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1 Introduction

Display advertising has become one of the most profitable areas of online services, responsible for
approximately $24 billion in business (Ghosh, McAfee, Papineni, and Vassilvitskii 2009). Unlike
sponsored search, where textual ads are displayed along the results of a keyword search, display
advertising targets specific audiences by showing graphical banner ads on regular content pages.
Targeting can be specific by focusing on certain demographics, so that for example, an ad is only
shown to people from a certain age group living in a particular geographic location. Typically,
display advertising is handled through direct contracts between the publisher and the advertiser.
These contracts are characterized by the publisher committing to the delivery of a pre-specified
number of ads to the target audience during a certain time period. Because the supply of display
opportunities is uncertain, it is possible that the publisher is unable to fully meet the advertiser’s
demand, in which case the advertiser is compensated via a penalty (per undelivered impression,
for example). Additionally, over-delivering, or providing an advertiser with more impressions than
their requested demand can be costly for a variety of reasons.1 The tension between the shortage
and overdelivery costs in addition to the stochasticity of the supply is what makes the publisher’s
problem difficult. The basic question we deal with in this paper is the following: Given an ad-
vertiser’s demand, a finite planning horizon, and a time-variable supply distribution, how do we
dynamically choose fractions2 of the still unrealized supply in each period so that the total expected
cost is minimized under the various penalties?

As in other forms of online advertising, ads are assigned to advertisers through the use of
auctions. Because of the intricacies and complexities of these auctions and the overhead required
by the advertisers to handle them, many advertisers simply opt to let the publisher manage their
campaigns and do their bidding on their behalf. As in Feige, Immorlica, Mirrokni, and Nazerzadeh
(2008), the advertiser indicates a maximum price that it is willing to pay per impression, and the
publisher uses this constraint when bidding on impressions for the advertiser. With the volume of
traffic generated over the internet, these auctions take place at an extremely fast rate. It would thus
be inefficient, if not completely impossible, to adjust the advertiser’s bid after every single auction.
Therefore, the advertiser’s bid, placed by the publisher, remains effective for a certain period of time
until it is re-adjusted for the next time period. By having a constant bid placed over all the auctions
taking place in a time period, one can expect to win a fraction of these auctions. We will make use
of this correspondence between bids and fractions in our formulation by thinking of our decision
variables as fractions of the uncertain supply instead of bid values for each time period. This has
been the standard approach in recent work on the problem (e.g. Boutilier, Parkes, Sandholm, and
Walsh (2008) and Ghosh, McAfee, Papineni, and Vassilvitskii (2009)). Like these papers, we think
of the supply of ads as a ’channel’ with an uncertain capacity. However, unlike the area of literature
that focuses on selecting the optimal set of contracts to maximize revenue in such a setting (for
example, Babaioff, Hartline, and Kleinberg (2008),Constantin, Feldman, Muthukrishnan, and Pál
(2008), and Feige, Immorlica, Mirrokni, and Nazerzadeh (2008)), we take the contract as input
and focus on how to optimally fulfill the demand under supply uncertainty. We assume that the

1For example, there maybe an opportunity cost associated with giving the ad away instead of selling it to another
advertiser. It is also possible that the advertiser’s infrastructure can only handle so many visits from people who see
the ad and click on it before that infrastructure breaks down, and so a cap is placed on the number of ads that the
advertiser wants displayed during a period of time.

2The reason our decision variables are fractions of the supply will be clear shortly.
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only control that a publisher exerts over the supply is to decide on a fraction of the channel to
allocate towards fulfilling an advertiser’s demand before the actual supply is realized for that period.
Instead of formulating the problem as that of profit maximization –by fulfilling as much as possible
of the demand for the negotiated price per impression– we think of it as a cost minimization
problem, where we try to minimize the number of ads not served (equivalent to lost revenue in the
maximization model) in addition to the overdelivery penalty discussed earlier. The main question
we are interested in here is similar to some of the questions asked in Boutilier, Parkes, Sandholm,
and Walsh (2008). In their work, they aimed to give a very general, all-encompassing framework to
the problem at the expense of giving solutions that provide no performance guarantees. In contrast
to their work, we focus on the specific problem described above and we are able to completely
characterize the optimal policy under reasonable assumptions. We also show that while we cannot
obtain such a solution for the general case, we can get arbitrarily close to the optimal solution.

Our understanding of online advertising has evolved from looking at the problem as a sequence
of seemingly unrelated single-round auctions to become more of a carefully planned campaign
that admits more expressive requests from the advertiser’s side. For example, as noted earlier,
advertisers can be very specific in defining their target groups. In addition, there can be other side
constraints or terms added to the publisher’s contract. As an example, a contract can specify that,
in addition to requiring a certain number of impressions to be delivered over a period of thirty
days, the delivery should also be spread as evenly as possible, so that if the demand is, say, 300,000
impressions, then the advertiser would ideally prefer to display 10,000 impressions every day for
the duration of the contract. This way the advertiser gets a more steady exposure instead of a
possible burst in delivery followed by no advertising that the earlier setting allows (for example,
by delivering all ads on the first day and then doing nothing for the rest of the planning horizon).
One can easily imagine many ways in which the advertiser can amend their contract to include
constraints like the above example. We will give a sufficient condition under which the methods in
this paper extend to more expressive contracts.

