Chapter 7

NEAREST POINT PROBLEMS ON
SIMPLICIAL CONES

Let I' = {B.1,...,B.,} be a given linearly independent set of column vectors in R",
and let b € R"™ be another given column vector. Let B = (B.; i ...: B.n). For z €
Pos(T), « = B~z > 0, is known as the combination vector corresponding to .
We consider the problem of finding the nearest point (in terms of the usual Euclidean
distance) in the simplicial cone Pos(I') to b. This problem will be denoted by the
symbol [I;b] or [B;b], and will be called a nearest point problem of order n. The
optimum solution of this problem is unique, and if b ¢ Pos(I") the solution lies on the
boundary of Pos(T). If this point is z*, then o* = B~!z* is known as the optimum
combination vector for [I'; b]. This problem is equivalent to the quadratic program:
Minimize (b — Ba)T(b — Ba) over a = (ay,...,a,)7 > 0. This is the quadratic
program: Minimize —b” Ba + 3o (BT B)a, subject to o = (a,..., )7 > 0. The
solution of this can be obtained by solving the following LCP :

where u = (u1, ..., u,)T is a column vector of variables in R™. Let D = BT B. Since B

is nonsingular, D is positive definite. This LCP has a unique complementary solution,
and if this solution is (u*,a*), then «* is the optimum solution for the quadratic
program, and hence the optimum combination vector for the nearest point problem
[B;b]. Also consider the following LCP

w—Mz=q
w>0,2z2>0 (7.1)
wlz=0
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where M is a positive definite symmetric matrix of order n. Let F' be a nonsingular
matrix such that FTF = M (for example, the transpose of the Cholesky factor of
M). Now using earlier results, we conclude that if (w*,2*) is the unique solution
of (7.1), then z* is the optimum combination vector for the nearest point problem
[F; —(F~1)Tq]. Conversely if z* is the optimum combination vector for the nearest
point problem [F; —(F~1)Tq], then (w* = Mz* + ¢, 2*) is the unique solution of (7.1).
This clearly establishes that corresponding to each nearest point problem, there is an
equivalent LCP associated with a positive definite symmetric matrix and vice versa.
This equivalence relationship between the two problems will be used here to develop
an algorithm for solving them. In the sequel (¢, M) denotes the LCP (7.1) where M is
a positive definite symmetric matrix of order n. B denotes a square matrix of order n
satisfying BT B = M (as mentioned earlier, B could be chosen as the Cholesky factor
of M). If we are given the LCP (7.1) to solve, we will choose BT to be the Cholesky
factor of M, unless some other matrix satisfying BT B = M is available, and b =
—(B™YHYTq, and I'= {B.1,..., B.,}. For solving either the nearest point problem [[; ]
or the LCP (g, M), the algorithm discussed here based on the results in [3.51,7.2] of
K. G. Murty and Y. Fathi, operates on both of them (it carries out some geometric
work on the nearest point problem, and some algebraic work on the LCP).

Example 7.1

Let

14 3 —2 -1 1 0 0 -3
g=|-11], Mm=|-2 2 1|,B=] 1 -1 o, b=|-4
7 -1 1 1 -1 1 1 7

The LCP (¢, M) is

wy  we w3z 2 Z3 Z3 q
1 0 0o -3 2 1 14
0 1 0 2 =2 -1 —11
0 0 1 1 -1 -1 -7

wj,z; = 0, and wjz; = 0 for all j

It can be verified that BT B = M and b = —(B~')Tq. So, the above LCP is equivalent
to the problem of finding the nearest point in Pos(B) to b.

It can be verified that the solution of the LCP (q, M) is (w1, wa, ws; 21, 22, 23) =
(3,0,0;0,4,3). This implies that the vector a* = (0, 4, 3)7 is the optimum combination
vector for the nearest point problem [B;b]; that is, 4B., + 3B.3 = (0,—4,7)T is the
nearest point in Pos(B) to b. Conversely, given that 2 = (0,—4,7)T is the nearest
point in Pos(B) to b, we get 2z* = B~z = (0,4,3)T, and w* = Mz* + ¢ = (3,0,0)7,
and (w*, z*) is the solution of the LCP (¢, M).
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Some Results

Let S={B.,,...,B.; } CI. Define

(S) = Index set of S = {jl, ceesJr}

={L,...,n}\I(
yry= Z 7v;B.;;v; real number for all j € I(S)
i€l(S)
B(S) = The n by r matrix whose columns are B.j,,...,B.;,
UJ(S) = (wj17 SRR wjr)T
2(8) = (%, 7'er)T
q(S) = (qj17 vy qu)T
M(S) = B(S)TB(S), the principal submatrix of M corresponding to I(S)

H(S) as defined above is the linear hull of S, it is the subspace of R"™ spanned by the
column vectors in S. If S = (), define H(S) = Pos(S) = {0}. For any S cI', Pos(S)
is a face of Pos(I'). The problem of finding the nearest point in Pos(S) to b (in terms
of the usual Euclidean distance) will be denoted by [S;b]. If S # (), the nearest point
in H(S) to b is denoted by b(S), and this point is known as the projection or the
orthogonal projection of b in H(S).

