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Abstract. We show how a principal can exploit myopic social learning

in a population of agents in order to implement social or selfish out-

comes that would not be possible under the traditional fully-rational

agent model. Learning in our model takes a simple form of imitation,

or replicator dynamics; a class of learning dynamics that often leads the

population to converge to a Nash equilibrium of the underlying game.

We show that, for a large class of games, the principal can always ob-

tain strictly better outcomes than the corresponding Nash solution and

explicitly specify how such outcomes can be implemented. The meth-

ods applied are general enough to accommodate many scenarios, and

powerful enough to generate predictions that allude to some empirically-

observed behavior.

1 Introduction and Related Work

The assumptions imposed on the traditional rational agent can be too restric-
tive, requiring instantaneous reaction to changes in the environment, perfect
look-ahead and planning skills, and unlimited computational resources. In real-
ity, even if individuals are interested in maximizing their own welfare, they may
be unable to do so because of a myriad of reasons. For example, it maybe the
case that finding an optimal course of action is computationally difficult or even
infeasible. It can also be that agents utilize a decision making process that is
different from what the traditional model dictates. For instance, they may par-
tially or wholly base their decisions on the actions of other agents rather than
carefully charting out their own course. In this paper, we deal with the following
question: if we relax some of the assumptions about rationality and consider
agents that do not act in full compliance with the traditional agent model, can
we leverage the resulting framework to implement better outcomes, either for
society or for the principal designing the system?

This is a question of mechanism design, of course. Some of the concerns above
have been and continue to be addressed by algorithmic mechanism design; a
subfield of mechanism design that concerns itself with computability issues [11],
but it is only recently that behavioral aspects have been taken into consideration
in mechanism design. This is perhaps a little surprising, given the advanced state
of behavioral and experimental game theory, two of the field’s basic building
blocks. One possible reason for this lag in development is the many ways in
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which behavior can deviate from the classical agent model, making it difficult
to develop an all-encompassing behavioral framework. In this paper, we take a
small step in this direction by utilizing a simple form of social learning dynamics
to set up a model that allows a system designer (henceforth referred to as the
principal) to manipulate social learning to his advantage.

The social learning model we employ in this paper is that of replicator dy-
namics [3]. This class of learning dynamics was developed in an attempt to
understand how a population arrives at a steady state of a dynamical system,
and was further pursued in economics as an explanation to how agents arrive at
a Nash equilibrium. Under this model, an infinite pool of agents plays a game
repeatedly. After each round of the game, agents are paired together randomly
to compare and contrast payoffs. If agent i is paired with agent j and agent j has
obtained a better payoff than i in the last round of the game, then i considers
switching to j’s strategy in the next round with a probability that is proportional
to the difference in payoffs between the two. This way the proportion of strate-
gies that are performing better than average grows in the population as the share
of poorly-performing strategies shrink, and more often than not these dynamics
lead to a Nash equilibrium of the underlying game1. What makes replicator dy-
namics particularly appealing is that it is perhaps the most rudimentary form of
learning dynamic that nicely straddles the line between behavioral and rational
models. On one hand, agents are updating their strategies in a myopic fashion
based on simple comparisons with how their peers are doing, but on the other
hand this seemingly simple behavior can and does lead to fully rational equi-
librium outcomes. The canonical selfish-routing model is one example amongst
many where agents converge to a Nash equilibrium by following a replicator dy-
namic [6]. Another nice behavioral aspect captured by the model is the tendency
of human decision makers to fall into habit, as a result of the aversion to try
new strategies if one is unaware of others for whom these strategies have per-
formed well. Even in the case of meeting others with more successful strategies,
the switching is only probabilistic, underlying the fact that switching to a new
strategy is not always costless.