There is a strong connection between our problem and problems from the theory of stochastic
inventory control. The literature in this area is vast, with a standard model of stochastic demand
(see Zipkin (2000)) but scattered and problem-specific models for random yield and stochastic
supply (Yano and Lee (1995)). Until recently, the focus of this literature has been on identifying
the structure of the optimal policies for these problems without much regard to the feasibility
of actually computing such policies. Most of these policies were based on dynamic programming
formulations and solving the dynamic program was costly and in many cases impossible. Later work
was successful in finding approximate policies that either do not rely on dynamic programming,
for example, Levi, Pal, Roundy, and Shmoys (2007) or that exploits the structure of the dynamic
program to provide near-optimal solutions without the computational burden (Halman, Klabjan,
Mostagir, Orlin, and Simchi-Levi (2009)).

The rest of the paper is organized as follows. Section 2 gives a formal definition of the problem,
while Section 3 derives the optimal policy to the single advertiser case. Section 4 shows how to
extend the solution to the general case with multiple advertisers as well as extensions to more
expressive contracts. Section 5 concludes the paper and suggests possible extensions to our work.
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2 Model and Notation

We will highlight some of the methods used throughout the paper by focusing on the single adver-
tiser case for most of this abstract, and so we present the model for this case first. The extension
to multiple advertisers is straightforward and will be given in Section 4. We first consider the
demand side of the problem. An advertiser requests a number of ads that it would like displayed
over a certain time horizon. Time is discrete and is divided into periods, with the planning horizon
consisting of T periods. The advertiser wishes to have a total of D impressions delivered over the
entire horizon. Later on we will discuss the case when the advertiser can also specify additional
requirements, like even spacing of impressions over time, etc.

The supply is stochastic and time-variable. In each time period t, t = 1, ..., T , the publisher
gets a random number Xt of display opportunities that are related to the advertiser’s target group.
Here, Xt is a random variable that is distributed according to a known distribution Ft(x), with
density ft(x). We assume that the supply distributions across periods are independent, but not
necessarily identically distributed. In each period t and before Xt is realized, the publisher decides
on a fraction αt, 0 ≤ αt ≤ 1, to be taken out from the random supply Xt in order to fulfill part of
the demand D. As discussed earlier, this fraction is equivalent to selecting a bid that ultimately
awards the advertiser a fraction of the supply at the end of the period. At the end of the planning
horizon, the publisher incurs a penalty per undelivered impression, denoted by p1. There is also
a penalty per over-delivered impression, which can be thought of as the cost of giving away an
impression for free instead of selling it. We will denote this penalty by p2. At time T = 0, the
expected cost over the planning horizon can be expressed as

E

p1(D − T∑
t=1

αtXt

)+

+ p2

(
T∑
t=1

αtXt −D

)+
 ,

where (y − a)+ = max (y − a, 0). The publisher’s problem is to select the fractions α1, ..., αT such
that this expected cost is minimized. Put differently, the publisher wants to find a policy whereby
given the number of remaining impressions at the beginning of period t, it sets the fraction αt such
that the optimal expected cost is achieved, assuming that optimal decisions will be made in periods
t+ 1, ..., T . Note that, perhaps contrary to one’s initial intuition, a greedy policy that assigns high
fractions to the advertiser in earlier periods is not necessarily optimal since the supply distributions
are time variant. In fact, we can show that the following result is true of any myopic policy (which
includes the class of all greedy policies).

Lemma 2.1. Any myopic policy for the single advertiser ad delivery problem can perform arbitrarily
badly compared to the optimal solution.

A myopic policy by definition does not take the future into account and tries to provide a
solution as if the current period is the last or only period in the problem. The following simple
example shows that the preceding lemma is true.

Example 2.2. An advertiser has a demand of 40 ads, to be delivered over two periods. The cost
of overdelivery is 1 and the shortage cost is 2. In the first period, the supply of ads is a Bernoulli
random variable, taking a value of either 50 or 100 with equal probability. The supply in the second
period is again a Bernoulli random variable, taking the value 50 with probability ε and 100 with
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probability 1− ε. Denote by α1 and α2 the fraction of supply assigned to the advertiser in periods 1
and 2, respectively, and let the cost of the myopic policy be Costmyopic and the cost of the optimal
policy be Costopt. Any myopic policy will set α1 > 0 as it tries to fulfill some of the demand in
period 1, and therefore incurs positive expected cost (in fact, for this example a myopic policy that
tries to optimally balance overdelivery and shortage costs in the first period sets α1 = 0.645 and
incurs an expected cost of 13 in the first period alone). As ε goes to zero however, the optimal

solution sets α∗1 = 0 and α∗2 = 0.4, and the optimal cost approaches zero, making
Costmyopic
Costopt

→∞

Obviously, as soon as overdelivery occurs in one period and the associated costs are incurred,
there is no reason to assign any future supply to the advertiser. One can think of fulfilling the
demand over multiple periods as a chance to avoid overdelivery in any one particular period by
spreading the delivery over the entire horizon.