Theorem 7.1 Let S CI' and S # (). Then b(S) = B(S)(B(S)"B(S)) B(S).

Proof. Let S = {B.j,,...,B.;.} and let v = (y1,...,%)T. The problem of finding

the projection of b in H(S) is the unconstrained minimization problem: Minimize

(b— B(S)y)T(b — B(S)y): v € R", and the optimum solution of this unconstrained

minimization problem is ¥ = (B(S)TB(S)) ™ (B(S))7b. Hence, b(S) = B(S)y =
—1

B(S)(B(S)"B(S))  (B(S))"®.

-1

[]

Example 7.2

Let B be the matrix defined in Example 7.1, and b the vector from the same example.

1 0 0 -3
B=| 1 -1 of, b=|-4
1 1 1 7

Let S = {B.1, B.3}. So in this case I(S) = index set of S = {1,3}. So H(S) is the
subspace {71(1,1,—1)T 4+ 42(0,0,1)T : 41,72 real numbers} of R*. The matrix B(S)
here is
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The projection b(S) here can be verified to be b(S) = B(S) [ a

[CIESENIEN
N —
Il
|
NI~
|
[\VIEN|
\]
p—

S

Since b(S) = B(—1,0, )T, it is not in the cone Pos(B).

Theorem 7.2 For S CI', the nearest point in Pos(S) to b is the same as the nearest
point in Pos(S) to b(S).

Proof. The case S = () is trivially verified to be true. So assume S # (). For z € H(S)
by Pythagoras theorem ||b — z||? = ||b — b(S)||? + ||b(S) — z||2. Since Pos(S) C H(S),
this equality obviously holds for all x € Pos(S). Hence the theorem follows.

[

Theorem 7.3 Let S CI', S # (). The optimum solution of [S;b] is in the relative
interior of Pos(S) if and only if b(S) is in the relative interior of Pos(S).

Proof. b(S) is in the relative interior of Pos(S) if and only if b(S) = B(S)7¥, where
7 > 0. As long as b(S) € Pos(S), b(S) is the optimum solution of [S;b], and hence
in this case the statement of the theorem is true. If b(S) ¢ Pos(S), by Theorem 7.2,
the optimum solutions of [S; b] and [S; b(S)] are the same. [S;b(S)] is the nearest point
problem in the subspace H(S), whose order is the same as the dimension of H(S), and
hence in this case the optimum solution of [S;b(S)] lies on the relative boundary of
Pos(S).

[
Definition — Projection Face
Let S CT'. Pos(S) is a face of Pos(I') of dimension |S|. Pos(S) is said to be a Projection
face of Pos(T'), if b(S) € Pos(S).

Example 7.3

Let B, b be as in in Example 7.2. As computed there, the projection of b in the linear
hull of {B.1, B.3} is not in the face Pos{B.1, B.3}, since it is —%B.l + %B.g, not a
nonnegative combination of B.1, B.3. So, the face Pos{B.1, B.3} is not a projection
face.

On the other hand, consider the face Pos{B.s, B.3}. The projection of b in the
linear hull of {B.o, B.3} can be verified to be 4B.5 + 3B.3 = (0,—4,7)T which is in
Pos{B.3, B.3}. So Pos{B.2, B.3} is a projection face of Pos(B).

Theorem 7.4 Let x* = Ba* be the optimum solution of [I';b]. Let I(S) = {j1,. ..,
jr} ={j :j such that af > 0}, and S = {B.; : j € I(S)}. Then Pos(S) is a projection
face of Pos(T").

Proof. Obviously z* € Pos(S). Since z* is the nearest point in Pos(T') to b, and
since Pos(S) C Pos(T'), clearly x* is the nearest point in Pos(S) to b. However, by
the definition of S, z* is in the relative interior of Pos(S). Hence, by Theorem 7.3, z*
must be the projection of b in H(S). Since z* € Pos(S), this implies that Pos(S) is a

projection face of Pos(T").
[]
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FExercises

7.1 Prove that the problem of finding the nearest point in the face Pos(S) of Pos(I") to
b or b(S), is equivalent to the principal subproblem of the LCP (7.1) in the variables
w(S), z(S). Also show that if (w(S) = ¢(S) + M(S)z(S), 2(S)) is the solution of this
principal subproblem, then B(S)Z(S) is the nearest point in Pos(S) to b or b(S); and
conversely. Also prove that the face Pos(S) of Pos(I') is a projection face iff z(S) is a
complementary feasible basic vector for this principal subproblem.

7.2 If S T is such that Pos(S) is a projection face of Pos(I'), prove that b(S) is the
nearest point in Pos(I") to b iff (w(T'\S), 2(S)) is a complementary feasible vector for
(7.1).

