
Chapter ��

NEW LINEAR PROGRAMMING

ALGORITHMS� AND

SOME OPEN PROBLEMS IN

LINEAR COMPLEMENTARITY

Some open research problems in linear complementarity have already been posed

among the exercises in previous chapters� Here we discuss some more research problems

brie�y�

���� Classi�cation of a Given Square Matrix M

Let M be a given square matrix of order n� In Section ����� we discussed algorithms to

check whetherM is PD os PSD� requiring a computational e�ort of at most n Gaussian

pivot steps� or O�n�	 e�ort in terms of multiplications and additions� Such e
cient

algorithms are not known to check whether M belongs to other classes of matrices

discussed in Chapters �� ��

As an example� consider the problem of checking whether M is a non�degenerate

�i� e�� principally non�degenerate to be speci
c	 matrix� The question is� given M � to


nd whether there exists a subset of f�� � � � � ng such that the principal subdeterminant

of M corresponding to that subset is zero� Since this question involves the existence

of a subset of f�� � � � � ng satisfying a speci
ed property which is easily checked �given

a subset J � f�� � � � � ng� we can check whether J satis
es this property by computing

the subdeterminant of M corresponding to J� which takes at most O�r�	 e�ort� r �

jJj	� this problem is in NP� the class of decision problems which can be solved by a

polynomially bounded non�deterministic algorithm �see M� Garey and D� Johnson�s

book ������ for precise de
nitions of these terms	� We will now show that this problem

is in fact NP�complete� Given positive integers d�� d�� � � � � dn� the problem of checking
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whether there exists a subset of fd�� � � � � dng whose sum is equal to d�� known as the

subset sum problem� is the ��� problem of checking whether the following system

has a solution
nP

j��

djxj � d�

xj � � or � for all j �
�����	

This problem is a well�known NP�complete problem� De
ne M to be the matrix

M �

��������������������

d� d� d� d� � � � dn
� � � � � � � �
� � � � � � � �
� � � � � � � �
���

���
���

���
� � �

���
� � � � � � � �

��������������������
�

��� d� d
e In

���

where d � �d�� � � � � dn	� e is the column vector of all ��s in Rn� and In is the unit

matrix of order n� A principal submatrix of M corresponding to a non�empty subset

of f�� � � � � n � �g not containing � is a unit matrix of appropriate order� and hence

has determinant �� The principal subdeterminant of M corresponding to a subset of

f�� � � � � n � �g of the form f�� i�� � � � � irg can be veri
ed to be d� � �di� � � � � � dir 	�

Thus the matrix M given above has a zero principal subdeterminant i� the system

�����	 has a solution� Since the NP�complete problem �����	 is a special case of the

problem of checking whether a given square matrix has zero principal subdetermi�

nant� this later problem is also an NP�complete problem� This result is from ������ of

R� Chandrasekaran� S� N� Kabadi and K� G� Murty�

The computational complexity of checking whether a given square matrix M is a

P �matrix� P��matrix� Q�matrix� or Q��matrix is not known� For all these problems�


nite algorithms are known� P � and P��properties can be checked by computing all

the principal subdeterminants �requiring the evaluation of �n determinantes when M

is of order n	� Finite algorithms for checking the Q� and Q��properties are provided

in Exercises ����� ���� �when applied on a matrix of order n� these methods require

the solution of at most n�
n

systems of linear inequalities� hence these methods though


nite� are utterly impractical even for n � �	� No polynomially bounded algorithms

for any of these problems are known so far� and it is also not known whether any of

these problems is NP�complete�

���� Worst Case Computational Complexity

of Algorithms

In Chapter � we established that several of the pivotal algorithms for LCP are expo�

nential growth algorithms in the worst case� However� the worst case computational

complexity of the algorithm for solving the LCP �q�M	 when M is PD symmetric

matrix �or the corresponding nearest point problem	 based on orthogonal projections

discussed in Chapter � is still an open question�
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������ Computational Complexity of the LCP

Associated with a P �Matrix

In Chapter � we discussed polynomially bounded algorithms for the LCP �q�M	 when

M is either a Z�matrix� or a principally triangular P �matrix� or a PSD�matrix� The

polynomially bounded ellipsoid methods work only when M is PSD� since they depend

on the fact that the set fz � zT �Mz � q	 �� �g is convex� which may not hold when

M is not PSD� None of the methods discussed in Chapter � are guaranteed to process

the LCP �q�M	 when M is a P �matrix which is not PSD� In this case the set fz �

zT �Mz � q	 �
� �g may not be convex� When M is a P �matrix� by the results in

Chapter �� the LCP �q�M	 has the nice property of having a unique solution� but

as yet no polynomially bounded algorithm is known for computing it� Establishing

whether the LCP �q�M	� where M is a P �matrix� can be solved by a polynomially

bounded algorithm� remains an important mathematical problem in LCP theory�

������ A Principal Pivoting Descent Algorithm

For the LCP Associated with a P �Matrix

In the LCP there is of course no objective function� In this algorithm from K� G� Murty

������ an extraneous distance function is computed and this distance decreases strictly

in each step� The distance provides a measure of progress in the algorithm� it becomes

zero i� we obtain a complementary feasible basis� The algorithm is a principal pivoting

algorithm employing only single principal pivot steps� it can be used to solve the LCP

�q�M	 when M is a P �matrix� The algorithm can be initiated with any complementary

basis� We now describe the algorithm�

Let A be the current complementary basis and y the corresponding complementary

basic vector�

Find the nearest point in Pos�A	 to q in terms of the usual Euclidean distance

�this can be found in polynomial time by the ellipsoid algorithm discussed in Section

���� or by the practically e
cient algorithm discussed in Chapter �	� Let �x be this

nearest point and d � jj�x� qjj� the Euclidean distance between �x and q�

We will have d � � and �x � q i� q � Pos�A	� In this case y is a complementary

feasible basic vector� and the solution of the LCP �q�M	 is �y � A��q� t � �	� where

t � �tj	 and tj is the complement of yj for all j�

If d � �� let B�q� d	 � fx � jjx� qjj �� dg� B�q� d	 is the closed ball with q as center

and d as radius� Let T�q� �x	 � fx � �q � �x	T �x� �x	 � �g� it is the tangent hyperplane

to B�q� d	 at its boundary point �x� Since �x is the nearest point in Pos�A	 to q� by the

results in Chapter �� �xT �q � �x	 � �� T�q� �x	 � fx � xT �q � �x	 � �g� it is a hyperplane

containing the origin� �� Since �x � Pos�A	� we have �x �
Pn

j�� �jA�j where �j �� �

for all j� Let J � fj � �j � �g� �J � f�� � � � � ng n J� In this case since q �� Pos�A	� by

the results in Chapter �� �x must be a boundary point of Pos�A	� so �J �� �� For each



��� Chapter ��� New LP Algorithms and Some Open Problems

j let D�j be the complement of A�j � By the results in Chapter �� �x is the orthogonal

projection of q in the linear hull of fA�j � j � Jg� so the tangent hyperplane T�q� �x	

contains the linear hull of fA�j � j � Jg� By Theorem ���� of Section ���� T�q� �x	 must

separate strictly� at least one of the pair of column vectors fA�j � D�jg for some j � �J�

Let ��� � fj � j � �J� A�j and its complement are strictly separated by T�q� �x	g� So

��� �� �� select a p � ��� arbitrarily� Then in the notation of Chapter �� D�p is on the

near side of T�q� �x	� and Posf�x�D�pg contains points which are strictly closer to q than

�x� Thus if we make a single principal pivot step in position p in the complementary

basis A� we get a new complementary basis whose pos cone contains points strictly

nearer than �x to q�

With �y�� � � � � yp��� tp� yp��� � � � � yn	 as the new complementary basic vector� we

repeat the whole process�

After each principal pivot step� the distance d strictly decreases� so a comple�

mentary basic vector can never reappear in the algorithm� Since there are only �n

complementary basic vectors� the method must terminate after a 
nite number of

principal pivot steps with the complementary solution for the problem�

Since the problem of 
nding the nearest point in a complementary cone which has a

non�empty interior� to q� is equivalent to another LCP associated with a PD symmetric

matrix� the method can be viewed as one for solving the LCP �q�M	 associated with

a P �matrix M by solving a 
nite number of LCP�s associated with PD symmetric

matrices�

The worst case computational complexity of this algorithm is still an open ques�

tion�

One can get di�erent variants of the algorithm by choosing p from ��� according

to di�erent rules� One can consider the least index rule in which the p chosen from

��� is always the least� or a cyclical rule like the least recently considered rule popular

in implementations of the simplex algorithm� We can also consider a block principal

pivoting method in which the new complementary basic vector at the end of the step is

obtained by replacing each yp in the present complementary basic vector� by its com�

plement for each p � ���� in a block principal pivot step� The worst case computational

complexity of each of these variants is currently under investigation�

Exercise

���� The rectilinear or L��distance between two points x � �xj	� y � �yj	 in Rn is

de
ned to be
Pn

j���jxj � yj j	� Consider the LCP �q�M	 with M being a P �matrix�

Let y � �yj	 be a complementary basic vector for this problem associated with the

complementary basis A� The nearest point in the complementary cone Pos�A	 to q in

terms of the L��distance can be obtained by solving the LP

minimize
nP

j��
�ui � vi	

subject to Ay � u� v � q

y� u� v �� � �
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If ��y� �u� �v	 is an optimum solution to this LP� �x � A�y is a nearest point in Pos�A	

to q in terms of the L��distance�

If M is a P �matrix and q �� Pos�A	� does there always exist a p such that the

cone Pos fA��� � � � � A�p��� D�p� A�p��� � � � � A�ng� where D�p is the complement of A�p�

contains points which are strictly closer to q in terms of the L��distance� than �x� If

so� discuss an e
cient method for identifying such a p�

Develop a method for solving the LCP �q�M	 when M is a P �matrix� that moves

from one complementary cone to another� decreasing the L��distance to q in each step�

Study the worst case computational complexity of this method�

���� Alternate Solutions of the LCP �q�M�

There are very nice conditions to check the uniqueness of a given solution for a lin�

ear programming problem� and to characterize and enumerate alternative optimum

solutions when they exist� See �������

For LCP� such characterizations or methods do not exist yet� A su
cient condition

for the uniqueness of the solution for the LCP �q�M	 is that M be a P �matrix� When

M is not a P �matrix� alternate solutions may exist for the LCP �q�M	� but in this case

the algorithms discussed for the LCP 
nd only one solution for the problem if they are

able to process it� and then terminate�

Consider the LCP �q�M	� Let y � �yj	 be a complementary vector of variables for

it� that is� for each j� yj � fwj � zjg� Let A be the complementary matrix corresponding

to y� Let t � �tj	 where tj is the complement of yj for each j� The complementary

vector y leads to a solution of the LCP �q�M	 i� the system

Ay � q

y �� �

has a feasible solution� If �y is a feasible solution of this system� �y � �y� t � �	 is

a solution of the LCP �q�M	� If A is nonsingular� the above system has a feasible

solution i� A��q �� �� and in this case if it does have a solution� it is unique� If A is

singular� the above system may have many feasible solutions� Whether it has a feasible

solution or not can be determined by using Phase I of the simplex method for linear

programming� If the above system is feasible� all alternate feasible solutions of it can

be enumerated and the set of alternate feasible solutions compactly represented using

standard results in linear programming ������� each such feasible solution leads to a

solution of the LCP �q�M	� as discussed above�

By solving the system of the type discussed above� for each of the complementary

vectors of variables y� we can check whether the LCP �q�M	 has a solution� and in fact
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obtain all its solutions� This is a total enumeration method� requiring the solution of