The central idea developed in this paper revolves around the indirect influence
that a principal can exert on agents’ decisions via exploiting the learning dynamic
discussed above. We will focus on games where the principal and the population’s
interests are diametrically opposed, though the methods readily extend to other
settings as we discuss in Section 5. We will give a formal definition of the class of
games we consider in Section 2.1, but an informal description follows. There is
an infinite population where each member has the choice of one out of two pure
actions. For simplicity, we can think about these actions as whether to cheat
or to be honest. There is a multitude of examples that fall under this setting:
agents can decide whether to cheat on their taxes or not, whether to break the
speed limit, put low effort into their work, etc. The principal’s action against
each member of the population is either to audit the agent, at a cost, or to ignore

1 For example, replicator behavior leads to equilibrium in Prisoner’s dilemma, Battle

of the sexes, and a large variety of coordination and routing games (see [7]).
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and run the risk of incurring a higher cost if the agent is cheating. Agents are
interested in maximizing their payoffs, while the principal tries to minimize his
cost. The game is repeated indefinitely. Because the population is infinite, the
principal’s move in each round consists of choosing a fraction of the population
to audit. Under the traditional rationality assumptions this game has a unique
Nash equilibrium where the agents cheat with some fixed probability and the
principal audits the same fraction of the population in each round. Ideally, the
principal would like to do little auditing and have the population stick to his
desired outcome of as little cheating as is reasonable within the payoff structure
of the game

The primary contribution of this paper is twofold. On the conceptual front,
we argue that imperfect decision making –in its various formats– can in some
cases be considered a resource that the system planner should utilize. The second
contribution is methodical, where we take the main idea and build a framework
that implements it in the context of naive social learning. While the abstract idea
behind our framework is simple, the implications can sometimes be quite surpris-
ing. One counter-intuitive outcome of the model is that the principal’s optimal
strategy always makes things temporarily worse for everybody, including possi-
bly the principal himself, in order to achieve better outcomes later. Moreover, as
we discuss later in the paper, the application of the model to some real-life prob-
lems result in findings that correspond to empirically-observed behavior. This
suggests that the approach proposed in this paper not only provides a normative
prescription for optimizing systems with a social learning component, but also
describes how some existing systems actually operate.

There has been a lot of recent work on social learning and when it can lead
a society of agents to converge to the true value of an underlying state of the
world, the so-called ’wisdom of the crowds’ effect (for example, [2], [1]). While it
would be interesting to investigate whether this kind of learning is susceptible to
manipulation by a principal, it is outside our scope of interest since we explicitly
focus on agents in a behavioral setting, unlike the fully-rational Bayesian agents
employed in the work above. Manipulating Bayesian agents, albeit outside of a
social learning setting, has been the recent focus of some work [9]. Other recent
work that aims to explore the boundaries of mechanism design under behavioral
assumptions is auction design for level-k bidders [4]. In this paper, the authors
show that under such an experimentally-plausible model, it is possible to obtain
revenues that are higher than those generated by Myerson’s optimal auction [10].

Finally, repeated games and reputation building is a topic with an extensive
body of work in the economics literature. The main results in this area are
folk theorems that show what outcomes can be obtained if a game is repeated
indefinitely. The traditional approach to proving such results relies on retaliation
and punishment among players, a method that fails in a setting with a large
population, since the identity of a deviator cannot be detected [8]. Indeed, for
the class of games we consider here, the unique equilibrium of the repeated game
is the same as the one-shot version and no better outcomes can be implemented
under the rational model.
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2 Cheat-Audit Games

In this section we consider a class of 2 × 2 games that encompasses a large
number of scenarios. We call this class of games Cheat-Audit games. In these
games, as mentioned in Section 1, a very large population of agents plays an
infinitely repeated game against a principal. In each round of the game an agent
has one of two choices, a ’safe’ choice with low payoffs, and a risky choice with a
higher payoff. For example, in a tax-auditing situation the safe choice would be
to report honestly, whereas cheating is a choice that can provide a higher payoff
if the agent is not audited by the principal. The principal on the other hand
faces a choice between a costly and a costless action when it comes to dealing
with each agent. In the context of the preceding examples, a costly action for
the tax scenario would be to audit an agent, and a costless action would be to
ignore that agent. Of course, it might be the case that auditing leads to catching
a cheating agent, in which case the principal obtains a higher payoff than if
he had chosen the costless action. By the same token, not auditing an honest
agent is a better action for the principal, since auditing an honest agent expends
auditing resources with no useful returns to the principal.