Definitions and Notation

Let K; denote the facet Pos(B.1,...,B.j_1,B.j11,...,B.;) of Pos(T') for j =1 to n.
Let © = ayBy + ...+ o, B., € Pos(T"). It follows that o; = 0 if and only if z € K,
and «; > 0 if and only if z ¢ K, for all j = 1 to n. Given the two points b € R"
and z € R" such that b # z, let the open ball B(b;z) = {x : ||b — z|| < ||b — Z||}.
Consider the hyperplane T(b;7) = {z : (z — Z)T (b — %) = 0}. The open half space {z :
(x —Z2)T(b—Z) > 0} is called the near side of T(b; %), while the closed half space {= :
(x — )T (b — z) < 0} is called the far side of T(b;z). If the point Z is chosen such
that 0 € T(b;Z), then 2T (B — z) = 0 and therefore for such z we have: T(b;2) = {z :
2T (b — z) = 0}, near side of T(b;Z) = {x : 2T (b — z) > 0}, far side of T(b;z) = {z :
zT' (b — z) < 0}. For points Z satisfying 0 € T(b; Z), we define the set N(Z) by

N(z) = {j : j such that BL(b—z) > 0} .

So N(z) is the set of subscripts of the column vectors in I' which are on the near side
of T(b,T).

Let V7 =0 if bTB.j <0,or = M if bTB.j > 0. V; is the nearest point on
the ray of B.; to b, for all j = 1 to n. Alsé) let [ be such that ||V —b|| = min{||V7 —b]| :

j = 1ton}. Break ties for the minimum in this equation arbitrarily. If V! # 0, it is
the orthogonal projection of b on the linear hull of B.;.

Example 7.4

Let B, b be as given in Example 7.2. That is,

1 0 0 —3
B=| 1 -1 of, b=]|-4
1 1 1 7
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So b'B.; = —-14 < 0, bTB.y =11 > 0, bT'B.3 = 7 > 0. So if V7 is the nearest point
to b on the ray of B.j, we have V! =0, VZ = (0, -4, 1H)T, V3 = (0,0,7)T. Also, we
verify that the nearest point among V!, V2, V3 to b is V2, so [ as defined above, is 2
in this problem.

If we take # = V2, since % is the nearest point on the ray of B., to b, the ray of
B.; is a tangent line to the ball B(b;z) at its boundary point z. See Figure 7.1. So
the tangent plane T(b;z) to B(b;z) at its boundary point  contains the ray of B.s.
So in this example N(Z) = {j : j such that (b—7)TB.; > 0} = {3}. So the vector B.3
is on the near side of T(b;Z), and the vector B.; is on the far side of T(b;Z), in this
example.

Figure 7.1

Theorem 7.5 If V! =0, the nearest point in Pos(T) to b is 0.

Proof. In this Case b7 B.; < 0 for all j = 1 to n. Hence the hyperplane {x : bz = 0}
for which the ray of b is the normal at 0, separates b and Pos(I'). So 0 is the nearest
point in Pos(T') to b.

[

Example 7.5

Let
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We have bTB.j =0, —1, —1 respectively for j = 1,2, 3. So, the nearest point on the ray
of B.;j is VJ =0 for all j = 1,2,3. Hence in this case 0 is the nearest point in Pos(B)
to b.

Thus 0 is the nearest point to b in Pos(B) iff X' B.; < 0 for all j =1 to n. So, in
the sequel, we will assume that bTB.j > 0 for at least one 7, and under this condition,
V! as defined above is not zero.

Theorem 7.6 A point & € Pos(T') is the nearest point in Pos(T') to b if and only if

0 € T(b;z) and

(b—2)TB.; £0, forallj=1 ton. (7.2)

Proof. Suppose Z is the nearest point in Pos(T’) to b. So, % is the orthogonal projection
of b on the full line generated by z, and hence 0 € T(b; Z). Also, the hypothesis implies
that the hyperplane T(b; ) strictly separates B(b; z) and Pos(T). So (b—z)TB.; <0
for all 7 =1 to n.

Conversely suppose T € Pos(I') satisfies 7.2. These conditions imply that T'(b; )
is the tangent hyperplane to the closure of B(b; %) at its boundary point %, and that
T(b; ) separates the closure of B(b;z) and Pos(T'). So, under these conditions, Z is
the nearest point in Pos(T') to b.

[]

Example 7.6

Let B, b be as given in Example 7.4, that is

1 0 0 -3
=] 1 -1 of, b=]-4
-1 1 1 7

If z = V2= (0,—3, )T, we verified as in Example 7.4 that (b —2)"B.5 = (3) > 0,

and hence Z is not the nearest point in Pos(B) to b.

Let & = (0,—4,7)T, the orthogonal projection of b in the linear hull of {B.o,
B.3}, which is the nearest point in the face Pos{B.5, B.3} of Pos(B) to b, obtained
in Example 7.3. Since  is the orthogonal projection of b in a subspace, the tangent
plane T(b, Z) contains this subspace (in this case T(b, ) is the linear hull of { B.o, B.3}
itself) and hence the origin 0. Also, it can be verified that (b — )7 B.; = —3,0,0 < 0,
for j =1,2,3. So N(#) = () and & is the nearest point in Pos(B) to b in this example.
See Figure 7.2.



CHAPTER 7. NEAREST POINT PROBLEMS ON SIMPLICIAL CONES 321

Figure 7.2 & is the nearest point in Pos(B) to b.