Unsurprisingly, the sequential nature of the problem lends itself to a dynamic programming
framework. Let the state variable at time t be dt, the number of remaining impressions to be
displayed over the rest of the planning horizon. The sequence of events in period t is as follows.
dt is observed and the fraction αt, is set to some value. The supply Xt is then realized and the
yield αtXt goes towards fulfilling part or all of the advertiser’s demand. The state variable for the
next period, dt+1, is set equal to (dt−αtXt)

+. We will denote by gt(dt) the optimal expected cost-
to-go function; that is, gt(dt) is the optimal expected cost at time t when there are dt remaining
impressions, and assuming that optimal decisions will be made in periods t through T .

3 Single Advertiser

We will start the analysis by focusing on the case of a single advertiser. It is worth nothing that, in
addition to the benefits of illustrating the structure of the solution in a simplified context, this case
is also of relevant practical interest. In the multiple advertisers case, the advertisers’ problems are
linked through the constraint that the sum of the fractions of supply assigned to them is at most
one. Since in some scenarios it is not uncommon for the publisher to have more supply than the
aggregate demand, this constraint becomes non-binding, and the problem can be decoupled into
separate single advertiser problems. Taking this view further, we formalize the preceding point in
the assumption that follows. Let the optimal fraction in period t, t = 1, ..., T be denoted by α∗t and
consider

Assumption 3.1. In the optimal solution to the single advertiser delivery problem, α∗t < 1 for all
t.

As mentioned, one can easily think of scenarios where this assumption would be valid. Indeed,
there will be specific target groups and/or various criteria for which it is probably never the case that
the publisher assigns all the display opportunities it gets to a single advertiser, since the advertiser’s
demand is considerably smaller than the available supply, and hence the optimal fraction of ads
assigned to that advertiser will always be strictly less than one (as a trivial example, think of
an advertiser that wants to display ads to males in the age bracket of 20 to 40 – a very large
target audience). On the other hand, one can construct examples where the optimal solution gives
the advertiser every single display opportunity that the publisher gets. This may happen if the
advertiser is interested in a very unique set of target demographics, such that the supply of the
display opportunities for the specified criteria is scarce and barely enough to fulfill the demand.
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Another possibility is that the cost per undelivered impression is extremely high compared to
the per-impression overdelivery cost, resulting in a very conservative policy that aims to avoid
shortage by setting α to its maximum possible value. For the purposes of this section though,
and assuming that the above assumption holds, we can derive a simple closed-form for the optimal
policy that is summarized in the following theorem. Although we will not prove it here, it is
worth mentioning that the optimal policy derived herein is also the unique optimal policy for the
problem. This contrasts with many inventory management problems, where sometimes it can even
be computationally difficult to count the number of optimal solutions (Halman, Klabjan, Mostagir,
Orlin, and Simchi-Levi (2009)).

Theorem 3.2. Let dt be the number of remaining impressions at the beginning of period t. There
exists nonnegative numbers k1, k2, ..., kT , such that in the ad delivery problem, the optimal policy
in period t is to set α∗t = dt/kt. Furthermore, computing the values kt for t = 1, ...T can be done
efficiently in an offline (i.e. before the first period begins) manner.

Proof. We start by solving a single period problem and then extend the solution to its multi-period
counterpart. Consider a single period problem with demand D and random supply X. A fraction
α∗ is chosen before X is realized such that α∗ is the solution to the following problem

min
α
E[p1(D − αX)+ + p2(αX −D)+] (1)

This expectation can also be written as

p1

∫ D/α

0
(D − αx) dF (x) + p2

∫ ∞
D/α

(αx−D) dF (x) (2)

which can be verified to be a convex function of α. The first derivative of (2) with respect to α is
given by

−p1
∫ D/α

0
xf(x)dx+ p2

∫ ∞
D/α

xf(x)dx (3)

Because x is a nonnegative random variable, the integral
∫ b
a xf(x)dx is equal to the integral∫ b

a (1− F (x))dx. The second derivative, again with respect to α is then equal to

p1D

α2

∫ D/α

0
xf(x)dx+

p2D

α2

∫ ∞
D/α

xf(x)dx

This expression is greater than zero for any nontrivial specification of the problem (i.e. a specifica-
tion with p1 > 0, p2 > 0, D > 0, and a distribution F (x) that does not put all the weight on zero).
Hence the function is convex in α and the first order condition for minimization obtained from
setting (3) equal to zero tells us that α∗, the fraction for which the expectation in (1) is minimized,
satisfies

α∗ = sup
α

{∫ D/α
0 1− F (x)dx∫∞
D/α 1− F (x)dx

}
≥ p2
p1

where the inequality, instead of equality, accounts for discrete distributions. Recalling that the
integral

∫ b
a (1− F (x))dx for a nonnegative random variable X gives the expectation of X over the
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interval (a, b), the optimality condition can be interpreted as finding the fraction α∗ that divides the
support of X into two intervals, [0, D/α∗] and (D/α∗,∞), such that the ratio of the contribution
of these two intervals to the expectation of X is equal to the ratio p2/p1. In the case of a discrete
distribution, D/α∗ would be the first point in the support of X that makes this ratio equal to or
bigger than p2/p1. If no such point exists, then α∗ is set to its maximum value of one, a possibility
that we will ignore when we move to the multi-period version under Assumption 3.1.