A I

C

H

0,c1

v1,c2

v3,c3

v2,0

Fig. 1. The Cheat-Audit Game

2.1 The Game

To formalize the preceding discussion, the payoffs of the game are as shown
in Figure 1, with the principal being the column player. Each agent is consid-
ered a row player and has the row player’s payoffs. The actions available to an
agent is to either be honest (action H) or cheat (action C). The principal either
audits (action A) or ignores (action I) each agent. An agent’s payoffs satisfy
0 < v1 ≤ v2 < v3. To conserve notation, we will assume that v1 = v2, so that an
agent is indifferent to auditing as long as he is honest. An agent is interested in
maximizing his payoff, while the principal is interested in minimizing his cost,
where the costs satisfy 0 < c1 < c2 < c3. There is thus an implicit constraint on
the principal’s resources, since auditing with no gain (outcome (H,A)) is more
costly than auditing a guilty agent (outcome (C,A)). The principal’s preferred
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outcome is (H, I), where no auditing cost is incurred and no crime is commit-
ted, and the payoff to this outcome is normalized to zero. Similarly, an agent’s
least preferred outcome is (C,A), and is also normalized to zero. Notice that
the principal’s least preferred outcome, (C, I), is also the agent’s most preferred
one. Because of the large population assumption, the principal’s action consists
of choosing a fraction 0 ≤ α ≤ 1 of the population to which he will apply action
A. We will call this fraction the audit rate. The upper bound on α does not have
to be equal to 1, but can instead be set to ᾱ to indicate that it is not possible
to audit the whole population.

This diametric opposition of the principal and agents’ interests suggests that
the game has no pure strategy equilibria, as indeed can be checked from the
figure and the relationship between the various payoffs. In fact, similar to a
game of matching pennies, the single stage game as well as its repeated version
possess only a unique mixed equilibrium. Let the audit rate and the fraction of
C players in the fully rational setting be given by αNash and xNash, respectively.
It is straightforward to verify that

αNash =
v3 − v2
v3

; (1)

xNash =
c2

c3 + c2 − c1

As mentioned, we consider this game in an infinitely-repeated setting. Each
moment in time, the game in Figure 1 is played. We will let the state of the
system at time t be the fraction of the population taking action C at that time,
and we will denote this fraction by x(t). The principal’s choice of audit rate at
time t is denoted by α(t). Given a state x(t), audit rate α(t), and denoting the
payoff to the principal at time t by g(t), we can write

g(x(t), α(t)) = c1α(t)x(t) + c2α(t)(1 − x(t)) + c3(1− α(t))x(t)
= (c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t) (2)

where the terms in (2) correspond to the costs discussed above. The first term
is the cost associated with catching offending agents, the second term represents
the cost of auditing honest agents, and the last term is the cost of ignoring agents
who were in fact playing action C.

2.2 Learning Dynamics

The learning dynamics work as follows. After each round of the game, members
of the population are randomly matched to compare and contrast strategies and
payoffs. Under our model, there are only two possible scenarios that can lead
to switching strategies: an agent who obtained the outcome (C,A) considers
changing his strategy if he meets an agent who playedH . Similarly, an agent who
played H considers changing his strategy to C if he meets an agent who obtained
the outcome (C, I). The probabilities with which these changes in strategy occur
depend on the differences in payoffs between agents, as well as a transmission



Exploiting Myopic Learning 311

factor k > 0. We will think of k as a ’speed of transmission’: the willingness of an
agent to change their strategy when faced with a potentially better one. Without
loss of generality, we will assume that an agent obtaining payoff u switches to the
strategy of an agent getting payoff v with probability max{0, v−u

v }. From Figure
1, the probability of switching in the first scenario is simply min{k v1−0

v1
= k, 1}.