Let o* be the unknown optimum combination vector for [I;0]. Let J = {j :
oj > 0}. Jis called the set of critical indices for the LCP (¢, M) and for the
corresponding nearest point problem [[;b]. It is clear that J is also the set of all j
such that z; is strictly positive in the unique solution of the LCP (¢, M). Notice that
if (w, z) is the unique solution of the LCP (¢, M), then w; = 0 for all j € J and z; =0
for all j ¢ J, or equivalently if y; = z; for all j € J, w; for all j ¢ J, then (y1,...,yn)
is a complementary feasible basic vector for this LCP. So if the set J can be found, the
basic solution of (7.1) corresponding to the basic vector (yi,...,y,) defined above is
the unique solution of this problem. Also by earlier results, the solution to the nearest
point problem [I'; b] is the orthogonal projection of b on the linear hull of {B.; : j € J}.
Hence if J is known, the solution of the LCP (¢, M) and correspondingly the solution
to the associated nearest point problem [I'; b] can be easily found.

Even if a single critical index is known, this information can be used to reduce
(¢, M) to an LCP of order n — 1 as shown in the following theorem.
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Theorem 7.7 If a single critical index is known, (q, M) can be reduced to an LCP
of order n — 1.

Proof. Without loss of generality suppose we know that 1 is a critical index. Then
perform a single principal pivot step in (7.1) in position 1. Suppose this leads to

w1 wo W, Z1 z9 Zn
—mi1 0 . 0 1 —mM12 . —M1in ql
—mMa1 1 . 0 0 —MM9o . —MMap, QQ
My 0 ... 1 0 —Mne ... —Tam n

Let M = (m;; : 2 <4, j < n) be the matrix of order n — 1, and ¢ = (72,...,qn)"

from the above Tableau. Eliminating the columns of wy, z1, and the first row from it
leads to the principal subproblem in variables w = (ws,...,w,) and £ = (z2,...,2y),

which is an LCP of order n — 1, denoted by (g, M). Since M is positive definite and
symmetric, so is M. If (ya,...,yn), where y; € {w;, z;}, is a complementary feasible

basic vector for (g, M), then, since 1 € J, (21, ¥2,...,¥yn) is a complementary feasible
basic vector for the original (¢, M). Thus to solve (¢, M), if we know that 1 € J, it

is enough if we solve the principal subproblem (g, M) of order n — 1. Therefore the
fact that 1 € J has made it possible for us to reduce the LCP (g, M) of order n, into

(@, M) of order n — 1.

Y

[

We can also argue geometrically that the knowledge of a critical index reduces the
dimensionality of the nearest point problem. If 1 is a critical index, then the nearest
point to b in Pos(I') is also the nearest point to b in Pos(IT'U{—B.1}). Define b =

b—Bﬁg’%ﬁ;),B.j:B.j—%ﬂﬁB'j,fmj:Z...,n. Let T' = {B.,,...,B.,}. For

2 < j < n, B.; is orthogonal to B.; and the cone Pos(TU{—B.;}) is the direct sum
of the full line generated by B.; and the simplicial cone Pos(T). Solving [T;b] is an
(n — 1) dimensional nearest point problem. If z* is its solution, as embedded in R",
then z* = z* + ]3'|1|g’.7f|]|32'1) solves [I'; b].

We will develop an algorithm for finding a critical index. When it is obtained, we
can reduce (¢, M) into a linear complementarity problem of lower order and apply the

same approach on it.

Example 7.7

Consider the LCP (¢, M) discussed in Example 7.1. In Example 7.9 we will establish
the fact that 3 is a critical index for this LCP. Performing a principal pivot step in
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position 3 in this LCP leads to the following :

w1 Wo W3 21 Z2 Z3

1 0 1 -2 1 0 7
0 1 -1 1 -1 0 —4
0 0 -1 -1 1 1 7

wj,z; > 0 for all j. wjz; =0 for all j

Since 3 is a critical index, we eliminate ws, z3 and the last row from the problem,
leading to the principal subproblem

w1 wo Z1 z9
1 0 -2 1 7
0 1 1 -1 -4

wj,zj 2 0 for all j. wjz; =0 for all j

It can be verified that (wq, z2) is a complementary feasible basic vector for this principal
subproblem. So, (w1, 22, 23) is a complementary feasible basic vector for the original
LCP (q, M).

Theorem 7.8 Given 0 # = € Pos(T') satisfying 0 € T(b; x), if for some i € {1,...,
n}, we have
(i) (b—z)TB.; >0, and either
(i) ||z —b]| < ||[V* —b|| and {z, B.;} is linearly independent, or
(i) bTB.; < 0;
then, the projection of b onto the linear hull of {Z, B.;} is in the relative interior of
Pos{z, B.;}.

Proof. Since 7 is the closest point in T(b; Z) to b and since 0 € T(b; z), & is the closest
point on the ray of & to b.

If (ii)’ holds, then V* = 0 and hence in this case we have ||Z — b|| < ||V —b||, and
clearly {Z, B.;} is linearly independent. So under these conditions (ii)" implies (ii).

By linear independence, Pos{z, B.;} is a two dimensional simplicial cone. Let p
be the closest point in Pos{z, B.;} to b. By (i), B.; is on the near side of T(b;z), and
hence B(b; Z)N Pos{Z, B.;} # (). This implies that p is closer than Z to b; and by (ii),
p must be closer than V* to b. So p is not contained on the rays of Z or B.;, and hence
p must be in the relative interior of Pos{z, B.;}.