�n separate systems of linear equations in non�negative variables�

Since �n grows rapidly� the above total enumeration method for checking whether

alternate solutions exist for a given LCP� or to obtain all solutions of it� is impractical

unless n is very small� It would be nice if some e
cient partial enumeration methods

can be developed for doing the same job� These partial enumeration methods should

identify subsets of complementary vectors of variables which do not lead to a solution

of the LCP� and prune them� thereby saving some of the e�ort needed to carry out the

enumeration� These methods would be similar to branch and bounds for ��� integer

programming problems �see ������	 which are also partial enumeration methods�

We will now describe brie�y one partial enumeration method for generating all the

solutions of the LCP �q�M	 discussed in K� G� Murty ������� To keep the discussion

simple� we make the assumption that q is nondegenerate� In this case� every com�

plementary solution is a complementary BFS and it is adequate to enumerate among

complementary basic vectors for all complementary solutions of the LCP �q�M	�

The set of all variables in the LCP �q�M	 is fw�� � � � � wn� z�� � � � � zng� Given any

subset ��� of these variables� we will represent ��� by a ��� incidence vector a � �ap	 �

R�n� a row vector� where

for j � � to n� aj �

�
�� if wj � ���
�� if wj �� ���

an�j �

�
�� if zj � ���
�� if zj �� ��� �

As an example� for n � �� the incidence vector of the subcomplementary set fz�� w�� z�g

is ��� �� �� �� �� �� �� �	� So a complementary feasible basic vector for the LCP �q�M	

corresponds to an incidence vector x � �xp	 � R�n satisfying
P�n

p�� xp � n and

xj�xn�j �� �� for each j � � to n� and the vector is a feasible basic vector� xp � � or �

for all p � � to �n� The second constraint that the vector be a feasible basic vector is

not available explicitly in the form of a system of linear constraints� at the beginning�

but we develop linear constraints in the xp�variables corresponding to it during the

course of the algorithm� In each step� more constraints of this type in the xp�variables

are generated and augmented to the system�

A set covering problem is a ��� integer programming problem of the following

form�

minimize
�nP
p��

xp

subject to Ex �� er
xp � � or � for all p

where E is a ��� matrix of order r � �n and er in the column vector of all ��s in Rr�

In each step� we solve a set covering problem of this form� and generate additional

constraints for the set covering problem in the next step�

The set covering problem itself is anNP�hard combinatorial optimization problem�

but practically e
cient branch and bound algorithms are available for it� The branch
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and bound algorithm discussed in ������ for the set covering problem using the lower

bounding strategy based on Lagrangian Relaxation may be particularly suitable� since

we have to solve the problem repeatedly� with the only change between the problem in

one step and the next being a few additional constraints�

A solution stack is maintained� Any solution to the LCP �q�M	 found out during

the algorithm is stored in the solution stack� At termination of the algorithm� this

stack contains all the solutions of the LCP �q�M	�

The initial set covering problem is

minimize
�nP
p��

xp

subject to xj � xn�j �� �� for each j � � to n

xp � � or �� for p � � to �n

The initial complementary basic vector is w� We will now describe a general step in

the algorithm�

General Step

Let y � �yj	 be the current complementary vector of variables with yj � fwj � zjg for

each j � � to n� and let A be the corresponding complementary matrix� Let t � �tj	

where tj is the complement of yj for each j � � to n�

If A is singular� every complementary basic vector must include one of the variables

from ft�� � � � � tng� Let a � R�n be the incidence vector of ft�� � � � � tng� Add the

additional constraint �ax �� � to the set covering problem�

If A is nonsingular� y is a complementary basic vector� obtain the canonical tableau

of the LCP �q�M	 with respect to it� Suppose it is

y t

I �D �q

If �q �� �� y is a complementary feasible basic vector� and �y � �q� t � �	 is the corre�

sponding complementary solution� include it in the stack� Every complementary basic

vector di�erent from y must include one of the variables from ft�� � � � � tng� Let a �

R�n be the incident vector of ft�� � � � � tng� Include the additional constraint �ax �� � 

in the set covering problem�

If �q ��� �� y is not a feasible basic vector� For each i such that �qi � �� let Si � ftj � j

such that �dij � �g� where dij is the �i� j	th entry in the matrix D in the canonical

tableau� Clearly� any feasible basic vector must include one of the variables from Si�

Let ai be the incidence vector of Si� include the additional constraint �aix �
� � for

each i satisfying �qi � �� in the set covering problem�

Solve the set covering problem together with the additional constraints added in

this step�
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If the optimum objective value in the set covering problem is �� n� �� terminate�

The solution stack at this stage contains all the complementary solutions of the LCP

�q�M	�

If the optimum objective value in the set covering problem is n� let �x be an

optimum solution for it� Let �y be the complementary vector of variables corresponding

to the incidence vector �x� Make �y the new complementary vector of variables� Go to

the next step with it and the current set covering problem�

This algorithm has not been computationally tested and it is not known how it

may work in practice�

Developing practically e
cient partial enumeration methods for the general LCP

remains a problem worth investigating�

���	 New Approaches for Linear Programming

The well known primal simplex algorithm for linear programming starts at an extreme

point of the set of feasible solutions� moves along an edge direction to an adjacent

extreme point� and repeats the whole process until an optimal extreme point or an

unbounded edge along which the objective value is unbounded below �for minimization

problems	 is reached� Thus all the direction used in the primal simplex algorithm are

edge directions� Recently K� G� Murty and Y� Fathi ������ discussed versions of the

simplex algorithm based on pro
table directions of movement through the interior or

relative interior of the set of feasible solutions or faces of it of dimension greater than

�� They showed that with simple modi
cations these methods can be proved to be


nite� and can be implemented using basis inverses just as the usual versions of the

simplex algorithm� Computational testes indicate that these modi
cations leads to

improvements in the running time for solving linear programs�

N� Karmarkar ������ has developed an entirely new polynomially bounded algo�

rithm for solving linear programs based on pro
table search directions through the

interior of the set of feasible solutions� This method closes in on an optimum by cre�

ating a sequence of spheres inside the feasible region for the LP� It is claimed that

preliminary computational testing has shown this method to be much faster than the

simplex algorithm for large scale linear programs� A statement of this algorithm with

an intuitive justi
cation is given in the Notation section in front of this book� Here we

provide a detailed treatment of the algorithm and its polynomial boundedness�

Throughout this section the symbol e denotes the column vector of all �s of ap�

propriate dimension� and eT denotes its transpose�
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������ Karmarkar�s Algorithm for Linear Programming

The Barrier Function Approach to Handle Inequality

Constraints in Nonlinear Programming

Consider the following optimization problem �P	�

minimize ��x	

subject to Ax � b

gi�x	 �� �� i � � to m�
�P	

A feasible solution x for this problem is said to be strictly feasible if gi�x	 � �

for all i � � to m� The barrier function approach for solving this problem needs an

initial strictly feasible point x�� It generates a sequence of points fxr � r � �� �� � � �g�

each xr being a strictly feasible solution of the problem�

Barrier methods work by establishing a barrier on the boundary of the feasible

region that prevents the search procedure from leaving the strictly feasible part of

the feasible region� A barrier function for this problem is a continuous function B�x	

de
ned on !!! � fx � gi�x	 � �� for all i � � to mg that tends to �� as the point x

approaches the boundary of !!!� One commonly used barrier function is the logarithmic

barrier function �suggested by K� R� Frisch in ����	

B�x	 � �
mX
i��

log�gi�x		�

Here log represents the natural logarithm� The barrier function method for �P	 looks

at the problem
minimize F �x	 � ��x	� �

Pm
i�� log�gi�x		

subject to Ax � b
�B	

where � is a positive parameter known as the barrier parameter� Giving � some

positive value and 
xing it� the barrier method tries to solve �B	� by some feasible

direction descent method beginning with the initial strictly feasible point x�� Consider

the line search problem of minimizing F �x	 along the half�line fx��y � � �
� �g� where

x is a strictly feasible point� If �� � � is such that gi�x� ��y	 � � for some i between

� to m� then the step length choosen in this line search problem will be � ��� since

�loggi�x � �y	 	 �� as � 	 �� from below� Thus any line searches carried out for

solving �B	 beginning with a strictly feasible point will always lead to another strictly

feasible point�

The barrier function method for solving �P	 proceeds as follows� It selects a

monotonic decreasing sequence of positive values f�r � r � �� �� � � �g converging to ��

Fixing � � ��� it solves �B	 by a feasible direction descent method� beginning with

the initial strictly feasible point x�� Suppose this terminates with the strictly feasible

point x�� Now � is changed to ��� and the new �B	 solved again beginning with the
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initial strictly feasible solution x�� The process is repeated in the same way� generating

the sequence of strictly feasible points fxr � r � �� �� � � �g� Under mild conditions it

can be shown that this sequence converges to a solution of �P	� Karmarkar�s algorithm

for linear programming� closely resembles this nonlinear interior point barrier method�

In his algorithm� Karmarkar uses a potential function which closely resembles the

logarithmic barrier function�

We will now provide a theoretical description of Karmarkar�s algorithm and proofs

of its polynomial boundedness� A brief discussion on issues in implementing Kar�

markar�s algorithm will then follow� We divide this section into various numbered

subsections� for ease of cross referencing�

� Transforming Any LP Into Another

With an Optimum Objective Value of Zero

We show that any LP can be transformed into another one with a known �minimum	

objective value of zero�

Consider the LP
minimize h	

subject to E	 �
� p

	 �
���

�����	

Let 
 denote the row vector of dual variables� It is well known �see ������	 that solving

�����	 is equivalent to solving the following system of linear inequalities�

h	� 
p �� �

E	 �
� p


E �
� h

	� 
 �
� �

�����	

There is no objective function in �����	� If ��	� �
	 is a feasible solution for �����	� �	 is

an optimum solution for the LP �����	 and �
 is an optimum dual solution� If �����	 is

infeasible� either �����	 is itself infeasible� or �����	 may be feasible but its dual may

be infeasible �in the later case� the objective value is unbounded below on the set of

feasible solutions of �����		�

The system �����	 can be expressed as a system of equations in nonnegative vari�

ables by introducing the appropriate slack variables� To solve the resulting system�

construct the usual Phase I problem by introducing the appropriate arti
cial variables