The probability of switching in the second scenario is given by min{k v3−v1
v3

, 1}. It
is important to stress that the way these probabilities are defined does not affect
any structural results we obtain. Any scheme where the switching probabilities
are proportional to the payoff differences essentially leads to the same results.
We will make the derivations less cumbersome and more general by assuming
that the switch in scenario one happens with probability p and in scenario 2 with
probability q. We can later substitute for p and q with whatever values that are
appropriate for the application under consideration. Utilizing this notation, the
fraction of switchers from C to H at any moment t is equal to the fraction of C
players who were audited, α(t)x(t), multiplied by the probability of meeting an
H player, which is 1 − x(t), times the probability of switching p. Likewise, the
fraction of switchers from H to C is equal to the fraction of H players, 1− x(t),
who meet C players that were not audited, which is x(t)(1−α(t)), multiplied by
the probability q. We can then write the dynamics of the system as a function
of x(t) and α(t)

ẋ(t) = f(x(t), α(t)) = q(1 − α(t))x(t)(1 − x(t)) − pα(t)x(t)(1 − x(t))
= x(t)(1 − x(t))(q − α(t)(q + p)) (3)

2.3 Objective

The principal’s problem is now the following. Given the different values in Figure
1, the parameters of the problem, and the learning dynamics, the principal is
interested in minimizing his long-run discounted cost subject to those dynamics.
This long-run cost is the sum of all costs accrued from playing the game over
time. Recall that the payoff at time t is given by (2). The problem can then be
written as

min
α(t)

∫∞
0
e−rt((c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t))dt (4)

s.t. ẋ(t) = x(t)(1 − x(t))(q − α(t)(q + p))
0 ≤ α(t) ≤ 1

where 0 ≤ r < 1 is a discount factor. Thus the principal’s problem involves
finding the function α∗(t) that solves (4). Like any dynamic problem, the diffi-
culty facing the principal is that current decisions affect not only the immediate
cost but also future costs through the dependence of the rate of change of x(t)
on α(t).
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3 Optimal Policy

3.1 Single Round

Before delving into finding the optimal solution to (4), let us first develop an
intuition by considering the solution if the game is played only once. The stage
game cost described by (2) can be factored and rewritten as

g(x, α) = c3x+ α(c2 + (c1 − c2 − c3)x)

and is obviously a linear function in α. This implies that depending on the value
of x, α takes the values of either 0 or 1 in the optimal solution. Specifically, the
optimal solution to the single period problem is given by

α∗ =
{

0, x < c2
c2+c3−c1

;
1, x ≥ c2

c2+c3−c1
. (5)

which is well defined because of the relationship stipulated on the costs. Thus,
assuming that x is known, the optimal solution to a single period problem takes
the form of a threshold rule: if the fraction of C players is low enough, it does
not pay to audit anybody since the cost of auditing honest agents outweighs the
gains from catching C players. Conversely, when the concentration of C players
is over a certain level, then it is always better to audit indiscriminately since
the costs incurred in auditing H players are more than made up for by catching
every single C player in the population. It is easy to see that the optimal cost
g∗(x) is a concave function of x:

g∗(x) =
{
c3x, x < c2

c2+c3−c1
;

c2 + (c1 − c2)x, x ≥ c2
c2+c3−c1

. (6)

We will see that a part of the single period solution, where a crackdown occurs
if the fraction of C players is above a certain threshold and nothing is done
otherwise, is somewhat retained in the solution to the general problem. The
nature of the optimal cost implies that, from a strictly policing viewpoint, the
principal may prefer a higher ratio of cheaters in the population to a lower one,
since it increases the rate of successful audits and incurs a lower overall cost
than scenarios where resources are expended without additional benefit.

3.2 General Policy

We will derive the optimal policy for (4) by formulating the Hamiltonian function
and using the Euler-Lagrange equation. We assume that the principal knows
x(0), the initial state of the system. This is without loss of generality, since if
that was not the case then the large population assumption together with the
law of large numbers and the fact that state transitions happen with probability
1 ensure that the principal can initially determine the state of the system by
auditing a random sample of the population. The current value Hamiltonian



Exploiting Myopic Learning 313

function for the problem maps triplets (x, α, λ) ∈ [0, 1]×[0, 1]×R to real numbers
and is given by

H(x, α, λ) = g(x, α) + λf(x, α)
= c3x+ α(c2 + (c1 − c2 − c3)x) + λx(1 − x)(q − α(q + p))
= c3x+ λqx(1 − x)+α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1 − x))(7)

where λ is a co-state variable that one can think of as a price attached to the
change induced in x through the decision α. Of course, like the state x and the
control α, λ itself is also a function of time, but the power of the Hamiltonian
approach is that it reduces the general problem to an essentially single period
one. The following lemma utilizes the Hamiltonian to provide necessary (but not
sufficient) conditions on the optimal control trajectories.