[]

Theorem 7.9 Let ) # S C T be such that & = b(S) € Pos(S). Then 0 € T(b;Z).
Also, in this case if N(z) N I(S) = ), then N(Z) = 0, and Z is the nearest point in
Pos(T") to b.
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Proof. Under the hypothesis T(b; ) contains H(S) and hence 0 € T(b;z). Also, by
the properties of orthogonal projection, the line joining b and % is orthogonal to H(S),
and hence (b — )T B.; = 0 for all j € I(S). So N(z) NI(S) = () implies N(z) = () in
this case. By Theorem 7.6 these facts imply that z is the nearest point in Pos(T) to
b.

[]

Example 7.8

Consider B, b given in Exercise 7.6. Let S = {B.2, B.3}, b(S) = 2 = (0, —4,7)T given in
Example 7.6 (computed in Example 7.3) and & € Pos(S). In Example 7.6 we computed
that N(z) = 0 and so N(2) N I(S) = (). This implies that & is the nearest point in
Pos(B) to b.

Theorem 7.10 Let Z € Pos(T") be such that 0 € T(b; ). If there exists an index j
such that (b—x)TB.; <0 for all i # j, then K; N B(b;z) = 0.

Proof. Clearly under these conditions 27 (b — ) < 0 for all x € K;; however z7 (b —
z) > 0 for all z € B(b; ). Hence K; N B(b; ) = 0.
[

Theorem 7.11 Let & € Pos(T') be such that 0 € T(b;z). If there exists an index j
such that (b—z)TB.; <0 for all i # j and (b—z)TB.; > 0, then j is a critical index
of [T, b].

Proof. By Theorem 7.6, Z is not the nearest point in Pos(T') to b. Let & be the nearest
point in Pos(I') to b. Then & € B(b;z). By Theorem 7.10 K; N B(b;Z) = (. Hence
& ¢ K; and thus j is a critical index of [I'; b].

[

Example 7.9

Consider B, b given in Example 7.4. If = V2, we verified in Example 7.4 that N(z) =
{3}. This implies that 3 is a critical index of [B; b].

Here we describe a routine for selecting a critical index. This routine terminates
once a critical index is identified. Later on we will discuss the algorithm for solving
the LCP (q, M) where M is a PD symmetric matrix, or the associated nearest point
problem, using this routine.

Routine for Selecting a Critical Index

This routine operates on the nearest point problem [I’;b] which is equivalent to the
given LCP (g, M). Clearly if b € Pos(T'), the nearest point in Pos(T") to b is the point
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b itself; so we assume that b ¢ Pos(I") in the sequel. As mentioned earlier, we also
assume that V! # 0 (as otherwise, 0 is the nearest point in Pos(I') to b).

The routine maintains a nonempty subset of I' called the current set denoted by
S, and a point called the current point denoted by z. & € Pos(S) always. As these
things change from step to step, the symbols S, # may represent different things in
different steps.

Initial Step: Set # = V', and compute N(z). If N(z) = (), Z is the nearest point in
Pos(T") to b, terminate. If N(Z) is a singleton set, say i1, i1 is a critical index of [I'; b],
terminate this routine. If the cardinality of N(z) is greater than or equal to 2, choose
g € N(z); compute the orthogonal projection b of b onto the linear hull of {z,B.,4}.
Replace Z by b. Set S = {B.i,B.4}. Go to Step 1.

Step 1: Let S, T be the current entities. Compute N(z). If N(z) = 0, = is the
nearest point in Pos(T’) to b, terminate. If N(Z) is a singleton set, say i1, i1 is a critical

index of [I';b], terminate this routine. If the cardinality of N(Z) is greater than or
equals 2, go to Step 2 if N(z) NI(S) # 0, or to Step 3 if N(z) NI(S) = 0.

Step 2: Choose a g € N(z) N I(S). Compute b, the orthogonal projection of b onto
the linear hull of {Z, B.;}. Replace S by SU{B.4}, and Z by b. Go back to Step 1.

Step 3: Compute b(S). If b(S) € Pos(S), replace z by b(S) and go to Step 1. If
b(S) ¢ Pos(S), go to Step 4.

Step 4:  Let the current point T = ) (a;B.; : j € I(S)), where a; > 0 for all
j € I(S). Let b(S) = > [v;B.; : 7 € I(S)]. Since b(S) & Pos(S), v; < 0 for some
j € I(S). An arbitrary point on the line segment joining z to b(S) can be written as
QA) = (1—=X)z+Ab(S), 0 < X < 1; or equivalently Q(A) = Y [(((1 =)o +My;)B.j)
7 € I(S)]. As X increases from 0 to 1, Q(A\) moves from Z to b(S). Let A = X be the
largest value of A for which Q()) is in Pos(S). So Q(A) is on the boundary of Pos(S)
and Q(A) & Pos(S) for A > A. So A = max{\: (1 — N)a; + A\vy; >0, for all j € I(S)}.
The point (1 — Az + Ab(S) = Q(\) is the last point in the cone Pos(S) on the line
segment joining Z and b(S), as you move away from Z along this line segment. See
Figure 7.3.