It is not difficult to see that, for values p1 and p2 and a certain distribution F (x), there is only
one point in the domain of X, call it k, that would satisfy this ratio condition, i.e. there is a unique
value k that solves

k = inf
t

{ ∫ t
0 xf(x)dx∫∞
t xf(x)dx

}
≥ p2
p1

(4)

Furthermore, computing this point k requires only knowledge of p1, p2, and F (x) – it is independent
of D and α. This implies that we can pre-compute k before D is known and before the problem
commences (i.e. we can compute k offline before the period begins). We then use this computed
value for k along with the input D to compute α∗ = D/k. Thus the optimal solution to the one
period problem can be written as

α∗ =

{
D/k, 0 ≤ D/k < 1;
1, D/k ≥ 1.

(5)

Using Assumption 3.1, we write the optimal cost-to-go function, substituting the value of α∗

from (5) into (2)

g(D) = p1

∫ k

0
d(1− x

k
) dF (x) + p2

∫ ∞
k

d(
x

k
− 1) dF (x)

Note that in this expression, the only variable is d, by rewriting as

g(D) = d

(
p1

∫ k

0
(1− x

k
) dF (x) + p2

∫ ∞
k

(
x

k
− 1) dF (x)

)
we can see that g(D) is a linear function of the form g(d) = uD, where u is a nonnegative constant

that is equal to p1
∫ k
0 (1− x

k ) dF (x) + p2
∫∞
k (xk − 1) dF (x).

Having solved the single period problem, we extend the solution to its multi-period counterpart.
Denote the remaining impressions at the beginning of period T by dT . Since the problem in period
T is identical to the single period problem we just solved, we can find the values kT and uT and
write gT (dT ) = uTdT . Then, moving backwards in time to period T − 1 and writing the optimal
cost-to-go function for that period, we have

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+gT (dT−1 − αT−1XT−1)
+]

substituting for gT (dT ) by uTdT , this expression becomes

gT−1(dT−1) = min
αT−1

E[p2(αT−1XT−1 − dT−1)+

+uT (dT−1 − αT−1XT−1)
+]
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which is of the same form as (1), with p1 replaced by uT . We can then solve for the optimal
α∗T−1 in the exact same way as before, by finding kT−1. The optimal policy in period T − 1 is then
similar to that of a single period problem: if the number of remaining impressions at the beginning
of period T − 1 is dT−1, then the optimal solution is to set α∗T−1 to dT−1/kT−1 and the optimal
cost-to-go in that period can be written as gT−1(dT−1) = uT−1dT−1. Inductively, we deduce that
there are values kT−2, ..., k1 which can all be computed in the same way as in the single period
problem, with the optimal policy in any period given as in the statement of the theorem. Thus the
problem reduces to solving a sequence of T single period problems. Again, since the values kt and
ut depend only on p1 p2, and F (xt), they can be computed offline.

It remains to show that kt and ut can be computed efficiently. Indeed, finding kt amounts to
solving an equation in a single variable in the continuous case and is only slightly more difficult than
calculating the expectation of a random variable in the discrete case. For the latter, assume that the
maximum number of values the random variableXt can take ism, and that the probability ofXt = x
is given by p(x), then finding kt involves nothing more than performing binary search on those m
values, where at each step of the search the current value mi is taken as a candidate for kt and
the summation

∑mi
i=0 xip(xi) is evaluated and divided by E(x)−

∑mi
i=0 xip(xi) and then compared

to p2
p1

. A straightforward, naive implementation of this method will take time O(m logm), which
is already fast enough for all practical purposes. Computing ut takes O(m) time and is dominated
by the time it takes to find kt. Repeating the entire procedure for each period, we end up with an
overall running time of O(Tm logm).

This result makes intuitive sense, and reinforces the discussion we had after Assumption 3.1.
For the one period problem, as k increases with increasing p2 or decreasing p1, α

∗ decreases in order
to try and protect against overdelivery, which becomes a more costly penalty. Similarly, imagine
that p1 is very high compared to p2, then k takes on smaller values, pushing α∗ towards one in
order to protect against the high cost of under-delivery even when D is not very large.

The multi-period solution gives a nice insight into the structure of the problem. The constant
ut for period t can be written as

ut = ut+1

∫ kt

0
(1− xt

kt
)dF (xt) + p2

∫ ∞
kt

(
xt
kt
− 1)dF (xt)

where uT+1 = p1. From this expression, we can see that ut ≥ ut+1 for all t. One can interpret
ut as the cost of waiting to fulfill an impression in the next period instead of the current period.
Since ut increases as t decreases, there is a tendency to not wait until the end of the horizon to
deliver impressions. Of course, this is not necessarily true for all scenarios as it also depends on
the supply distributions throughout the horizon. Consider the case where supply is IID across
periods. Obviously, dt ≥ dt+1 for all t, and since kt varies inversely with ut (recall that ut is
analogous to p1 in (4)), kt decreases as t decreases and ut increases, so that kt ≤ kt+1 for all t.
This implies that α∗t = dt