Lemma 1. The optimal control for Problem (4) is a bang-bang solution.

Proof. A bang-bang solution implies that α(t) takes on extremal values in its
domain until the solution trajectory reaches a final state. Let us denote by α∗(t)
and x∗(t) the optimal control and state trajectories. By the Minimum Principle,
it must hold at each moment in time that

α∗(t) = arg min
0≤α≤1

H(x∗(t), α, λ(t))

= arg min
0≤α≤1

c3x+ λqx(1 − x) + α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1 − x))

Similar to the single period problem, the Hamiltonian is a linear function in α.
Minimizing the Hamiltonian w.r.t α, we find that the optimal control trajectory,
α∗(t) satisfies

α∗(t) =

⎧⎪⎨⎪⎩
0, λ(t) < c2+(c1−c2−c3)x(t)

(p+q)x(t)(1−x(t)) ;

1, λ(t) > c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ;

[0, 1] , λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) .

(8)

Thus α assumes values at the boundary except when λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ,

in which case α disappears from the Hamiltonian and can be set to any value
in its domain. However, as we will see shortly, on the optimal control and state
trajectories this case cannot happen except for precisely a single pair (α∗, x∗).

Lemma 1 implies that, except for the third case where the co-state variable is
exactly equal to the R.H.S, the optimal control either audits the whole popula-
tion or does nothing. This provides some information about the structure of the
optimal policy, but not enough to completely characterize it. To do this, let us
formulate (4) as a calculus of variations problem. From (3), we have

α(t) =
1

p+ q

(
p− ẋ(t)

x(t)(1 − x(t))

)
Substituting this into the objective, the problem becomes
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min
x(t)

∫ ∞

0

e−rtg

(
x(t),

1
p+ q

(
p− ẋ(t)

x(t)(1 − x(t))

))
dt

= min
x(t)

∫ ∞

0

e−rt

⎛⎝c3x(t) +
(c2 + (c1 − c2 − c3)x(t))

(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q

⎞⎠ dt (9)

The solution to (9) provides a necessary condition on the optimal state trajectory.
Specifically, the following lemma tells us that there is a constant for which the
integral in (9) is stationary.

Lemma 2. Let x∗(t) be the minimizer to (9), then x∗(t) = C, where C is a
constant that depends on the parameters of the problem.

Proof. See Appendix.

We now fully characterize the optimal policy.

Theorem 1. There is a value x̄ such that the optimal policy audits everybody
whenever x(t) > x̄ and does nothing when x(t) < x̄. If x(t) = x̄ then the optimal
policy sets α∗(t) = q

p+q and the system stays in this state indefinitely.

Proof. We will show that the policy in the statement of the theorem is optimal
by showing that an optimal policy exists and that only the policy given in the
theorem satisfies the necessary conditions for an optimum. That an optimal pol-
icy exists follows from the boundedness of the cost per stage and the continuity
of both g and f in the compact sets x(t) and α(t). The presence of the discount
factor ensures that the value of the optimal solution is <∞.

From Lemma 2, we know that a necessary condition for the optimal path
x∗(t) to minimize (9) (and consequently, (4)), is that x∗(t) is a constant, which
we will denote by x̄ (where x̄ is as given in the proof of Lemma 2). This implies
that as soon as x∗(t) = x̄ there should be no further changes in the system, so
that ẋ∗(t) is equal to zero. Given the system dynamics in (3), this occurs if

f(x∗(t), α∗(t)) = 0
x∗(t)(1 − x∗(t))(q − α∗(t)(q + p)) = 0

For any nontrivial specification of the problem, x̄ is neither equal to zero or one,
and hence the only solution to the above equation is α∗(t) = q

p+q . From (8), we

have to have λ(t) = c2+(c1−c2−c3)x̄
(p+q)x̄(1−x̄) . The R.H.S of this is a constant, and hence

λ̇(t) = 0 and the system remains in the state (x̄, q
q+p ) forever.