Let k be such that (1 — A)ag + Ay, = 0. If there is more than one index in I(S)
with this property, choose one of the them arbitrarily and call it k. Q()) is the nearest
point to b(S) on the line segment joining Z to b(S) that lies in Pos(S). So Q(A) €
Pos(S \ {B.;}). Delete B, from S. Also delete k from I(S) and include it in I(S).
Replace Z by Q()) and go to Step 3.
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b(S)

Figure 7.3

Discussion

If termination does not occur in the Initial Step, when we move to Step 1 we will have
|Z — b|| < ||V! - b|| by Theorem 7.8, and this property will continue to hold in all
subsequent steps, since ||Z — b|| never increases in the routine. Clearly Z € Pos(S)
always. These facts imply that once the algorithm enters Step 1, the cardinality of S
will always be greater than or equal 2.

While executing Step 4, if X turns out to be zero, there is no change in the point z,
but the cardinality of the set S decreases by 1 at the end of this step. Thus a sequence
of consecutive moves in the algorithm of the form Step 3 — Step 4 — Step 3 ..., must
terminate after at most (n — 2) visits to Step 4, with z set equal to b(S) for some
projection face Pos(S) in Step 3, and then the routine moves to Step 1. When this
happens, while executing Step 1, by Theorem 7.9 either the routine itself terminates;
or else Step 2 must be taken implying a strict decrease in ||Z — b|| by Theorem 7.8 with
the new z via Step 2, and thus the projection face Pos(S) cannot repeat.

Whenever the routine visits Step 1, the current point z is the orthogonal projection
of b onto a subspace of dimension 2 or more, and hence the property 0 € T(b; z) will
hold then. Clearly, this property also holds in the Initial Step.

In the Initial Step, or in Step 1, if N(Z) = 0, Z is the nearest point in Pos(T) to b
by Theorem 7.9. In these steps, if N(Z) is a singleton set, the element in it is a critical
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index for [I'; b] by Theorem 7.11.

Since there are but a finite number of projection faces, these facts imply that if
the routine does not terminate in the Initial Step, it terminates after a finite number
of steps while executing Step 1.

When termination occurs in Step 1, it either finds the nearest point in Pos(T')
to b, in which case the problem is completely solved, or it finds a critical index of
the problem. In the latter case an LCP of order n — 1 can be constructed and the
same routine can be applied to this smaller problem, as discussed in Theorem 7.7.
The solution to the original problem then can be obtained using the solution of this
smaller problem, as discussed in Theorem 7.7. Hence the unique solution of (¢, M) can
be obtained after at most n applications of the routine discussed above on LCPs of
decreasing orders, each one associated with a positive definite symmetric matrix. We
will now provide a summary of the whole algorithm.

Algorithm for Solving the LCP (g, M) When M is PD Symmetric

Step 0: Let (¢, M) be the LCP and [B;b] the corresponding nearest point problem.
Check if B™'b > 0. If it is, b € Pos(B) and b itself is the nearest point in Pos(B) to
b. In this case z is a complementary feasible basic vector to the LCP (¢, M) and the
solution for it is (w = 0,z = M ~!q). If this condition is not satisfied, continue.

Check if T B < 0. If it is, the origin 0 is the nearest point in Pos(B) to b. In this
case w is a complementary feasible basic vector to the LCP (g, M), that is, ¢ > 0, and
(w = ¢,z = 0) is the solution of the LCP. If this condition is not satisfied, continue.

For j =1 to n, define

(0 if bTB.; <0
= N

T .
(|?BB-’|.|2> B.; otherwise .
)

Let V! be the nearest among V!,..., V"™ to b. Break ties for [ arbitrarily. Go to Step
1 with S = {B,}, 2=V I(S) = {I}.

Step 1: Let Z be the current point and S the current subset of columns of B.
Compute N(z) = {5 : (b —z)TB.; > 0}.
If N(z) = 0, z is the nearest point in Pos(B) to b. Define for j =1 to n

{zj if j € I(S)
yj =

wj otherwise .

Then y = (y1, ..., yn) is a complementary feasible basic vector for the LCP (¢, M) and
(w= MZz+ q,z= B~'z) is the solution of the LCP. Terminate.

If N(z) is a singleton set, that is, if N(z) = {j1} for some j;, j; is a critical
index. Using it, reduce the LCP to one of order one less as in Theorem 7.7, and
obtain the corresponding nearest point problem of dimension one less either by finding
the Cholesky factor of the matrix associated with the reduced LCP or by using the
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geometric procedure described following the proof of Theorem 7.7. With the reduced
LCP and the reduced nearest point problem, go back to Step 0.

If the cardinality of N(Z) is greater than or equal to 2, go to Step 2 if N(z) N
I(S) # 0, or to Step 3 otherwise.

Step 2: Select a g € N(z) NI(S). Compute b, the orthogonal projection of b on the
linear hull of {Z, B.,}. Include B.; in S, g in I(S), and replace Z by b and go back to
Step 1.