�see Chapter � in ������	� Let u denote the vector consisting of the variables 	j � 
i�

and the arti
cial variables� Let the Phase I problem corresponding to �����	 be

minimize gu

subject to Fu � d

u �
� � �

�����	
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The optimum objective value in �����	 is �� � �since it is a Phase I problem correspond�

ing to �����		 and �����	 is feasible i� it is zero� Let v denote the row vector of dual

variables for �����	� Consider the LP

minimize gu� vd

subject to Fu � d

vF �
� g

u �
� �

�����	

The LP �����	 consists of the constraints in �����	 and its dual� From the duality

theory of linear programming� the optimum objective value in �����	 is zero �since

�����	 has a 
nite optimum solution	� The LP �����	 can be put in standard form for

LPs by the usual transformations of introducing slack variables etc�� see Chapter � in

������� If ��u� �v	 is optimal to �����	� then �u is optimal to �����	� If g�u � �� then the

	�portion of �u is an optimum solution for �����	� If g�u � �� �����	 is infeasible and

hence �����	 is either infeasible or has no 
nite optimum solution�

� Transforming an LP Into Another

With a Known Strictly Positive Feasible Solution

An LP in standard form with an optimum objective value of zero� can be transformed

into another with the same property� but with a known strictly positive feasible solu�

tion� Consider the LP
minimize gy

subject to Gy � d

y �� �
�����	

where G is a matrix of orderm�n� and suppose all the data is integer and the optimum

objective value in �����	 is zero� Let y� � � by any integer vector in Rn� Consider the

new LP
minimize gy � gn��yn��
subject to Gy � yn���d�Gy�	 � d

y �� �� yn�� �� �
�����	

clearly �y � y�� yn�� � �	 � � is a feasible solution of �����	� Since the optimum objec�

tive value in �����	 is zero� the same property holds in �����	 if gn�� is su
ciently large

�mathematically� it is su
cient to take gn�� � �s� where s is the size of

���G G�n��
g �

����

G�n�� � d�Gy�	�

� Transforming the Feasible Set into

the Intersection of a Subspace with a Simplex

Given an LP in standard form with integer or rational data� with the optimum objective

value of zero� and a strictly positive feasible solution� we can transform it into another�
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for which the set of feasible solutions is H 
 S� where H is a subspace and S is the

standard simplex� Consider the LP

minimize �gy

subject to Gy � �d

y �� �
�����	

where G is of order m � n� and all the data is assumed to be integer� Let L be the

size of this LP �i� e�� L is the total number of digits in all the data in the LP �����	 in

binary encoding� see Sections ��� to ��� and Chapters ��� �� in ������	�

Since �����	 has an optimum solution� it has an optimum solution satisfying the

additional constraint
nX

j��

yj �� M

where M is an upper bound depending on the size L� By the results in Chapter � �see

also Chapter �� in ������	 taking M � �L will do� Hence �����	 is equivalent to

minimize �gy

subject to Gy � �d

eT y �� M

y �� �

where eT � ��� �� � � � � �	 � Rn� By introducing the slack variable yn��� this LP is the

same as
minimize �gy

subject to Gy � �
M

�d

�
n��P
j��

yj

	
� �

n��P
j��

yj � �

yj �� �� j � � to n� �

�����	

The system Gy� �
M

�d

Pn��

j�� yj
�
� � is a homogeneous system of equations� and hence

its set of feasible solutions is a subspace H in Rn��� The system
Pn��

j�� yj � �� yj �� �

for j � � to n � � de
nes the standard simplex S in Rn��� So the set of feasible

solutions of �����	 is H 
 S� as desired�

� Minimization of a Linear Function

Over a Spherical Ball or an Ellipsoid

Consider the problem

minimize cx

subject to �x� x�	T �x� x�	 �� ��
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If c � �� every point in the sphere is optimal to this problem� If c �� �� the optimal

solution of this problem is x�� cT�� it is the point obtained by taking a step of length

� �radius of the sphere	 from the center x� in the direction of �cT �

Hyperplane

cx

x

= constant

0

Figure ���� To minimize cx on the sphere� walk from the center x� in the

direction �cT � a step of length � �radius� The direction �cT is the steepest

descent direction for the linear function cx�

Now consider the problem

minimize cx

subject to Ax � b

and x � B � fx � jjx� x�jj �� �g �

Let H � fx � Ax � bg� H is an a
ne space� If H 
 B �� �� it is a lower dimensional

sphere inside the a
ne space H� Again if c � �� every point in H
B is optimal to this

problem� If c �� �� let �c be the orthogonal projection of c onto H� �c � � if c is a linear

combination of the rows of A� in this case the objective function is a constant onH
B�

and every point in it is optimal� If �c �� �� the optimal solution of this problem is the

point obtained by taking a step of length equal to the radius of the lower dimensional

sphere H 
B from its center in the direction of ��cT �

Consider the following problem

minimize cx

subject to Ax � b

and x � E � fx � �x� x�	T!�x� x�	 �� �g

where ! is a symmetric PD matrix of order n� So E is an ellipsoid� Let H � fx �

Ax � bg� Let F be the Cholesky factor of ! �i� e�� it is the lower triangular matrix
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satisfying FFT � !	� To solve this problem� apply the linear transformation that

transforms the ellipsoid into a sphere B� this is

y � FT �x� x�	 or

x � x� � �FT 	��y �

This transform the a
ne space H into another a
ne space bH � fy � A�FT 	��y �

�b� Ax�	g� the ellipsoid E into the unit sphere B � fy � jjyjj �� �g� and the objective

function cx into c�FT 	��y � cx�� So the transformed problem is �

minimize c�FT 	��y

subject to y � bH 
B

which can be solved as discussed above� From the optimum solution y of this problem�

we compute the optimum solution x� of the original problem using the equation x �

x� � �FT 	��y�

� Converting a Near Optimum Feasible Solution

into an Optimum Feasible Solution

Consider the LP
minimize z�x	 � cx

subject to Ax � b

x �
� �

������	

Let �x be a feasible solution for it� A well known result in LP says that if �x is not a

BFS for this problem� then a BFS "x for it satisfying c"x �
� c�x can be obtained� or it can

be established that cx is unbounded below in this problem� See ������� We describe

the procedure for doing it here�

Let J � fj � �xj � �g� If fA�j � j � Jg is linearly independent� �x is itself a BFS�

If �x is not BFS� fA�j � j � Jg is linearly dependent� Let a linear dependence relation

among these vectors be X
j�J

�jA�j � �

where ��j � j � J	 �� �� Such a vector ��j � j � J	 can be computed by pivotal methods

for checking linear independence of the set fA�j � j � Jg� see �������

Since �x is feasible� and from the de
nition of J� we also haveX
j�J

�xjA�j � b

#� �
X
j�J

��xj � ��j	A�j � b
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for all real values of �� De
ne the vector x��	 by

xj��	 �

�
�xj � ��j for j � J

� for j �� J �

Now de
ne

�� �

�
��� if �j �� � for all j � J�

maxf� �xj
�j

� j � J and such that �j � �g� otherwise

�� �

�
��� if �j �� � for all j � J�

minf� �xj
�j

� j � J and such that �j � �g� otherwise �

Clearly �� � �� �� � �� and x��	 �� � and hence feasible to the LP for all �� �
� � �

�
��� Since ��j � j � J	 �� �� at least one among �� or �� is 
nite� If

P
j�J cj�j � �� let

� � �� or �� whichever is 
nite� break ties arbitrarily�

If
P

j�J cj�j � �� and �� � �� then fx��	 � � �� ��g is a feasible half�line along

which cx diverges to ��� Likewise if
P

j�J cj�j � �� and �� � ��� then fx��	 �

� �
� ��g is a feasible half�line along which cx diverges to ��� If neither of these

unboundedness conditions are satis
ed� select � � �� if
P

j�J cj�j � �� or � � �� ifP
j�J cj�j � ��

Then x��	 is a feasible solution satisfying cx��	 �� c�x� and the number of positive

components in x��	 is at least one less than that in �x�

Repeat the same process now with the feasible solution x��	� After at most jJj of

these steps� we will either obtain a BFS "x satisfying c"x �
� c�x� or establish that cx is

unbounded below in this LP�

Example ����

Consider the following LP

x� x� x� x� x	 x
 x� b

� � � � � � �� �

� � � � �� � �� �

� � � �� � � �� �

��� � � � � � �� � z�x	 minimize

xj �� � for all j

Let x� � �	� � ��
��
� �

�
� � �� �� �	

T be the feasible solution with an objective value z�x�	 �

��� Denote the coe
cient of xj in z�x	 by cj � and the column vector of xj in the

constraint matrix by A�j � J � the set of subscripts of positive variables in x� is

f�� �� �� �� �g� The set of columns fA�j � j � � to �g is linearly dependent� and a linear

dependence relation among them is

�A�� � A�� � A�� � �



�	� Chapter ��� New LP Algorithms and Some Open Problems

So the vector �� leading to this linear dependence relation is ���� �� �� �� �� �� �	T and

z���	 � �� � �� The feasible solution x���	 constructed in the procedure is

x���	 �

�
�
� �� ��

��

�
� ��

�

�
� �� �� �� �

�T
and so �� � ��

� � �� � 	
� � Since z���	 � �� we choose � � �� � ��

� � The next feasible

solution in x����	 � x� is

x� � ��� �� �� �� �� �� �	T

It can be veri
ed that z�x�	 � �� and that x� has only � positive components� Contin�

uing the procedure with x�� the set of columns to examine is fA��� A��� A��� A�	g which

again is linearly dependent� with the linear dependence relation

A�� � A�� � A�	 � � �

The vector �� corresponding to this linear dependence relation is ��� ����� �� �� �� �	T

and z���	 � � � �� The feasible solution x���	 constructed in the procedure is

x���	 � ��� � � �� �� �� �� � � �� �� �	T

and so �� � ��� �� � �� and since z���	 � �� we choose � � �� � ��� The next

feasible solution is x����	 � x�� x� � ��� �� �� �� �� �� �	T � z�x�	 � ��� Now x� is a BFS

and it satis
es z�x�	 � z�x�	�

Consider the LP ������	 again� Suppose the data is integer� and L is the size of

this LP� Let z� be the unknown optimum objective value in this LP� If �x is a feasible

solution for this LP whose objective value is su
ciently close to the optimum objective

value� e�g� if c�x is within ��L of z�� then the BFS obtained by applying the above

procedure beginning with �x� will be an optimum solution for the LP� by the results

proved in the ellipsoid algorithm� see Chapter � and ������ and Figure ����� This

follows because when L is the size of the LP� any BFS x satisfying� objective value

at x� z�x	 �� z� � ��L� has to be an optimum BFS� by the results proved under the

ellipsoid algorithm�

x xObjective
decreasing
direction

Optimum
solution optima

Face of alternate

Figure ���� If �x is near optimal� a BFS obtained by above procedure will be

optimal� whether problem has unique optimum solution or has alternate optima�
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Thus if a near optimal feasible solution with objective value su
ciently close to

the optimum can be found� the procedure discussed in this subsection can be used to

convert it into an exact optimum solution for the LP� This result is used in Karmarkar�s

algorithm� Karmarkar�s algorithm computes a near optimal solution for an LP and

then converts it into an exact optimum solution of the problem using the procedure

discussed here�

	 Karmarkar�s Algorithm

Consider the LP in the form

minimize cx

subject to x � $ 
 S
������	

where
$ � fx � Ax � �g

S �
n
x � x �� ��

nX
j��

xj � �
o

A is of order m � n� Without any loss of generality we assume that the rank of A is

m� We make the Following assumptions�

�i	 x� � �
n
e� where e is the column vector of all ��s in Rn is feasible to this LP�

�ii	 The optimum objective value in ������	 is zero�

Karmarkar�s algorithm generates a 
nite sequence of feasible points x�� x�� � � �� all

of them � �� such that cxr is strictly decreasing� L denotes the size of ������	�

These assumptions also imply that the rank of

��� A
eT

��� is m��� If cx� � �� by the

assumptions� x� is optimal to ������	� we terminate� So we assume that cx� � �� The

method terminates when a feasible solution xr satisfying cxr �
� ��O�L
 is obtained�

and then converts this approximate optimal solution xr into an exact optimal solution

as in Subsection ��

If c is a linear combination of the rows of A� cx � � at all feasible solutions x� and

so our assumptions imply that c is not a linear combination of the rows of A�

Now we shall describe the general step of the algorithm�

Step r � � 
 Assume we are given xr � �� xr � $ 
 S� Let xr � a � �a�� � � � � an	
T �

Let D � diagfa�� � � � � ang � �dij	 with dii � ai� i � � to n� and dij � � for i �� j� So

D is a positive diagonal matrix of order n� n�

We now construct a projective transformation T � S 	 S� which depends on the

vector a� For x � S�

T �x	 �
D��x

eTD��x
�
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It can be veri
ed that T �x	 � S for all x � S� Also� if x � S satis
es x � �� so is

T �x	� So� the transformation T �x	 maps every point in the relative interior of S �i� e��

a point in S which is � �	 into another point in the relative interior of S� It can be

veri
ed that

T �a	 � a� �
�

n
e �

If T �x	 � x�� the inverse transformation yielding T���x�	 � x is

T���x�	 �
Dx�

eTDx�
�

Associate the objective function cx with the potential function f�x	 de
ned over the

intersection of $ with the relative interior of S� given by

f�x	 �
nX

j��

log



cx

xj

�

where log denotes the natural logarithm� Since all the points obtained in the algorithm

will be strictly positive� they are in the relative interior of S� and f�x	 is well de
ned

at them� For x from the relative interior of S �i� e�� x � S and x � �	 with T �x	 � x��

de
ne the transformed potential function f ��x�	 so that it satis
es f�x	 � f ��T �x		 �

f ��x�	� Then it can be veri
ed that

f ��y	 �
nX

j��

log



"cy

yj

�
�

nX
j��

log�aj	

where "c � cD�

Let $� denote the tranformation of the subspace $ under T � Thus

$� � fx� � ADx� � �g �

Now de
ne

$�� �

�
y � ADy � �

eT y � �

�

B �

���AD
eT

��� �

As discussed earlier� B is of full row rank� Since a � $� we have ADe � �� so a� � $���

Let ��� � be respectively the radii of the largest sphere with center a� contained in

the simplex S� smallest shpere with center a� containing S� See Figure �����
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S

a0

Figure ���� Inscribed sphere and circumscribing sphere

Then

� �
�p

n�n� �	
� �� �

r
n� �

n
� �n� �	� �

For � � � � �� de
ne

B�a�� ��	 � fx � jjx� a�jj �� ��g �

Since � � � � �� the sphere fx �
Pn

j�� xj � �g 
 B�a�� ��	 � S� The projective

transformation T �x	� transforms the set of feasible solutions of ������	 into $�� 
 S�

However� T �x	 does not transform cx into a linear function� But the potential function

f�x	� which depends on ratios of linear functions is transformed into another function

of the same form� f ��x�	� We will show later on that a reduction in f�x	 leads to a

reduction in cx� The problem of minimizing f�x	 gets transformed into that of mini�

mizing f ��x�	� We show later on that minimizing f ��x�	 can be achieved approximately

by optimizing a linear approximation� "cx��

Instead of optimizing over $�� 
 S in the transformed problem� we optimize over

the simpler subset $�� 
B�a�� ��	� The reasons for this are explained below�

Our original problem is transformed into that of optimizing f ��x�	 over $� 
 S�

Since n
x �

nX
j��

xj � �
o

B�a�� �	 � S � B�a�� ��	 


n
x �

nX
j��

xj � �
o

min value of f ��x�	

over $�� 
B�a�� �	
�
�

min value of f ��x�	

over $�� 
 S
�
�

min value of f ��x�	

over $�� 
B�a�� ��	

Since $�� 
 B�a�� �	 for any � is a sphere� optimizing over it is much easier than

optimizing over $�� 
 S� To optimize f ��x�	 over $�� 
B�a�� �	� we approximate f ��x�	

by a linear function� "cx�� and the minimization of this linear function over $��
B�a�� �	

can be carried out very easily by the simple techniques discussed in Subsection ��
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If ��� ��� �� denote the minimum value of this linear function "cx� over $��
B�a�� �	�

$� 
 S� $�� 
B�a�� ��	 respectively� we have �� �� �� �� ��� and so

"ca� � �� �� "ca� � �� �� "ca� � �� �

 ��
�

�
�"ca� � ��	

the last equation follows from the results in Subsection �� So

"ca� � ��
"ca� � ��

�
�

�

n� �
�� � ��
"ca� � ��

�
� ��

�

n� �

So by going from the point a� to the point that minimizes "cx� over x� � $�� 
B�a�� �	�

we come closer to the minimum value of the objective function by a factor of


�� �

n��

�
�

In practice� we optimize over a smaller subset $�� 
 B�a�� ��	 for � � � � � for

the following reasons�

a	 it allows for optimization of f ��x�	 to be approximated closely by optimization of

a linear function�

b	 Under 
nite precision or other approximate arithmetic� it provides us a margin to

absorb errors without going outside the simplex�

See Figure ����� The choice of � � �
� works �this leads to the factor 
 discussed

later on in Theorem ���� to be � �
�� 	� In practical implementation� one may want to

choose a value of � much closer to � for rapid convergence�

0a

αρ

Figure ���� The simplex S� and the inscribed sphere B�a�� ��	 
 fx �Pn
j�� xj � �g inside it� for � � � � ��

Since B�a�� ��	 is a sphere with center a�� and $�� is an a
ne space containing the

point a�� the intersection $�� 
B�a�� ��	 is a lower dimensional sphere� As discussed

in Subsection � above� minimizing a linear function over the lower dimensional sphere

$��
B�a�� ��	 requires taking a step from the center a�� in the direction of the negative

gradient� with step length equal to the radius of the sphere� in the a
ne space $��� We

provide the details of this algorithm�
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Subroutine to minimize "cx� Over x� � $�� 
B�a�� ��	

First project "c orthogonally onto the subspace fy � By � �g� This yields

"cp � "c
�
I � BT �BBT 	��B

�
If "cp � �� the objective function will have the same value at all feasible solutions�

contradicting our assumptions� So "cp �� �� Let

%cp �
"cp
jj"cpjj

g� � a� � ��%cp

Then g� is the point which minimizes "cx� over x� � $�� 
B�a�� ��	� We will prove this

in Theorem ���� given below�

Now de
ne

xr�� � T���g�	 �
Dg�

eTDg�
�

If cxr�� � �� xr�� is optimal to ������	� terminate� If cxr�� � � but su
ciently

small �i� e�� cxr�� �� ��O�L
	 terminate with the conclusion that xr�� is near optimal

to ������	 and convert it into an exact optimal solution as in Subsection �� If these

conditions are not satis
ed� go to the next step�

Proof of the Algorithm and its Polynomial Boundedness

Theorem ���� The vector g� minimizes "cx� over x� � $�� 
B�a�� ��	�

Proof� Let z � $�� 
 B�a�� ��	� Since $�� is an a
ne space and both g�� z � $��� we

have B�g� � z	 � �� So� BT �BBT 	��B�g� � z	 � �� Therefore �"c � "cp	�g
� � z	 � ��

Thus "c�g� � z	 � "cp�g
� � z	 � jj"cpjj%cp�a� � ��%cTp � z	 � jj"cpjj

�
%cp�a

� � z	 � ��
�
�since

%cp%c
T
p � jj%cpjj � �	� But� %cp�a

� � z	 �� jj%cpjj jja� � zjj �by Cauchy�Schwartz inequality	

� jja�� zjj �since jj%cpjj � �	 �� ��� since z � B�a�� ��	� Therefore %cp�a
�� z	��� �� ��

and therefore by the above "c�g� � z	 �� �� Hence� "cg� �� "cz for all z � $�� 
B�a�� ��	�

that is� g� minimizes "cx� over x� � $�� 
B�a�� ��	�

Theorem ���� There exists a point �x � $�� 
B�a�� ��	 such that

either �i� "c�x � �

or �ii� f ���x	 �� f ��a�	� 


where 
 is a positive constant depending on ��

Proof� Let x� minimize cx over $ 
 S� By hypothesis cx� � �� De
ne � � D��x�

eTD��x�
�
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Case � 
 � � B�a�� ��	� In this case let �x � �� Then �x � $�� 
B�a�� ��	 and "c�x � ��

so �i	 is satis
ed�

Case � 
 � �� B�a�� ��	� In this case� let �x be the point at which the line segment

joining a� with � intersects the boundary of the sphere B�a�� ��	� Then �x � ����	a��

�� for some � � � � �� Since a� and � are in $��� so is �x� So �x � $�� 
B�a�� ��	� and

"c�x � ��� �	"ca� � �"c� � ��� �	"ca� �since "c� � cD� � � because cx� � �	� So

"ca�

"c�x
�

�

�� �
������	

Now

f ��a�	� f ���x	 �
nX

j��

log

�
"ca�

a�j

	
�

nX
j��

log



"c�x

�xj

�

�
nX

j��

log

�
 "ca�
"c�x

�
 �xj
a�j

�	

�
nX

j��

log

�
�xj

��� �	a�j

	
by ������	

�
nX

j��

log

�
��� �	a�j � ��j

��� �	a�j

	

�
nX

j��

log

�
� �


 �

�� �

�
 �j
a�j

�	
It can easily be veri
ed that if �i �� � for all i� then the product

Q
i�� � �i	 �� � �P

i �i� Taking logs on both sides we have
P

i log�� � �i	 �� log�� �
P

i �i	� Applying

this to the above� we have

f ��a�	� f ���x	 �� log



� �



�

���

�Pn

j��
�j

���n


�
� since a�j � ��n for all j

�
� log



� � n�

���

�
� since

Pn
j�� �j � �

Now� �x � �� � �	a� � ��� So �x � a� � ��� � a�	� Since �x is on the boundary of

the sphere B�a�� ��	� we have jj�x � a�jj � ��� so from the above �� � jj�x � a�jj �

�jj� � a�jj �� ���� So � �
�

���


�� � �
n�� � So

� �
n�

�� �
�
� � �

n
�

�
n��

�
��

�

n� �

� � �
n�

n� �� �
�
� � � �

Therefore� from the above

f ��a�	� f ���x	 �� log�� � �	

Thus taking 
 � log�� � �	 establishes �ii	�
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Lemma ���� Let � be a real number� If j�j �� � � � then jlog����	��j ��
��

�����
� �

Proof� Let ���	 � log�� � �	� Then

d

d�
���	 �

�

� � �
� and

d�

d��
���	 �

��

�� � �	�
�

By the mean value theorem of calculus applied to the function log�� � �	� we have

log�� � �	 � log��	 � �

 d
d�

���	
�
���

�
��

�


 d�
d��

����	
�

for some �� satisfying j��j �� j�j� So

log�� � �	 � � �
��

�


 �

�� � ��	�

�
jlog�� � �	� �j �

��

�


 �

�� � ��	�

�
�
�

��

���� �	�

Lemma ���� Let � � �
q

n
n�� � Then������

nX
j��

log

xj
aoj

������� �� ��

���� �	�
for all x � B�a�� ��	 
 S �

Proof� Let x � B�a�� ��	 
 S� Then jjx� a�jj� �� ����� So �since a�j �
�
n for all j	

nX
j��


xj � a�j
a�j

��
�
�

����

���n	�
� ����n� �

��n�

n�n� �	
� ��

So�
���xj�a�ja�

j

��� �� � for all j� Therefore� by Lemma ���������log
� � xj � a�j
a�j

�
�

xj � a�j

a�j

������ �� 
xj � a�j
a�j

��
 �

���� �	�

�

#� �

������
nX

j��

log

xj
a�j

�
�

nX
j��


xj � a�j
a�j

�������
�
�


 �

���� �	�

��� nX
j��


xj � a�j
a�j

���A
�
�

��

���� �	�

This implies that

����� nP
j��

log
�xj
a�
j

������ �� ��

�����
� � since
nP

j��



xj�a

�

j

a�
j

�
� �

n

�
nP

j��

�xj � a�j	

	
� �

�as x and a� � S	�
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Theorem ���� The point g� which minimimizes "cx� over x� � $��
B�a�� ��	 satis�es

either �i� "cg� � �

or �ii� f ��g�	 �� f ��a�	� 


where 
 is a constant depending on �� If � � �
� � 
 ��

�
�� �

Proof� De
ne
%f�x	 � n log


 "cx

"ca�

�
�

Let h be the point where f ��x�	 achieves its minimum value over x� � $�� 
B�a�� ��	�

Then�

f ��a�	� f ��g�	 �f ��a�	� f ��h	 � f ��h	� f ��g�	

��f ��a�	� f ��h	� �
�
f ��h	�

�
f ��a�	 � %f�h	

��
�
�
f ��g�	�

�
f ��a�	 � %f�g�	

��
�
�
%f�h	� %f�g�	

� ������	

Now if the minimum value of "cx� over x� � $�� 
B�a�� ��	 is zero� condition �i	 of the

theorem holds trivially� Let us assume that this is not the case� Then by Theorem

����

f ��a�	� f ��h	 �� log�� � �	 � ������	

For x� � B�a�� ��	 
 $��� we have

f ��x�	�
�
f ��a�	 � %f�x�	

�
�

nX
j��

log

"cx�
x�j

�
�

nX
j��

log

"ca�
a�j

�
� n log


 "cx�
"ca�

�
� �

nX
j��

log

x�j
a�j

�
So ��f ��x�	� �f ��a�	 � %f�x�	

��� � ���� nX
j��

log

x�j
a�j

�����
�
�

��

���� �	�
by Lemma ����

������	

But %f�x�	 depends on "cx� in a monotonically increasing manner� So %f�x�	 and "cx�

attain their minimum value over x� � $�� 
B�a�� ��	 at the same point� that is g�� So

%f�h	 ��
%f�g�	 � ������	

Now from ������	 we have� for x� � $�� 
B�a�� ��	�

f ��x�	�
�
f ��a�	 � %f�x�	

�
�
� �

��

���� �	�
� ������	
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Also $�� � $�� So both h and g� � $�� From ������	� ������	� ������	� ������	� ������	�

we have

f ��a�	� f ��g�	 �� log�� � �	�
��

��� �	�
�

We know that log�� � �	 �� �� ��

�
� for � � � � �� Also

��

��� �	�
�

��n

�n� �	


�� �

�
n

n��

� �
�

��
So from the above� we have

f ��a�	� f ��g�	 �� 
�n	 � ��
��

�
�

��n

�n� �	


�� �

�
n

n��

� �
�

��
As n	�� 
�n		 �� ��

� � ��

����
� � If n �
� �� � � �

� � we have 
�n	 ��
�
�� �

Theorem ���� Either cxr�� � �� or f�xr��	 �� f�xr	 � 
� where 
 is a constant

depending only on �� as in Theorem �����

Proof� We have proved in Theorem ���� that either "cg� � �� or f ��g�	 �� f ��a�	 � 
�

Now
xr � T���a�	

xr�� � T���g�	

f ��T �x		 � f�x	 for all x � S �

So� by applying T��� we have from the above� that either cxr�� � �� or f�xr��	 ��
f�xr	� 
�

Theorem ���� In O
�
n�l� log n	

�
steps� the algorithm �nds a feasible point x � �

such that
either cx � �

or cx
ca�

�
� ��l

Proof� Suppose cxr � � did not occur in the 
rst N steps� Then� by Theorem ����

f�xr	 �� f�xr��	� 
� for r � � to N

#� � f�xr	 �� f�x�	� r


#� �
nP

j��

log


cxr

xr
j

�
�
�

nP
j��

log


ca�

a�
j

�
� r


i� e�� n log


cxr

ca�

�
�
�

nP
j��

log�xrj	�
nP

j��

log�a�j	� r


�
� n log�n	� r
� since xrj �� � and a�j �

�
n for all j

#� � log


cxr

ca�

�
�
� log n� r	

n �
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So if r �
�
n
	 �l � log n	

�
� we have

log

cxr
ca�

�
�
� �l

i� e��

cxr
ca�

�
�
� ��l

The computation in each step involves O�n�	 arithmetic operations on the data in the

worst case� By Theorem ���� and the termination conditions used in the algorithm

it has to run for at most O�nL	 steps� to come within ��O�L
 of the optimum� at

which point we round the solution to get an exact optimum solution as discussed in

Subsection �� So� the algorithm needs at most O�n�L	 arithmetical operations on the

data in the worst case� it is clearly polynomially bounded�

The 
nal operation of converting the near optimal solution obtained at the ter�

mination of the algorithm into an exact optimal solution as discussed in Subsection

� could be computationally expensive �it may need up to O�n	 pivot steps	� In most

practical applications the data usually consists of unknown error terms and it makes

sense to take the near optimal solution as it is� without the expensive 
nal conversion�

In practical LP applications� because of unknown errors in the data� a near optimal

and aproximately feasible solution to the model is the usual goal� and Karmarkar�s

algorithm is well suited to achieve this goal�


 E�cient Implementation of the Karmarkar Algorithm

The major piece of computation in each step of the algorithm is the computation of the

projection "cp � "c�I � BT �BBT 	��B�� For this we have to 
nd the inverse� �BBT 	���

Since B �

���AD
e

���� we have

BBT �

���AD�AT ADe
�ADe	T eTDe

��� �

���AD�AT �
� �

���
since the point a used in de
ning the diagonal matrix D is in S� and a� � e

n
� $���

�BBT 	�� can be found e
ciently if �AD�AT 	�� can be� The only thing that changes

in AD�AT from step to step is the diagonal matrix D� Let Dr � diag�dr��� � � � � d
r
nn	

denote the diagonal matrix D in step r� We do not compute �AD�AT 	�� in each step

from scratch� Instead we update it to the extent necessary as we move from one step

to the next�

If Dr and Dr�� di�er in only one entry� the inverse of AD�
r��A

T can be computed

in O�n�	 arithmetic operations from AD�
rA

T � For this� consider a nonsingular square

matrix M of order n� u � �u�� � � � � un	
T � v � �v�� � � � � vn	

T � Then the Sherman�

Morrison formula states that

�M � uvT 	�� � M�� �
�M��u	�M��v	T

� � uTM��v
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uvT is a rank�one modi
cation of M � and the formula shows that computation of

�M � uvT 	�� can be done with O�n�	 arithmetical operations given M��� If Dr and

Dr�� di�er in only the ith diagonal entry� then

ADr��A
T � AD�

rA
T �


�
dr��ii

��
�
�
drii
���

A�i�A�i	
T �

So� in this case AD�
r��A

T is obtained from a rank�one modi
cation of AD�
rA

T � and

the above formula can be used to get �AD�
r��A

T 	�� from �AD�
rA

T 	�� with O�n�	

arithmetical operations� If Dr and Dr�� di�er in t diagonal entries� we can perform

t successive rank�one updates as above and obtain �AD�
r��A

T 	�� from �AD�
rA

T 	��

with O�n�t	 arithmetical operations�

We now show that with a simple modi
cation of the algorithm� we get a version

in which �AD�
rA

T 	�� can be used in place of �AD�
r��A

T 	�� as long as Dr and Dr��

are close in some sense�

We de
ne the diagonal matrix D � diag�d��� � � � � dnn	 as an approximation to

Dr�� � diag �dr���� � � � � � dr��nn 	 if

�

�
�
�


 �dii

dr��ii

��
�
� � for all i �

We will now analyse the e�ect of replacing Dr�� by such a D� Consider the following

modi
cation of the optimization problem over the inscribed sphere in the transformed

space�
minimize "cx�

subject to x� � $��

and h�x�	 � �x� � a�	TQ�x� � ao	 �� ���
������	

where Q is some positive diagonal matrix� Taking Q � I and �� � � corresponds to

the original problem used in Subsection ��

Letting the row vector 
� and scalar � to be the Lagrange multipliers for ������	�

the KKT conditions for ������	 imply

"c� 
B � ���x� � a�	TQ � �

#� � "cQ��BT � 
BQ��BT � ���x� � a�	TBT

� 
BQ��BT

since both x�� a� � $�� implies that B�x��a�	 � �� Using this we conclude that the op�

timum solution of ������	� x�� satis
es �x��a�	T � �"c
�
I�Q��BT �BQ��BT 	��B

�
Q��

where � is a positive scalar to be determined so that x� satis
es �x��a�	TQ�x��a�	 �

���� Computation of this requires �BQ��BT 	��� Substituting B �

���ADr��

eT

��� we get

BQ��BT �

���ADr��Q
��Dr��A

T ADr��Q
��e

ADr��Q
��eT eTQ��e

��� �
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If the inverse of ADr��Q
��Dr��A

T is known� �BQ��BT 	�� can be computed with

O�n�	 arithmetical operations using the formula���M p
pT q

��� �
�

q � pTM��p

���� �q � pTM��p	M�� � �M��p	�M��p	T �� �M��p

��M��p	T �� �

����
Suppose D � Dr��E where E is a diagonal error matrix such that E � �eij	 with
�
�
�
� e�ii �� � for all i� and we know �ADAT 	��� Then setting Q � E��� we have