Now consider any trajectory that sets α(t) 
= 1 when x∗(t) > x̄. By Lemma
1, if x∗(t) 
= x̄ and α(t) 
= 1 then α(t) = 02 , in which case ẋ(t) > 0 and x(t)
increases. Let x(t1) > x̄ and α(t1) = 0, then for t2 > t1, x(t2) > x(t1), i.e. the

2 The Minimum Principle posits the following condition on λ̇(t); λ̇(t) =

− ∂H(x∗(t),α∗(t),λ(t))
∂x

, so that the third case in (8) cannot hold unless x(t) is a

constant.
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system moves farther from x̄. However, because of Lemma 2, we know that the
system should eventually move towards x̄. Since the system is continuous, the
trajectory going from x(t2) to x̄ has to pass through x(t1) again, at which point
the system returns to the same state it was in at time t1, but with the additional
cost accrued between times t1 and t2 added to the total cost, indicating that
such a scenario cannot be optimal, and that it would have been cheaper to set
α(t1) = 1. The reverse argument applies in the case of x(t) < x̄.

Thus the optimal policy drives the fraction x(t) to its steady state value as
quickly as possible, by not doing anything when x(t) < x̄ or by cracking down on
the population when x(t) > x̄. Once the steady state is reached, the system stays
there forever through fixing the audit rate at the value given in the statement
of the theorem.

4 Discussion

4.1 Comparison with Nash Equilibrium

It is natural to ask how the behavioral solution for the class of games we con-
sidered fares in comparison to the fully rational Nash equilibrium outcome. We
have already discussed in Section 2.1 that the (fully rational) repeated game
possesses a unique equilibrium, given by (1). This equilibrium is also a center
of the repeated behavioral game. This means that, under the replicator assump-
tion, the principal has a strategy such that if the game is played long enough,
the fraction with which each action is played is the same as the corresponding
fraction in the Nash equilibrium [7], i.e. the principal can implement the Nash
outcome in the behavioral setting, if he so desires. However, the optimal solution
that we obtained in this paper is not the Nash equilibrium, indicating that the
Nash solution is dominated by the policy in Theorem 1. Furthermore, as soon
as the game reaches steady state, the optimal policy does less auditing than the
Nash solution. Let us denote the audit rate in the behavioral setting by αB .
From Theorem 1, αB is given by q

p+q . Replacing p and q by the values from
Section 2.2, we have p = k and q = k v3−v1

v3
, and hence

αB =
q

p+ q
=

v3−v1
v3

1 + v3−v1
v3

(10)

which is always strictly less than the Nash audit rate in (1). Because of this, the
Nash solution never coincides with the policy in Theorem 1, so that the optimal
solution always gives a strictly better outcome for the principal while at the
same time reducing the amount of auditing required. It is worth noting that the
speed of transmission k has no effect on αB.

4.2 An Empirical Example

We have analyzed our model in a continuous time framework. In reality however,
many of the games that fit the model take place in discrete time, or the resources
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required by the optimal solution can be infeasible to implement forever. In both
of these scenarios, the level of x(t) inadvertently increases above x̄, and hence the
optimal solution cracks down on the population by setting α∗ to its maximum
possible value, in an attempt to bring x(t) back to x̄. Because of the discreteness,
the crackdowns always bring the value of x(t) below x̄, hence leading to a short
period of low activity on the principal’s part. The whole cycle is then repeated
as x(t) increases again. These periodic crackdowns are widely observed in many
situations. In a recent paper [5], the authors empirically observe crackdowns by
the police on speeders in Belgium. The paper mentions the periodicity of such
crackdowns, but does not provide an explaination for such behavior. It is also
mentioned that crackdowns are planned as early as a month in advance. Both of
these observations are explained by our model. The recurrence of the crackdowns
takes place as the police tries to bring the fraction of speeders to an optimal level,
and since the evolution of the population of speeders can be determined from
the current state and future controls of the system, the time at which such a
crackdown would be necessary can be determined in advance as well.