Step 3: Compute b(S), the orthogonal projection of b on the linear hull of S. If
b(S) € Pos(S), replace £ by b(S), and go back to Step 1 leaving S, I(S) the same. If
b(S) ¢ Pos(S), go to Step 4.

Step 4: Let Z =} 1) ;B.j and b(S) = > . 1)V B.;. Now compute the value

A = min{ @ f)‘_jvl) : J such that v; < O}, and let £ be an index which attains this
J J _ _

minimum. Break ties for k arbitrarily. Replace z by (1 —A)z + Ab(S). Delete B.; from

S and k from I(S), and go back to Step 3.

For solving LCPs (7.1) in which M is a given positive definite symmetric matrix,
or equivalently the nearest point problem [I';b] where I' is a given basis for R"; the
approach discussed here seems to be the most efficient from a practical point of view.
Empirical results on the computational efficiency of this approach are reported in
Chapter 8.

7.1 Exercises

7.3 Let I'= {B.1,...,B.,;} be a basis for R" and b be another point in R"™. Suppose
it is required to find the nearest point in Pos(I') to b in terms of the L;-distance, also
known as the rectilinear distance. The rectilinear distance between two points x =
(), y = (y;) in R" is defined to be Z?Zlﬂxj — y;]). Show that this problem can
be formulated as an LP. Given the nearest point in Pos(I') to b in terms of the L,
distance, can you draw from it any conclusions about the location of the nearest point
in Pos(T") to b in terms of the Euclidean distance? (explore questions like whether they
lie in the same face etc.)

7.4 Let T be a subset consisting of a finite number of column vectors from R", which
is not linearly independent, and let b € R" be another column vector. It is required to
find the nearest point in Pos(T') to b. Modify the algorithm discussed above to solve
this problem.

7.5 Let K C R" be a given convex polyhedron, and let b € R" be a given point. It is
required to find the nearest point in K (in terms of the usual Euclidean distance) to
b. K may be given in one of two forms:



7.1. EXERCISES 329

(i) All the extreme points and extreme homogeneous solutions associated with
K may be given, or
(ii) The constraints which define K may be given, for example K = {z : Az > p,
Dz = d} where A, D, p, d are given.
Modify the algorithm discussed above, to find the nearest point in K to b, when K is
given in either of the forms mentioned above.

7.6 Generalize the algorithm discussed above, to process the LCP (¢, M) when M is
PSD and symmetric.

7.7Let be R", b > 0and let K= {y:0 <y < b} be a rectangle. For x € R" let
Pk (z) be the nearest point (in terms of the usual Euclidean distance) to z in K. For

any =,y € R", prove the following:
(1) The i*" coordinate of Pk (z) is min{max{0,z;},b;},

(2) z<y u’nphes Pk (z) < Pk(y),

(3) Pc(x) = Px(y) < Pe(z —y),

(4) Pic(z+y) < Px(@) + Px(y),

(5) Px(z)+ Px(—z) < |z| = (|z;|), with equality holding if —b < xz < b.

(B. H. Ahn [7.1])

7.8 Let f(z) be a real valued convex function defined on R". Let z € R™, o € R}
be given. It is required to find a point that minimizes the distance ||z — Z|| over {z :
f(z) < a}. Develop an efficient algorithm for this problem. What changes are needed
in this algorithm if f(z) = (f1(x), ..., fm(x))T where each f;(z) is a real valued convex
function defined on R", and o € R™?

7.9 Let B a square nonsingular matrix of order n. Let M = BTB. Let J C {1,...,
n}, with elements in J arranged in increasing order. Let Mjz denote the principal
submatrix of M corresponding to the subset J. For any column vector ¢ € R", let ¢
denote the column vector of (g; : j € J) with the entries in ¢; arranged in the same
order as the elements 7 are in J.

It is required to find a point p in the interior of Pos(B) satisfying :

Property 1: For every nonempty face F of Pos(B), the orthogonal projection of p in
the linear hull of F, is in the relative interior of F.
Prove that p € R" satisfies Property 1 iff (M33)~tqy > 0 for all subsets J C {1,
.,n}, where ¢ = BTp.

If n = 2, prove that a point p satisfying Property 1 always exists. In this case,
show that p can be taken to be any nonzero point on the bisector of the angle (that is
less than 180°) created by the rays of B.; and B.2 in R2.

For general n, let A = B, Then {z : A;.z = 0} is the hyperplane H; which is
the linear hull of {B.1,..., B.;j—_1, B.j+1, .., B.,}. The generalization of finding a point
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on the bisector of the angle between the rays of B.;, B.o when n = 2, is to find a point
p, satisfying the property that the shortest distances from p to each of the hyperplanes
H,, i = 1 to n, are all equal. A point like this would be a positive scalar multiple of
d = Be. Is the statement “if a point p satisfying Property 1 exists, d = p is one such

point” true?
Show that if

(6 —4 1 0 0 0
—4 6 —4 1 0 0
1 —4 6 —4 1 0
M= 0 1 —4 6 —4 1
0 0 1 —4 6 —4
. 0 0 0 1 —4 6 J

and B is such that BT B = M, there exists no point p satisfying Property 1.