kt
starts at some value in the first period and then keeps decreasing as t

increases, so that in the optimal policy there is a tendency to deliver the majority of impressions
early on to protect against under-delivery, and use the later periods mainly to fill in shortages from
earlier periods. Given that the solution can be computed knowing only the costs p1 and p2 and
the demand distributions, the publisher can use this information about the optimal cost to adjust
and negotiate the penalties p1 and p2 so that the resulting contract has the minimum possible cost
given the demands and requirements of the advertiser.
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When Assumption 3.1 is violated, the policy in Theorem 3.2 is no longer optimal. The reason for
this is that the dependence of the optimal cost-to-go on d is no longer linear but convex, indicating
that we need to evaluate gt for all values of dt to successfully apply backwards induction. When
this is the case, the problem has a pseudopolynomial time algorithm with a running time O(TD).
The direct dependence on D makes the problem intractable. However, we can still develop an
ε-approximation scheme for the problem. This means that for any given ε, we can find a solution
that is within ε from the optimal solution and that requires time polynomial in the input size and
1/ε to compute.

Theorem 3.3. The optimal ad delivery problems admits an ε-approximation that can be efficiently
computed.

Proof. The proof of this result is quite involved, and is given in the appendix.

4 Extensions

4.1 Multiple Advertisers

We will slightly revise the structure of the costs before we extend the results to multiple advertisers.
Throughout the preceding discussion, we have interpreted the penalty p2 as the opportunity cost of
giving away an impression for free instead of selling it to another advertiser. When we consider the
multiple advertisers case under this interpretation, there is no reason to keep the overdelivery costs,
since the case where advertiser i is allocated more impressions than their demand only impacts the
solution if this overdelivery results in shortage for other advertisers, and hence the penalty p2 can
be implicitly incorporated into the shortage costs of advertisers other than i. We will discuss the
case when the advertiser also wishes to not receive extra impressions over their demand in the next
subsection. For this section, we assume that there are m advertisers and that advertiser i’s shortage
cost is given by pi. The decision vector in period t is αt = (αt1, ..., α

t
m), where αti is the fraction

assigned to advertiser i in period t. The problem then is the same as before: we are interested in
choosing αt, t = 1, ..., T in order to minimize the shortage costs at the end of the horizon. One
difference is that all cost is evaluated at the last period, since there is no longer an overdelivery
cost in any one period. Formally,

minαt E
[∑

i pi
(
di −

∑
t α

t
ix
t
)+]

s.t.
∑

i α
t
i ≤ 1 t = 1, ..., T

0 ≤ αti ≤ 1 t = 1, ..., T.

We will assume that the constraints
∑

i α
t
i ≤ 1 are binding. This is without loss of generality,

since one can introduce a dummy advertiser that gets assigned any leftover impressions in a period
if the constraint has some slack. Furthermore, if in the optimal solution we have

∑
i α
∗t
i < 1 for all

t, then the problem can simply be decoupled into m separate problems that are then solved as in
the previous section. Starting again from the one period problem, we can verify convexity in α as
in the single advertiser case. The constraints are linear in α1, ..., αm and the Hessian matrix of the
objective is positive definite.

Under the binding constraints assumption, advertiser m is assigned a fraction 1−
∑

i 6=m αi, so
that setting the fractions for all but the last advertiser automatically determines the fraction that
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the last advertiser gets. Rewriting the single-period objective in the form of (2), we get

p1

∫ d1/α1

0
(d1 − α1x) dF (x) + ...

+pm

∫ dm
1−

∑
i 6=m αi

0
(dm − (1−

∑
i 6=m

αi)x) dF (x)

Notice that when minimizing (6), we end up with a system of m− 1 equations, corresponding
to the m− 1 decision variables α1, ...αm−1. Since each equation is the partial derivative of (6) with
respect to one of the variables, it has exactly two terms: the derivative of the integral that contains
that variable as well as the derivative of the last integral, which is expressed in terms of the first
m− 1 variables. Specifically, the derivative of (6) with respect to αi is given by

−pi
∫ di/αi

0
xf(x) + pm

∫ di
1−

∑
i6=mαi

0
xf(x)

Note that in particular, the second term is common to all equations. Writing this out for all
the m− 1 variables and equating each derivative to zero to obtain the conditions for minimization,
we find that, for any two advertisers i and j, the following holds at the optimal solution

pi

∫ di/αi

0
xf(x) = pj

∫ dj/αj

0
xf(x) (6)

Like before, we will let ki = di
αi

. The optimal solution to the problem then involves finding
k1, ..., km−1 such that Condition (6) is satisfied for all i and j. In addition, since determining
ki, i = 1, ...,m − 1 determines αi, i = 1, ...,m − 1, it also determines αm through the relation
αm = 1−

∑
i 6=m αi. The resulting αm should satisfy Condition (6). Without loss of generality, let

the costs pi be arranged such that p1 ≥ p2 ≥ ... ≥ pm. If we follow the approach from the previous
section, we can try to find values of ki such that the following holds for all i and j∫ ki

0 xf(x)∫ kj
0 xf(x)

=
pj
pi

(7)

A set of values for ki, i = 1, ...m that solves (7) and leads to a vector α with
∑

i αi = 1 gives a
solution to the problem. From (7) and the fact that X is a nonnegative random variable, we can
see that advertisers with low index have lower k values. The immediate implication is that these
advertisers get more share of the supply if the demands of all advertisers are the same or comparable
(since low k values correspond to high values for α when the demands are the same). This agrees
with intuition and suggests that the optimal single period policy has a greedy flavor, allocating
more shares to those advertisers that have higher penalties. In fact, it is possible that advertisers
with high indexes (low pi) get assigned zero impressions, since the only way the condition is satisfied
is if their corresponding values of ki are set to infinity. Of course, since the conditions above also
depend on di, it is not always the case that high index advertisers receive less impressions – the
important thing is that the optimality conditions are satisfied.