5 Conclusion

We have shown how a principal can exploit myopic social learning to his ad-
vantage for a wide class of games where the interests of the population and the
principal are directly opposed. In addition to the class of games we presented,
the application domain of the methods we employed in this paper is vast. The
basic idea is to indirectly influence decisions in the population through manipu-
lating the payoffs associated with certain actions. Naturally, since the modified
payoffs are not part of the initial system, such a manipulation comes at a per-
sonal and/or a social cost. In our example the principal had to expend an initial
cost by either over-auditing or by letting the guilty population go unpunished.
At the same time, there is a social cost to increased auditing that comes from
the disutility honest agents obtain from being audited (the case where v2 > v3
in Figure 1). This initial phase however, is justified by later gains: since the
population’s reaction time to changes in the system is not instantaneous, the
principal can revert back to the original game while the population still plays as
if they are in the modified game. During this time, the principal enjoys a period
of improved system performance. Generally, the solution either takes the form
of a policy like the one we saw in this paper, where an initial period of extreme
(in)activity is followed by a steady state, or it can be more cyclical in nature,
with a cycle consisting of a phase that creates, via population learning, a certain
impression about the environment followed by a phase where that impression
is exploited. One obvious application is advertising. In this scenario, periods of
heavy (and costly) advertising are followed by periods of relatively little adver-
tising activity. During these latter periods, the effects from the initial advertising
campaign continues to reverberate through the population, essentially providing
free advertising until the effect dies down, at which time the advertiser starts the
cycle again. A very different example is traffic regulation through periodic clo-
sures of specific roads. Such closures force drivers to change their driving habits.
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Later, when these roads are re-opened, drivers take a while to adjust back to the
initial equilibrium, as can be seen in [6]. Depending on the system’s parameters,
this lag in adjustment can provide the population with an average decrease in
travel latency3. Applying the same approach of exploiting behavioral trends to
other behavioral models would be an interesting next step in this line of research,
with an eventual goal of cataloging the benefits that a principal or a society can
obtain (or lose) as the level of sophistication of the population increases.
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Appendix

A Proof of Lemma 2

Proof. Denoting the function inside the integral in (9) by L(t, x, ẋ), the Euler-
Lagrange equation gives another necessary condition that the optimal x∗(t), if
it exists, satisfies. Writing down the equation, we have

0 =
∂L

∂x
− ∂

∂t

∂L

∂ẋ

= e−rt

(
c3 +

1
p+ q

(c2 + (c1 − c2 − c3)x(t))
(

ẋ(t)
(1− x(t))x(t)2 −

ẋ(t)
(1− x(t))2x(t)

))

+ e−rt

⎛⎝ (c1 − c2 − c3)
(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q

⎞⎠
− e−rt

(
r(−1 + x(t))x(t)(−c2 + (−c1 + c2 + c3)x(t)) +

(
c2 − 2c2x(t) + (−c1 + c2 + c3)x(t)2

)
ẋ(t)
)

((p+ q)(−1 + x(t))2x(t)2)

After some algebra and simplifying the above, we get

e−rt
(
(c2r − (c1 + c2)(p− r) + c3(q + r))x(t) + ((c1 − c2)p+ c3q)x(t)2

)
(p+ q)(x(t) − 1)x(t)

= 0

which is a quadratic function in x(t). Solving that equation and enforcing the
constraint that 0 ≤ x(t) ≤ 1, we obtain the solution

x∗(t) =
(c2 − c1)p− c3q + (c1 − c2 − c3)r +

√
4c2((c2 − c1)p− c3q)r + ((c1 − c2)p+ c3q + (c1r − c2 − c3)r)2

2((c2 − c1)p− c3q)

which is time-independent and only depends on the parameters of the problem.

The difference between x∗(t) and xNash depends on the parameters. For example,
if we set all the parameters to 1 and compare the resulting steady state optimum
with the Nash equilibrium in (1). We get

x∗(t) =
c2

c3 +
√
c23 + c22 − c2(c1 + c3)

which is always less than xNash.