ADr��Q
��Dr��A

T � ADAT � So using the known �ADAT 	��� we can compute the

optimum solution of the modi
ed problem ������	 using the above formulae�

Now we relate the solution of ������	 to the main optimization problem� Since

Qii � e��ii �
�
�
� � �
�
� we have

�

�
�x� � a�	T �x� � a�	 �� �x� � a�	TQ�x� � a�	 �� ��x� � a�	T �x� � a�	

B


a��
� ��
�

�
�
�
� fx� � �x� � a�	TQ�x� � a�	 �� ���g

� B�a�� ����	 �

Take �� � �
� where � is the quantity used in Subsection � �there� we used typically

� � �
� 	� So

B


a��
��
�

�
�
�

 $�� � fx� � x� � $�� and �x� � a�	TQ�x� � a�	 �� ���g

� B�a�� ��	 
 $�� �

From the 
rst inclusion we have

minimum value of f ��x�	

subject to x� � $��

and �x� � a�	TQ�x� � a�	 �� ���

�
�

minimum value of f ��x�	

subject to x� � $�� 
B


a��
�
�
�

�
�
�

and by Theorem ���� we have

minimum value of f ��x�	

subject to x� � $�� 
B


a��
�
�
�

�
�
� �

� f ��a�	� log
�
� �

�

�

�
�

So� for �g�� the optimum solution corresponding to the modi
ed problem ������	� we

can claim

f ���g�	 �� f ��a�	� log
�
� �

�

�

�
and if we de
ne �xr�� � T����g�	� we can as in Theorem ����� claim

f��xr��	 �� f�xr	� �


where �
 is rede
ned as

�
 � log
�
� �

�

�

�
�

��

���� �	�
�
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This a�ects the number of steps by only a constant factor and the algorithm still works�

So� this is what we do� to implement the modi
ed algorithm in an e
cient manner�

We maintain �AD�AT 	��� We do not change all diagonal elements of D in each step�

Let y � �y�� � � � � yn	
T be the new solution at the end of a step� It is time to update

�AD�AT 	��� Before� we de
ned the new D to be diag �y�� � � � � yn	� Instead� we modify

D in two stages�

Compute � � �
n

Pn
j��

yj
djj

where djj are the diagonal entries in the current D�

First multiply D by �� this needs dividing �AD�AT 	�� by �� to update it accordingly�

This completes stage ��

Then� for each j � � to n� if in the matrix D at the end of stage ��
�djj
yj

��
��
�
�
� � �
�
�

reset djj � yj and update �AD�AT 	�� corresponding to this change by a rank�one

modi
cation as discussed above�

In essence� we carry out fewer updating operations by optimizing �after the pro�

jective transformation	 over an inscribed ellipsoid �dashed in Figure ����	 and not the

inscribed sphere� �Of course we do not optimize over this sphere or ellipsoid exactly�

but scale it by � or �� before the optimization�	 We make enough updating operations

to make sure that the current D matrix and current solution y always satisfy
�djj
yj

��
��

�
� � �
�
� this insures that the ellipsoid is close to the inscribed sphere

Figure ����

We still need only O�nL	 steps to shrink the objective value by the required factor

of ��O�L
� With this modi
cation� N � Karmarkar has shown in ������ that we need to

do only O�n
�

�L	 updating operations� Since each updating operation requires O�n�	

arithmetic operations on the data� the overall algorithm needs O�n�
�L	 arithmetic

operations on the data in the worst case� with this modi
cation�
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� The Sliding Objective Function Method

From Subsection �� it is clear that Karmarkar�s algorithm solves LPs for which the

optimum objective value is known to be zero� As shown in Subsection �� any LP can be

transformed into one with this property� but this transformation increases the number

of constraints and blows up the order of the problem� and hence may be undesirable in

practical applications� In this subsection� we discuss a sliding objective value approach

that can be used to solve the original problem by itself using Karmarkar�s algorithm�

when the optimum objective value is unknown�

For a given LP� the 
rst problem is to determine whether it is feasible or not� Let

the system of constraints be
Ax � b

x �� �

where A is of order m� n� As shown in Subsection �� to check whether this system is

feasible� we solve the following LP with the arti
cial variable xn��� Let x
� � � be any

vector�
minimize xn��
subject to Ax� xn���Ax

� � b	 � b

x �� �� xn�� �� �
������	

�x�� �	 � � is a feasible solution to this problem� The original problem is feasible i�

the optimum objective value in this problem is zero� Even though the exact optimum

objective value in this problem is unknown� we know that it lies between � and �� Using

it� this problem could be solved by Karmarkar�s algorithm with the sliding objective

value approach discussed below�

Now consider the general LP

minimize cx

subject to Ax � b

x �� �
������	

This problem can be solved in two stages� First we check whether it is feasible� as

discussed above� If a feasible solution �x is obtained� c�x is an upper bound on the

optimum objective value in ������	� We could then check whether the dual problem

is feasible� If the dual is infeasible� from the duality theory of linear programming we

know that cx is unbounded below in ������	 �since ������	 has already been veri
ed to

be feasible	� If the dual is feasible� the dual objective value at the dual feasible solution

obtained is lower bound on the optimum objective value in ������	�

Now� consider the LP in the form discussed in ������	

minimize dx

subject to x � $ 
 S

where $ � fx � Ax � �g

S � fx � x �
� ��

Pn
j�� xj � �g

������	
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where A is a matrix of order m�n and rank m� We assusme that an optimum solution

exists and that the optimum objective value is known to be between the given lower

and upper bound l�� u� �if the original problem is transformed directly into this form

using the techniques discussed in Subsections �� �� we could take l� � ��L and u� � �L�

where L is the size of the problem� under the assumption that an optimum solution

exists	� The di�erence between the current lower and upper bounds on the objective

value is called the range� The sliding objective value approach is divided into several

phases� At the end of each phase the range reduces to at least �
�
of its length at the

beginning of the phase and takes no more than n�k�log�n		 steps where k is a constant

satisfying 

��




n

�kn
�
�

�

�
�

Let z� denote the unknown optimum objective value in ������	� We run the algorithm

pretending that a selected value� �z is the minimum objective value �the value of �z

is updated at the beginning of each phase	� that is� we try to minimize dx � �z �

�d� �zeT 	x� This leads to the problem

minimize cx

subject to x � $ 
 S

with c � d� �zeT � We need to modify the computation of the vector g� in each step of

the algorithm as follows� Compute g� as in the subroutine discussed in Subsection ��

Check if "cg� � �� If so� choose the point g�� on the line segment joining a� and g� which

satis
es "cg�� � �� and make the point g�� the output of the subroutine instead of g��

If z� �� �z� let xm be the point where "cx achieves its minimum over $��
B�a�� ��	�

If "cxm � �� then de
ne x� to be the point on the line segment joining a� and xm

satisfying "cx� � �� Then all the proofs go through� and each step of the algorithm

leads to a reduction of 
 in the potential function or 
nds a point where the original

objective function is �z�

Now a phase in the sliding objective value approach consists of the following� Let

l� u be the current lower and upper bounds for the objective value dx at the beginning

of the phase� Let

�l � l�
�

�
�u� l	

�u � l�
�

�
�u� l	

l ul u

Figure ����

Run the algorithm as described above with �z � pretended minimum objective

value � �l�



��� Chapter ��� New LP Algorithms and Some Open Problems

If we obtain a feasible solution x which satis
es dx � �u� then terminate the phase�

make dx the new upper bound u� and go to the next phase with the new bounds for

the objective value�

Suppose after n�k � log�n		 steps we have not reached a solution x with dx � �u�

If z� ��
�l� we must have achieved a reduction 
 in the associated potential function in

each step� forcing the objective value dx to be � �u� So� if after n�k� log�n		 steps we

have not reached a solution x with dx � �u� we must have z� ��
�l� So make �l the new

lower bound l� and go to the next phase with the new bounds for the objective value�

Thus the length of the range gets multiplied by a factor �
� or less during each

phase� So after O�L	 phases �i� e�� after O�nL log n	 steps	 we narrow the range to

within ��O�L
 of the optimum objective value� and then obtain the exact optimum

solution from the solution at that stage�


 Implementation Di�culties

Consider the LP in standard form� 
nd y � Rn to

minimize gy

subject to Gy � d

y �� � �
������	

The primal simplex algorithm for solving this problem processes the problem as it is

in ������	� It performs a sequence of operations on the data G� d� g until the problem

is solved�

To solve ������	 by Karmarkar�s algorithm in the form discussed in Subsection ��

we have to 
rst convert the problem into the form ������	� As pointed out in Subsection

�� we add the additional constraint

nX
j��

yj � yn�� � M �

Mathematically� takingM to be �L where L is the size of the LP ������	� would su
ce�

but in practical implementations M could be any practically reasonable upper bound

for
Pn

j�� yj in the problem� Using this additional constraint� ������	 is transformed

into the form
minimize gy

subject to Gy �



�
M

�
d

�
n��P
j��

yj

	
� �

n��P
j��

yj � �

y �� �� j � � to n� �

������	

which is in Karmarkar�s form�
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LP models arising in practical applications lead to problems of the form ������	 in

which the coe
cient matrix G is very sparse� that is� most of the entries in it are zero�

Commercial implementations of the primal simplex algorithm exploit this sparsity and

are able to take tremendous advantage of it� When the problem is transformed into

the form ������	 as discussed above� the resulting coe
cient matrix A is usually totally

dense� that is� almost all the entries in it are nonzero� This makes it very di
cult to

produce a practically viable implementation of Karmarkar�s algorithm� at least for the

algorithm in the form that is stated above� One may be able to overcome this problem

by not computing A explicitly� but storing it as G�
�
�
M

�
deT �

Now� consider the LP in the following form

minimize cx

subject to Ax � �

eTx � �

x �
� �

������	

The primal simplex algorithm would solve ������	 by performing operations on

the constraint matrix A directly� Karmarkar�s algorithm operates on AAT or AD�AT

where D is a positive diagonal matrix� The computation of this matrix product is an

additional burden in Karmarkar�s algorithm� In fact an implementation of Karmarkar�s

algorithm which maintains �AD�AT 	�� in any form and updates it exactly from step

to step in the algorithm� is not likely to be competitive with e
cient implementations

of the primal simplex algorithm�

Let Dr denote the diagonal matrix in step r�� of Karmarkar�s algorithm applied

to ������	� The computations �as discussed in Subsections �� �	 in this step of the

algorithm can be carried out by doing the following�

First solve the following system of equations for the row vector of variables u �

�u�� � � � � um	

u�AD�

rA
T 	 � cD�

rA
T � ������	

Let ur denote the exact solution of this system� Then compute the � � n row vector

"crp from

"crp � cDr � urADr � cDree
T �

This �"crp	
T is the direction for moving from a� to the boundary of the sphere B�a�� ��	

in this step� It provides the steepest descent direction for minimizing the linear function

"cx� over $�� 
 B�a�� ��	 in this step� See Figure ����� In reality� we dot not need "crp
exactly� Any approximate vector %crp that makes a strict acute angle will be adequate

�the closer this angle is to � the better	� it produces a decrease in objective function

which may su
ce in practice�
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Figure ���	 Steepest descent direction "crp for linear objective funtion "cx in

step r� Approximate descent direction %crp�

The key point is to get an approximate solution �ur for ������	 e
ciently� so that if