When we consider the multiple period problem, applying the same policy in a myopic fashion
turns out to be optimal: at the beginning of each period, we solve the problem as if it is simply
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a single period problem, and assign to each advertiser the fraction they would get if this was the
only period left. While this may seem initially surprising given that we have seen that myopic
policies can be arbitrarily bad in Example 2.2, the reason it works in this setting is the removal of
the overdelivery cost, which alters the problem and therefore the structure of the optimal policy.
A proof for the optimality of the policy above can be found in the appendix, but the informal
reasoning is as follows. Let us think about two advertisers with penalties p1 and p2 with p1 > p2
and two periods. Because the myopic policy is greedy by nature, the only way applying it can
hurt the publisher is when the optimal solution assigns a bigger share to the second advertiser in
the first period than the myopic policy does. But this would only happen when the supply in the
second period allows the publisher to reduce the optimal one-period share for the first advertiser in
the first period, knowing that it will be able to fulfill the shortage in the second period, but if that
is the case then the publisher can just as well use the second period to fulfill the second advertiser’s
left-over demand instead of taking it out of the (more costly) first advertiser’s share in the first
period.

4.2 Additional Delivery Constraints

Let us return to the single advertiser case. So far, the publisher’s problem has been of the form

min
0≤αt≤1

∑
t

h(dt, Ft(x), αt)

with h(d, F (x), α) taking the form of the function in (1). We want to consider allowing the advertiser
to have more input into the structure of the delivery process, specifically, the advertiser can choose
a function l(dt, Ft(x), αt) such that the publisher’s objective becomes

min
0≤αt≤1

∑
t

h(dt, Ft(x), αt) + l(dt, Ft(x), αt)

Let us illustrate this in the context of the example used at the beginning of the paper, where in
addition to the guaranteed delivery requirement, the advertiser would like its ads to be evenly
spaced over time. An advertiser with total demand D over a horizon of length T can then choose
l(dt, Ft(x), αt) = q|αtxt − D

T |, so that there is a penalty q associated with delivering more or less
than D/T impressions in each period (of course, the advertiser can specify any other value than
D/T , or different values for different periods). For simplicity, let us roll the costs p1 and p2 into a
single cost p. The publisher’s problem then becomes

min
0≤αt≤1

E

[
p

∣∣∣∣∣D −
T∑
t=1

αtXt

∣∣∣∣∣+ q

∣∣∣∣∣
T∑
t=1

αtXt −
D

T

∣∣∣∣∣
]

This problem closely follows the framework outlined above, both for the special case under Assump-
tion 3.1 and the general case (depending on the relationship between p and q, it may be necessary
to set α equal to 1 in some scenarios). Just to illustrate, under Assumption 3.1 the optimal α in a
single period problem satisfies

α∗ = sup
α

∫∞
Dα
T
xf(x)dx−

∫ Dα
T

0 xf(x)dx∫ D
α

0 xf(x)dx−
∫∞
D
α
xf(x)dx
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As one can tell from this expression, the criteria for optimality looks more complex as one adds
more requirements. Nevertheless, the structure of the solution (finding intervals that divide the
domain of the distribution in a certain way) remains intact. It turns out that a sufficient condition
to add more expressiveness while maintaining the general flavor of the solution is the requirement
that l(dt, Ft(x), αt) be convex, which makes the publisher’s overall objective convex in αt and dt.
If l(dt, Ft(x), αt) is chosen such that, for example, there is a bonus paid to the publisher once a
certain target z < D is fulfilled, then the objective displays a kink and convexity is destroyed. In
such scenario, the methods outlined in this paper may fail to be optimal.

5 Conclusions

We have given optimal policies to some variants of the guaranteed ad delivery problem in display
advertising. We have seen that when the advertiser’s demand is low compared to the overall
supply, the problem can be solved to optimality and the optimal policy has a nice and simple
characterization. Because the publisher is able to calculate its expected cost as a function of
the demand D and costs p1 and p2, it can use this information in deciding on prices to charge the
advertiser for service, as well as negotiate the shortage penalty p1. The case for multiple advertisers
maintains the same spirit of the solution, namely, dividing the support of the distribution into
intervals from which the optimal fractions can be calculated. While figuring out the fractions for
the single period multiple advertisers case is not as straightforward as the single advertiser one,
the difficulty turns out to be balanced by the fact that a myopic policy is optimal for the multiple
advertisers case. If instead of the modification we introduced in the multiple advertiser scenario
we had each advertiser still maintain under and over delivery penalties then a myopic policy is no
longer optimal and the problem becomes quite difficult even to approximate.