Derive necessary and sufficient conditions on the matrix B to guarantee that a
point p satisfying Property 1 exists.
(This problem came up in the algorithm discussed in Exercise 2.20. The numerical
example is due to J. S. Pang)

7.10 Let M be a square matrix of order n, which is PSD, but not necessarily symmetric.
Let M = (M + MT)/2. Prove that 27 M and ¢¥x are constants over the solution set
of the LCP (¢, M).

7.11 {A.4,...,A+1} is a set of column vectors in R™ such that {A.. — A.q,...,
A.py1 — A1} is linearly independent. b is another column vector in R™. Let K be
the n-dimensional simplex which is the convex hull of {A.1,..., A.,+1}. Develop an
efficient algorithm of the type discussed in this chapter, for finding the nearest point

(in terms of the usual Euclidean distance) to b in K.

7.12 Let I'= {A.l, e
the convex hull of I'.

Suppose x* is the point minimizing ||z|| over z € K. For any y € R", y # 0,
define

h(y) =
s(y) =

,A.m} be a given finite set of column vectors in R". Let K be

maximum value of yTz, over z € K

a point in I' which maximizes y*z over x € K. So, h(y) = yTs(y).

Incidentally, h(y), s(y) can be found by computing y?'A.; for each j = 1 to m and
choosing s(y) to be an A., where p is such that yTA., = maximum {y7A4.; : j =1
to m}.
(i) Prove that z* can be expressed as a convex combination of at most n + 1 vectors
from I.
(ii) If 0 ¢ K, prove that z* can be expressed as a convex combination of at most n
vectors from I.
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(iii) For each z € K, prove that ||z||2 + h(—z) > 0. Also prove that ||z|? + h(—z) =0
forz € K iff z = z*.

(iv) For any =z € K, x # z*, prove that s(—z) — x is a descent direction for ||z||.

(v) For any z € K satisfying ||z||? + h(—z) > 0, prove that there must exist a point
T on the line segment joining x and s(—z) such that ||Z|| < ||z||

(vi) Consider the following algorithm for minimizing the norm ||z|| over € K by
R. O. Barr and E. G. Gilbert. If 0 € T, clearly z*, the point minimizing ||z|| over
x € K, is 0 itself, so we assume that 0 € I'. The algorithm operates with a subset
S C T satisfying [S| < n+ 1 always, and S is the set of vectors of a simplex. The
set S changes from step to step. Let the index set of S be I(S) = {j : A.; € S}.

The algorithm needs a subroutine for minimizing ||z|| over a simplex. If I" is the
set of vertices of a simplex (i. e., K is a simplex) the problem is solved by calling this
subroutine once, terminate. So, we assume that K is not a simplex in the sequel.

Let rank (I') = r. Initiate the algorithm with an arbitrary subset S of r + 1 or
less vectors from I' whose convex hull is a simplex (we can initiate the algorithm with
S = {A.;} where [ is such that ||A.,;]| = minimum {[|A.;|| : j =1 to m}).

General Step: Let S be the current subset of vectors from I, and I(S) its index set.
Find 7, the point of minimum norm ||z||, in the convex hull of S (for executing this,
you need a subroutine to minimize the norm [|z|| on a simplex).

If 7 =0, then 0 € K, z* = 0, terminate the algorithm.

If T # 0, compute ||Z]|%2 + h(—T). If ||Z||? + h(—=Z) = 0, then z* = T, terminate the
algorithm.

If T #0and ||Z||? + h(-Z) > 0, let T = >"(a;A.; : j € I(S)). Since 7 is the point

of minimum norm in the convex hull of S and = # 0, T must be a boundary point of
the convex hull of S, that is, a; = 0 for at least one j € I(S). Let J = {j : j € I(S)
and a; = 0}. Replace S by {s(—Z)} U (S\ {4.; : j € J}), update I(S); and with
the new S, I(S), go to the next step. Prove that S always remains the set of vertices
of a simplex in this algorithm, and that the algorithm finds x* after at most a finite
number of steps.

(See R. O. Barr, “An efficient computational procedure for generalized quadratic pro-
gramming problems”, STAM Journal on Control 7 (1969) 415-429; and R. O. Barr and
E. G. Gilbert, “Some efficient algorithms for a class of abstract optimization problems
arising in optimal control”, IEEE Transactions on Automatic Control, AC-14 (1969)
640-652. My thanks to S. Keerthi for bringing this and the next two problems to my
attention).

713 LetT'={A.1,..., A.;,} be a finite set of column vectors from R"; and b, another
given column vector in R". Discuss how the Barr-Gilbert algorithm presented in
Exercise 7.12, can be used to find the nearest point (in terms of the Euclidean distance)
in the convex hull of T to b.



332 CHAPTER 7. NEAREST POINT PROBLEMS ON SIMPLICIAL CONES

714 Let ' ={A,4,..., A}, A={B.,..., B} be two finite sets of column vectors
from R". Let K, P denote the convex hulls of I, A respectively. It is required to find
z* € K, y* € P such that

|lz* — y*|| = minimum {||z —y||: z € K,y € P}.

Using the fact that K — P (defined in Appendix 2) is a convex set, discuss how the
Barr-Gilbert algorithm presented in Exercise 7.12, can be used to find x*, y*.
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