%crp � cDr � �urADr � �cDree
T 	

that would satisfy %crp"c
r
p � � �acute angle condition	� We also need ADr%c

r
p � � and

eT %crp � �� so that moving from a� in the direction %crp keeps the point within $��� Also

given the approximate �ur� how to update it into �ur�� that works for the �r��	 in step

the same way� when Dr changes to Dr��� Some iterative methods for solving linear

equations that produce approximate solutions e
ciently may provide the key to this

computation� and these are being investigated�

Also� once the direction of movement %crp is obtained� in practical implementations

one may want to move all the way closer to the boundary of the simplex� rather than to

the boundary of the insphere B�a�� ��	 as indicated in Figure ����� Since the simplex

is determined by linear constraints� this can be done e
ciently through a minimum

ratio computation to determine how far you can move in this direction while retaining

feasibility� and you can stop just a little bit short of it�

These and various other ideas are being explored for producing a practically useful

implementation of Karmarkar�s algorithm�

�� Solving Quadratic and Convex Programs

by Karmarkar�s Approach

It should be possible to extend Karmarkar�s algorithm to solve convex quadratic pro�

grams and LCPs associated with PSD matrices� and possibly even smooth nonlinear

convex programming problems� These extensions� and the best implementations of

them� are now active research topics�
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������ Tardos� New Strongly Polynomial Minimum Cost

Circulation Algorithm

Consider a directed single commodity �ow capacitated network with n nodes and m

arcs� In ������ E� Tardos developed an algorithm for 
nding a minimum cost cir�

culation in this network� with worst case computational complexity of O�m
�

�n�	 or

O�m�n� log m	 with some improvements� She has applied the idea of this algorithm

and developed an algorithm to solve the general linear programming problem

minimize cx

subject to Ax � b

x �� �

in time polynomial in the size of A�

It remains to be investigated whether this approach can be extended to solve LCPs

�q�M	 when M is PSD� in time polynomial in the size of M �

������ The Ellipsoid Method for Linear Programming

A version of the ellipsoid method for solving linear programming problems is presented

in Chapter �� of ������� The approach outlined there� uses a scheme suggested by

P� Gacs and L� Lov&asz in a terminal step in order to obtain an optimum solution of

the LP� Here we show how that terminal step can be replaced by a much more e
cient

scheme similar to the one discussed in Subsection � of Section ������� This has been

suggested by R� Chandrasekaran and K� Truemper�

Consider an LP with rational data� By the techniques discussed in Section ���

and by scaling� this LP can be transformed into the problem

min cu� Fu �� g� u �� � ������	

where F � g� c are integer matrices� Let v denote the column vector of dual variables�

By the duality theorem of linear programming �also see Subsection � of Section ������	

solving this LP is equivalent to solving the system of linear inequalities ������	�

�Fu �
� �g

FT v �
� cT

cu �gT v �
� �

�u �
� �

�v �
� �

������	

Let x �

���u
v

���� The system ������	 is a system of linear inequalities in which all

the coe
cients are integer� Let D� b denote the coe
cient matrix and right hand
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side constants vector in ������	� including the sign restrictions on the variables� Then

������	 can be written as

Dx �
� b � ������	

Let D be of order m�n� and L be the size of ������	 �that is� L is the total number of

binary digits in all the data in ������	� see Section ���	� Let L� � �
�
�m��	�n��	��

�
L�

As in Section ���� of ������� consider the perturbed system

�L��Di�x	 � �L�bi � �� i � � to m ������	

������	 is now an open system of linear inequalities with integer data� and hence it can

be solved by the ellipsoid method discussed in Section ���� of ������ in polynomial time�

The method begins with an arbitrary point x� � Rn� and the matrix A� � �����L�
I�

where I is the unit matrix of order n� and generates the sequence �xr� Ar	� r � �� �� � � �

using the iterative scheme ����	 discussed in Section ���� For some r� if xr satis
es

������	� de
ne %x to be that feasible xr and go to the terminal step discussed below�

If xr violates ������	� 
nd a constraint in ������	 violated by xr� suppose it is the pth

constraint in ������	� Then de
ne a � �L�Dp� and d � � � �L�bp� and compute �r��
as in ����	 using this a� d� xr and Ar� If �r�� �� ��� ������	 is infeasible� terminate the

ellipsoid algorithm� If �r�� � ��� compute xr��� Ar�� as in ����	� and continue�

If the ellipsoid algorithm continues for r � � to ��n��	��m��	�n��	�L�L�	 steps

and all the points xr obtained in the algorithm are infeasible to ������	� terminate with

the conclusion that ������	 has no feasible solution� The proofs of this and the other

infeasibility conclusion stated earlier� are given in Chapter �� of ������� Under this

infeasibility termination� ������	� that is� ������	� has no feasible solution� this implies

that either the LP ������	 is infeasible� or it is feasible and the objective function is

unbounded below on its set of feasible solutions� we terminate�

Otherwise� let %x be the feasible solution for ������	 obtained by the ellipsoid

algorithm discussed above� If %x �

��� %u
%v

��� is feasible to ������	� then %u is an optimal

solution of ������	 and %v is an optimal dual solution� terminate� If not� consider the

following system�

Dx� �Dx� � It � b� e��L� ������	

where x� � �x�� � � � � � x
�
n 	� x

� � �x�� � � � � � x
�
n 	� t � �ti	 � Rm and e is the column

vector in Rm of all ��s� De
ne for j � � to n

%x�j �

�
� if %xj �� �
%xj if %xj �� �

%x�j �

�
j%xjj if %xj �� �
� if %xj �� �

%ti � �Di� %x� bi � ��L�

%x� � �%x�j 	� %x� � �%x�j 	� %t � �%ti	

Then �%x�� %x�� %t	 is feasible to ������	� Using the method discussed in Subsection � of

Section ������� or Section ����� of ������ �here there is no objective function involved� so
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we just apply this method without worrying about the objective value	� obtain a BFS

�"x�� "x�� "t	 � R�n�m to ������	� Denote the vector �x�� x�� t	 � R�n�m by y and let

"y � �"x�� "x�� "t	� Since "y is a BFS of ������	� there exists a basis B� a square submatrix

of �D
����D

��� I	 of order m� so that "y � �"yB� "yE	 is given by

"yE � �

"yB � B���b� e��L�	 �
������	

Here E is the submatrix of �D
����D

��� I	 consisting of all the columns other than those

in B� and yB� yE are the basic� nonbasic vectors of variables yj corresponding to the

basic� nonbasic partition �B
��� E	 of �D

����D
��� I	� Now de
ne the vector y� � �y�B� y

�
E	

by
y�E � �

y�B � B��b
������	

and let y� � �x��� x��� t�	 in terms of the original variables� Let

x� � x�� � x�� �

The vector y� is the basic solution of the system

Dx� �Dx� � It � b ������	

corresponding to the basis B� By Theorem ���� of ������� jdeterminant of Bj � �L�

and hence using an argument similar to that in Theorem ���� of ������ we have� for

i � � to m

either t�i � � or jt�i j � ��L � ������	

Let J � fi � � �� i �� m� and i such that ti is a basic variable corresponding to the basis

Bg� So� from the de
nition of "y� and from ������	� ������	� we have

"ti �

�
�� for all i �� J

t�i � �B��e��L�	i� for i � J �
������	

From well known results in the theory of determinants� B�� is the adjoint of B mul�

tiplied by a scalar� which is the inverse of the determinant of B� The determinant

of the basis B is a nonzero integer and hence has absolute value �� �� Each entry in

the adjoint of B is the determinant of a square submatrix of B� by Theorem ���� of

������ its absolute value is ��
�L

n � So j�B��e��L�	ij ��
m�L

n�L�
�
�

�L

�L�
�
� ��nL� But "y is

a BFS of ������	� so "ti �� � for all i� Using this and ������	 in ������	 we conclude

that t�i must be �
� � for all i � J� We already know that t�i � � for all i �� J� So

t� �� �� This clearly implies that x� is feasible to ������	� Therefore if x� �

���u�

v�

����

u� is an optimum solution of ������	 and v� is an optimum dual solution� From u�� a
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basic feasible optimum solution of ������	 can be obtained by the method described in

Subsection � of Section �������

The ellipsoid method is the 
rst mathematical device used to prove that linear

programming is in the class P of problems solvable in polynomial time� The modi
ed

terminal step given above is not adequate to make the ellipsoid method practically

useful� However� the ellipsoid method remains a very important mathematical tool in

the study of computational complexity of optimization problems�

������ The Gravitational Method for Linear Programming

Here we brie�y describe an interior point variant of the gradient projection method for

linear programming proposed by K� G� Murty ������ ������ We consider the LP in the

following form
minimize z�x	 � cx

subject to Ax �
� b

������	

where A is a matrix of order m � n� Sign restrictions on the variables and any other

lower or upper bound conditions on the variables� if any� are all included in the above

system of constraints� Clearly every LP can be put in this form by well known simple

transformations discussed in most LP textbooks �for example� see ������	�

Note
 In practical applications� it usually turns out that the LP model for a practical

problem is in standard form
min p	

subject to B	 � d

	 �
� ��

������	

The dual of this model is directly in form ������	 and the gravitational method can

be applied to solve the dual of ������	 directly� As it will be shown later on� when the

gravitational method is applied on the dual of ������	� at termination� it will produce

an optimum solution for ������	� if one exists�

Assumptions

Let K denote the set of feasible solutions of ������	� We assume that K �� �� and that

K has a nonempty interior in Rn� and that an initial interior feasible solution x� �this

is a point x� satisfying Ax� � b	 of ������	 is available�

If these assumptions are not satis
ed� introduce an arti
cial variable xn�� and

modify the problem as follows

minimize cx� vxn��
subject to Ax� exn�� �� b� xn�� �� �

������	
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where e � ��� � � � � �	T � Rm and v is a large positive number� For any "x � Rn� let

"xn�� � maxfjminf�� Ai�"x� bigj � i � � to mg� then �"x� "xn��	 satis
es the constraints

in ������	 as strict inequalities� Thus the modi
ed problem ������	 satis
es all the

assumptions made in the above paragraph�

We also assume that c �� �� as otherwise x� is optimal to ������	� and we can

terminate�

The Gravitational Method

The Euclidean distance of x� from the hyperplane fx � Ai�x � big is �Ai�x
��bi	�kAi�k�

The gravitational approach for solving ������	 is the following� Assume that the

boundary of K is an impermeable layer separating the inside of K from the outside�

Introduce a powerful gravitational force inside K pulling everything down in the di�

rection �cT � Choose � � � � minf�Ai�x
� � bi	�kAi�k � i � � to mg� Release a small

spherical n�dimensional drop of mercury of diameter �� with its center at the initial

interior feasible solution x� � K� The drop will fall under the in�uence of gravity� Dur�

ing its fall� the drop may touch the boundary� but the center of the drop will always

be in the interior of K at a distance �� � from the nearest point to it on the boundary�

Whenever the drop touches a face of K� it will change direction and will continue to

move� if possible� in the gravitational direction that keeps it within K� If the objective

function is unbounded below in ������	� after changing direction a 
nite number of

times� the drop will continue to fall forever along a half�line in K along which the

objective function diverges to ��� If z�x	 is bounded below on K� after changing

direction a 
nite number of times� the drop will come to a halt� The algorithm tracks

the path of the center of the drop as it falls in free fall under the in�uence of gravity�

Let P denote this path of the center of this drop in its fall�

The Gravitational Direction at an Interior Point x � K

Suppose a drop of radius �� with its center at x is inside K� So

�Ai�x� bi	�kAi�k �� �� i � � to m� ������	

At every point x on the locus P of the center of the drop in the gravitational method�

������	 will always be satis
ed� Given a point x on P� de
ne

J�x	 � fi � �Ai�x� bi	�kAi�k � �g� ������	

The hyperplane fx � Ai�x � big is touching the drop of radius � when its center is at

the interior point x � K only if i � J�x	� Now� de
ne

y� � �cT �kck� ������	
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If J�x	 � � �i� e�� if �Ai�x � bi	�kAi�k � � for all i � � to m	� when the drop is in

a position with its center at x� it will move in the gravitational direction y�� The

distance that it will move in this direction is

� � minimum
� �Ai�x� bi	� �kAi�k

�Ai�y�
� � �� i �� m and i such that Ai�y

� � �
�

������	

where we adopt the convention that the minimum in the empty set is ��� If � � ��

in ������	� then the drop continues to move inde
nitely along the half�line fx� �y� �

� �
� �g� and z�x	 is unbounded below on this feasible half�line� terminate� If � is 
nite

in ������	� at the end of this move� the drop will be in a position with its center at

x � �y�� touching the boundary of K� and it will either halt �see the conditions for

this� discussed later on	 or change direction into the gravitational direction at x� �y�

and move in that direction�

When x is such that J�x	 �� �� that is�

minf�Ai�x� bi	�kAi�k � i � � to mg � � ������	

the direction that the drop will move next� called the gravitational direction at x�

can be de
ned using many di�erent principles� One principle to de
ne the gravitational

direction at x� where x is an interior point of K satisfying ������	 is by the following

procedure� which may take several steps�

Step � 
 If the drop moves in the direction y� from x� the position of its center

will be x � �y� for some � � �� Since ������	 holds� the ith constraint will block the

movement of the drop in the direction y�� only if i � J�x	 and Ai�y
� � �� De
ne

J� � fi � i � J�x	� and Ai�y
� � �g�

Case � 
 J� � �� If J� � �� y� is the gravitational direction at x� and the distance

it can move in this direction is determined as in ������	�

Case � 
 J� �� �� If J� �� �� each of the constraints Ai�x �
� bi for i � J�� is currently

blocking the movement of the drop in the direction y��

De
ne T� � J�� and let D� be the matrix of order jT�j�n whose rows are Ai� for

i � T�� Let E� be the submatrix of D� of order �rank of D�	 � n� whose set of rows is

a maximal linearly independent subset of row vectors of D�� Let I� � fi � Ai� is a row

vector of E�g� So I� � T�� Let F� be the subspace fx � D�x � �g � fx � E�x � �g�

F� is the subspace corresponding to the set of all constraints which are blocking the

movement of the drop in the direction y�� Let �� be the orthogonal projection of y� in

the subspace F�� that is

�� � �I � ET
� �E�E

T
� 	

��E�	y
�� ������	

Subcase ��� 
 �� �� �� If �� �� �� let y� � ���k��k� go to Step ��
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Subcase ��� 
 �� � �� If �� � �� let the row vector � � ��i � i � I�	 �

�kck��E�E
T
� 	

��E�y
�	T � Then �E � c�

Subcase ����� 
 �� � � and � �
� �� If � �

� �� de
ne the row vector 
 � �
i	 by


i � �� if i �� I�

� �i� if i � I��

Then 
 is a basic feasible solution to the dual of ������	� In this case� as will be shown

later on� the drop halts in the current position� it cannot roll any further� under the

gravitational force�

Subcase ����� 
 �� � �� � ��� �� If �� � � and � ��� �� delete the i corresponding to

the most negative �i from the set I� �any other commonly used rule for deleting one or

more of the i associated with negative �i from I� can be applied in this case	� Rede
ne

the matrix E� to be the one whose rows are Ai� for i in the new set I�� compute the

new orthogonal projection �� as in ������	 using the new E� and repeat Subcase ���

or ��� as appropriate with the new ���

General Step r 
 Let yr�� be the direction determined in the previous step� De
ne

Jr � fi � i � J�x	 and Ai�y
r�� � �g�

Case � 
 Jr � �� If Jr � �� yr�� is the gravitational direction at x� and the distance

the drop can move in this direction is determined as in ������	 with yr�� replacing y��

Case � 
 Jr �� �� De
ne Tr �
Sr
s�� Js and let Dr be the matrix of order jTrj � n

whose rows are Ai� for i � Tr� Let Er be the submatrix of Dr of order �rank of Dr	

�n� whose set of rows is a maximal linearly independent subset of row vectors of Dr�

Let Ir � fi � Ai� is a row vector of Erg� Let Fr be the subspace fx � Drx � �g � fx �

Erx � �g� Let �r be the orthogonal projection of y� in the subspace Fr� that is

�r � �I � ET
r �ErE

T
r 	

��Er	y
��

Subcase ��� 
 �r �� �� Let yr � �r�k�rk� go to Step r � ��

Subcase ��� 
 �r � �� Let � � ��i � i � Ir	 � �kck��ErE
T
r 	

��Ery
�	T �

Subcase ����� 
 �r � �� and � �
� �� De
ne 
 � �
i	 by


i � �� for i �� Ir

� �i� for i � Ir�


 is a basic feasible solution to the dual of ������	� In this case the drop halts� it

cannot roll any further under the gravitational force�

Subcase ����� 
 �r � �� and � ��� �� If �r � � and � ��� �� proceed exactly as under

Subcase ����� described under Step �� with Ir replacing P��
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It can be shown that this procedure does produce the gravitational direction at x�


nitely� if the drop can move at all� Currently work is being carried out on developing

e
cient methods for choosing the index set Ir of maximal linearly independent subset

of row vectors of Dr� in Case �� and on the best strategies for deleting a subset of

constraints associated with negative �i in Subcase ������ Other principles for de
ning

the gravitational direction at the interior point x of K� are also being investigated�

Conditions for the Halting of the Drop

Let � be the radius of the drop and x � K satisfy ������	� We have the following

theorem�

Theorem ���� When the center of the drop is at x� it halts i	 J�x	 de�ned in

����
�� is �� �� and there exists a dual feasible solution 
 � �
i	 for the dual of �������

satisfying


i � �� for all i �� J�x	� ������	

Proof� The drop will halt when its center is at x� i� there exists no direction at x

along which the drop could move within the interior of K� that will slide its center on

a line of decreasing objective value for some positive length� That is� i� there exists

no y satisfying
cy � �

�Ai��x� �y	� bi	�kAi�k �� �� i � � to m

for � �� � � �� for some � � �� Since x satis
es ������	� and from the de
nition of J�x	

in ������	� this implies that the drop will halt when its center is at x i� the system

Ai�y �� �� for all i � J�x	

cy � �

has no solution y� By the well known Farkas� lemma� Theorem � in Appendix �� this

holds i� there exists a 
 � �
i � i � � to m	 feasible to the dual of ������	 satisfying

������	�

What to Do When the Drop Halts�

Theorem ���	 Suppose the drop of radius � halts with its center at x � K� Then

the LP ������� has a �nite optimum solution� Let z� be the optimum objective value

in �������� Let 
 � �
i	 be the dual feasible solution satisfying ����

� guaranteed to

exist by Theorem ����� Then

cx � 
b� �
X

i�J�x



i ������	

and
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cx �
� z� � �

X
i�J�x



i� ������	

Proof� If the drop halts� by Theorem ����� the dual of ������	 is feasible� So� the

LP ������	 has a 
nite optimum solution by the duality theory of LP� Consider the

perturbed LP
minimize z�x	 � cx

subject to Ai�x �
�

�
bi� for i �� J�x	
bi � �� for i � J�x	�

������	

The hypothesis in the theorem implies that x� 
� together satisfy the primal� dual

feasibility and the complementary slackness optimality conditions for ������	 and its

dual� Hence� by the duality theorem of LP� ������	 holds� Also� by the weak duality

theorem of LP� ������	 holds�

Hence� if the drop halts with its center at position x� and a 
 satisfying ������	 is

found� and �
P

i�J�x
 
i is small� then x can be taken as a near optimum solution to

������	 and the algorithm terminated� Also� in this case 
 is an optimum solution for

the dual of ������	� and the true optimum solution of ������	 can be obtained by well

known pivotal methods that move from x to an extreme point without increasing the

objective value �see Subsection � in Section ������	�

Theorem ���
 Suppose the drop of radius � halts with its center at x � K� If the

system of equations

Ai�x � bi� i � J�x	 ������	

has a solution %x which is feasible to �������� then %x is an optimum feasible solution of

��������

Proof� Let 
 be the dual feasible solution satisfying ������	 guaranteed by Theorem

����� It can be veri
ed that %x� 
 together satisfy the complementary slackness opti�

mality conditions for ������	 and its dual� so %x is an optimum solution for ������	� In

this case 
 is optimum to the dual of ������	�

If the drop of radius � halts with its center at x � K� and there exists no solution

to the system of equations ������	 which is feasible to ������	� then this drop is unable

to move any further down in K under the gravitational force� even though it is not

close to an optimum solution for ������	� See Figure �����
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Figure ���
 The set K is on the side of the arrow marked on each constraint�

The gravitational force is pulling the drop straight down� but it cannot move

any further� because it is squeezed between hyperplanes � and ��

Suppose the drop of radius � halts with its center at x� If the system

Ai�x � bi� i � J�x	 ������	

has no feasible solution� the gravitational method reduces the radius of the drop� see

below� keeping the center at x� and continues�

On the other hand� suppose the drop of radius � halts with its center at x� and the

system ������	 is feasible� Let E be the matrix whose rows form a maximal linearly

independent subset of rows of fAi� � i � J�x	g� Then the nearest point to x in the �at

fx � Ai�x � bi� i � J�x	g is "x � x�ET �EET 	���d�Ex	 where d is the column vector

of bi for i such that Ai� is a row of E� If "x is feasible to ������	� then by Theorem �����

"x is an optimum feasible solution for ������	 and the method terminates� Otherwise�

at this stage the gravitational method reduces the radius of the drop �for example�

replace � by ���	� keeping the center at x� and traces the locus of the center of the new
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drop as it now begins to fall under the in�uence of gravity again� The same process is

repeated when the new drop halts�

See Figure ���� for an illustration of the path of the drop in a convex polyhedron

in R��

cT-      - direction

Figure ���� Path of the drop in the gravitational method in a convex poly�

hedron in R��

The theoretical worst case computational complexity of this algorithm is currently

under investigation� Initial computational trials with the method are very encouraging�

The practical e
cienty of this algorithm is also being studied via a computational

project�
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