain in the set. Let PN(G) denote the cardinality of a minimum
cardinality chain cover for nodes in G.
A node i ∈ N reaches (is reached from) a node j if there is a

chain from i to j (from j to i) in G. A set X ⊂ N of nodes in an
incomparable node set if there is no chain in G between any pair of
distinct nodes in X. Let IN(G) denote the cardinality of a maximum
cardinality incomparable node set in G.
Since any two vertices in a strongly connected component are mutu-

ally reachable, it follows that there always exists a chain containing all
the nodes in a strongly connected component. Hence, for the purpose
of finding a minimum cardinality chain cover for nodes, each strongly
connected component in G can be replaced by a single new vertex.
Find all the strongly connected components (SCCs) in G; sup-

pose there are r of them. Construct a new network GI with node set
{1, . . . , r}, in which node i corresponds to the ith SCC in G. Introduce
an arc (i, j) in GI if there exists a chain from some node in the ith SCC
in G, to some node in the jth SCC. Show that GI is acyclic. Prove
that PN(G) = PN(G

I) and that IN(G) = IN(GI). Using this prove that
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PN(G) = IN(G). Discuss an efficient algorithm for finding a minimum
cardinality chain cover for nodes, and a maximum cardinality incom-
parable node set in G, using the results in Exercise 3.52. (Ntafos and
Hakimi [1979])

3.54 Let G = (N ,A) be a connected directed network. Define chain
covers for arcs in G, reachability among arcs, incomparable arc sets,
the same way it was done for nodes in Exercise 3.53. Let PA(G) be
the cardinality of a minimum cardinality chain cover for arcs, and let
IA(G) be the cardinality of a maximum cardinality incomparable arc
set in G. Prove that PA(G) = IA(G), and discuss an efficient method for
finding a minimum cardinality chain cover for arcs, and a maximum
cardinality incomparable arc set in G, using the results in Exercises
3.52, 3.53. (Ntafos and Hakimi [1979])

Comment 3.4 The Hungarian method for the assignment problem,
a combinatorial procedure, was developed by H. Kuhn [1955]. Since
the main ideas underlying the method came from Egerváry’s proof of
the König-Egerváry theorem concerning bipartite graphs, he called it
the “Hungarian method.” The primal-dual setting has made it possi-
ble to solve this problem by combinatorial methods through a sequence
of maximum value flow problems. The method generalizes directly to
the transportation problem, and to minimum cost flow problems in
capacitated networks which are not necessarily bipartite (see Chapter
5). The extension of the primal-dual approach to solve minimum cost
matching problems in nonbipartite networks required a new technique,
namely the characterization of the convex hull of matching incidence
vectors by a system of linear inequalities. This was done by J. Ed-
monds [1965 of Chapter 10], the resulting combinatorial algorithms for
matching problems are discussed in Chapter 10.
The O(n3) implementation of the Hungarian method is due to

Lawler [1976 of Chapter 1].
When the method of Section 5.8.1 for minimum cost flows is spe-

cialized to the assignment problem, it leads to a shortest augmenting
path method for it. This has been discussed by Derigs and Metz [1986],
Jonker and Volgenant [1987], and Tomizawa [1972]. Related methods
based on successive shortest chains using a relaxation approach have
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been discussed by Dinic and Kronrod [1969], Engquist [1982], and Hung
and Rom [1980]. The primal algorithm of Balinski and Gomory [1964]
maintains a feasible assignment and reaches an optimum assignment
by augmenting flows along negative cost cycles, this method is again
based on shortest chain computations.

Several variants of the primal simplex method for solving the as-
signment problem have been discussed in the literature. Barr, Glover,
and Klingman [1977] discuss the finite version based on using strongly
feasible partitions (see Chapter 5), and report good computational per-
formance of it. Akgul [1987], Hung [1983], and Roohy-Laleh [1981] dis-
cuss polynomial time variants of the primal simplex algorithm for the
assignment problem.

Signature methods for the assignment problem have been proposed
by Balinski[1985, 1986]. Goldfarb [1985] developed the inductive sig-
nature method. Recently signature methods have been generalized to
solve transportation problems by Paparrizos [1990].

Computational studies on these different algorithms for the assign-
ment problem by different groups at different times have rated the Hun-
garian method, relaxation methods, shortest augmenting path meth-
ods, as having produced excellent performance. Carpento, Martello,
and Toth [1988], and Burkard and Derigs [1980 of Chapter 1] present
FORTRAN implementations of assignment algorithms for dense and
sparse cases.

Metric and Maybee [1973] present a FORTRAN implementation of
the assignment ranking algorithm.

The scaling technique for modifying the primal-dual method into a
polynomially bounded algorithm, by applying it on a sequence of bet-
ter and better approximations of the original problem, was introduced
by Edmonds and Karp [1972 of Chapter 2]. However, this technique is
mainly of theoretical interest, as the performance of the resulting algo-
rithm in computational tests does not compare favorably with that of
other minimum cost flow algorithms discussed in Chapter 5.

Algorithms for stable assignments are discussed in Gale and Shapley
[1962], Irving, Leather, and Gusfield [1987], Kapur and Krishnamoorty
[1981], and Wilson [1977]. These algorithms are not discussed in the
text, but are presented among various exercises given above.
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