There are many variations on the theme of this problem. We have already discussed a sufficient
condition under which the methods presented here extend to more expressive contracts, namely, the
convexity of the publisher’s objective function. It would be interesting to identify the correspon-
dence between bids and fractions: we know what fraction the publisher should set in the optimal
solution to the problem, but in reality, and as mentioned in the introduction, the publisher places
a bid in an auction for a period of time, not a fraction. The interaction between maximum prices
that advertisers are willing to pay per impression and the bids placed by the publisher affects the
fractions that the advertiser can select and therefore the structure of the optimal delivery policies.
It would therefore be instructive to understand how the two separate processes of selecting optimal
contracts and fulfilling these contracts interact so that instead of designing each in isolation one
can develop a more integrated approach that accounts for the issues addressed by each.
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Appendix

A Proofs For General Case

In this section we consider the general case of the problem when the optimal fraction α∗t , t = 1, ..., T ,
can take on its maximum value of one. As we shall see, this slight change will unfortunately have a
strong effect on the complexity of the problem, making it significantly more difficult than the case
discussed in the previous section. We start with the following proposition

Proposition A.1. The function gt(dt) is convex for all t.

Proof. We prove the proposition by induction. Consider period T , which is equivalent to a single
period problem, as the base case. The optimal α∗T in this last period is still given by (5). If dT < kT ,
then the optimal expected cost is convex (in fact, linear) in dT as shown earlier. If dT ≥ kT then
α∗T = 1, and the optimal expected cost is given by

hT (dT ) = p1

∫ dT

0
(dT − xT )dF (xT ) + p2

∫ ∞
dT

(xT − dT )dF (xT )
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which is easily verified to be convex in dT . This means that gT (dT ) consists of two parts; a linear
function for dt < kt and a convex function for dT ≥ kT . For gT (dT ) to be convex over its entire
domain, the slope should be increasing at the break point kt. To show that this is the case consider
the unconstrained problem, where α∗ can take on any value regardless of whether dT < kT or not,
then gT (dT ) = uTdT is a lower bound on the optimal value of gT (dT ) for all values of dT . This
means that for any value dT > kT the graph of the constrained solution can only lie on or above the
line uTdT , which implies a nondecreasing slope at kT . Another way to see this is to note that the
function max{uTdT , hT (dT )} for values of dT ≥ kT is convex (the maximum of linear and convex
functions), and is always equal to hT (dT ). It follows that the overall optimal cost function gT (dT )
is convex on its domain.

For the induction step, assume gt+1(dt+1) is convex and write gt(dt) = minαt vt(dt), where

vt(dt) =

{
p2

∫ ∞
dt/αt

(αtxt − dt)dF (xt) +

∫ dt/αt

0
gt+1(dt − αtxt)dF (xt)

}
.

The first part is convex in αt and the second is convex by the induction hypothesis and the fact
that integration preserves convexity on a monotonically increasing convex function. Thus vt(dt) is
convex in αt and can be efficiently minimized. Let the minimizer be α∗t and write

gt(dt) = p2

∫ ∞
dt/α∗t

(α∗txt − dt)dF (xt) +

∫ dt/α∗t

0
gt+1(dt − α∗txt)dF (xt).

Again, the first part of this expression is a convex function in dt, while the second part is convex
under the induction hypothesis. This finishes the proof of the proposition.

Solving this problem is equivalent to computing the optimal expected cost at the beginning
of the planning horizon when we still have all the demand left to fulfill, i.e. solving the problem
is essentially the same as computing g1(D). As mentioned, the slight change in allowing α∗ to
be equal to one has a considerable effect on the complexity of the problem. The special case we
handled in Section 3 involved successively solving a sequence of single period problems where any
two consecutive periods t and t+ 1 are linked together only through a constant ut+1 that is easily
computed. In the general case however, and because gt(dt) is a convex rather than a linear function
of dt for all t, we may have to compute gt+1(dt+1) for every value of dt+1 in order to be able to
compute gt(dt). This means that we may have to compute gt+1 for every value up to potentially
the total demand D. This makes the running time of the problem pseudo-polynomial in the input
size, i.e. the complexity of the problem depends directly on the input data instead of its encoding
size –which in this case is logD– and the solution exhibits exponential running time behavior (?).

To try and alleviate this problem, we will construct a Fully Polynomial Time Approximation
Scheme (FPTAS). A minimization problem has an FPTAS if for every ε > 0 and for every instance
I of the problem, the algorithm takes time polynomial in the logarithm of the data and in 1/ε, and
produces a solution A(I) such that A(I) ≤ (1 + ε)Opt(I),where Opt(I) is the optimal solution to
I. The FPTAS we construct for this problem relies on geometric rounding techniques and relies on
the fact that the cost-to-go function is monotonic or consists of a bounded number of monotonic
functions. Our goal will be to evaluate each gt at only a subset of values of dt such that the
cardinality of this subset is bounded by a polynomial in the input size, as well as the inverse of the
accuracy parameter ε. The loss of accuracy is a result of ignoring information by focusing only on
a subset of values. The following definitions will be helpful.
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Definition A.2. (δ-approximation function) Let δ > 1 and let f : D → R+ be a function. We say
that f̂ : D → R is a δ-approximation of f if for all d ∈ D we have f(d) ≤ f̂(d) ≤ δf(d).

Definition A.3. (δ-approximation Set) Let δ > 1 and let f : [L,U ]→ R+ be a monotone function.
A δ-approximation set of f is an ordered set S = {i1 < ... < ir} of integers satisfying

1. L,U ∈ S ⊆ {L, ...U};

2. for each j = 1 to r − 1, if ij+1 > ij + 1, then
f(ij)
δ ≤ f(ij+1) ≤ δf(ij).

Let f : [L,U ] → R+ be a monotonically increasing function with maximum value fmax. Let
tf be the time it takes to evaluate f . A δ-approximation set of f can be computed in time
O(tf logδ f

max log (U − L)) by performing binary search on [L,U ]. A δ-approximation function is
constructed from a δ-approximation set using the following definition.

Definition A.4. Let δ > 1 and let f : [L,U ] → R+ be a monotonically increasing function. Let
S be a δ-approximation of f . A function f̂ defined as follows is called the approximation of f
corresponding to S. For any x such that L ≤ x ≤ U and successive elements ik, ik+1 ∈ S with
ik < x ≤ ik+1, we set f̂(x) = f(ik+1).

We now proceed with approximating the problem. Consider the last period. As we have shown,
calculating the value kT for that period is not difficult, but we need to calculate the value of gT (dT )
for each value of dT whenever dT > kT . Depending on the distribution and the costs p1 and p2, kT
might be quite low, and we would have to calculate dT for a number of values that is effectively
on the order of the total demand D. This motivates us to use the previous definitions to limit our
attention to only a subset of values of dT , namely, the δ-approximation set of gT (dT ). Because
gT (dT ) is a convex, monotonically increasing function, we can indeed construct a δ-approximation
set for it and then use Definition A.4 to construct ĝT (dT ), a δ-approximation function of gT (dT ).
The following lemma follows immediately from Definition A.2.

Lemma A.5. For any value of dT in the domain of the last period, we have gT (dT ) ≤ ĝT (dT ) ≤
δgT (dT ).

Now that we have an approximation of the value function in the last period, we can move
backwards in time to approximate gT−1(dT−1). We will drop the subscript t when we talk about
the demand from now on, using gT−1(d) instead of gT−1(dT−1). One problem is that gT (d) is used
to calculate gT−1(d) and we have no access to gT (d), but instead have its approximation ĝT (d).
One can intuitively see that using ĝT (d) in place of gT (d) while evaluating gT−1(d) will result in
an error in the value of gT−1(d), and as we repeat the process and approximate gT−1(d) and use
its approximation to calculate gT−2(d), the error gets worse. This is to be expected, as we are
using an approximate function as part of another function we are approximating, so the error
gets compounded. Before examining this, we write the minimization problem for a fixed d in the
penultimate period, namely how to find α∗T−1 that solves

gT−1(d) = min
αT−1

E
[
p2 (αT−1xT−1 − d)+ + gT (d− αT−1xT−1)+

]
. (8)

Because the second term in the expectation is not available, we use its approximation, ĝT (d),
instead. We are then looking for the value of αT−1 that minimizes

p2

∫ ∞
d

αT−1

(αT−1xT−1 − d)dF (xT−1) +

∫ d
αT−1

0
ĝT (d− αT−1xT−1)dF (xT−1) (9)
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Because of the ĝT term, this function is not necessarily continuous. We will define ḡT as the
piecewise linear extension of ĝT , so that ḡT is both continuous and convex. The piecewise linear
extension of a function f on a subset S = [a, b], where a and b are integers, is the continuous
function obtained by making f linear between successive values of S. Convexity of ḡT follows from
the fact that the points in ĝT come from the convex function gT . We then use ḡT in place of ĝT in
(9) above to define

ǧT−1(d) = min
αT−1

E
[
p2 (αT−1xT−1 − d)+ + ḡT (d− αT−1xT−1)+

]
. (10)

This is a convex minimization problem that we can solve efficiently and whose minimizer we will
denote by α̂T−1. We would like to understand how the solution produced by α̂T−1 on ǧT−1(d)
compares to the solution produced by the optimal α∗T−1 on the original problem of minimizing
gT−1(d). The relationship is summarized in the following simple lemma.

Lemma A.6. For any 0 ≤ d ≤ D, we have ǧT−1(d) ≤ δgT−1(d).

Proof. From Lemma A.5 and Definition A.4, we know that for any value of d in [a, b], where
a and b are in the δ-approximation set of gT , we have ĝT (d) = ĝT (b) ≤ δgT (d). Since ḡT is
linear between any two consecutive points in the δ-approximation set (like a and b here), the
relationship ḡT (d) ≤ ĝT (b) holds, and therefore ḡT (d) ≤ δgT (d). Comparing equations (8) and
(10), we see that the first term in both expectations is the same and for any value of αT−1, we
have ḡT (d− αT−1xT−1) ≤ δgT (d− αT−1xT−1) as shown. Consider α∗T−1 as a solution to (10). By
the preceding discussion, the value produced by this solution is such that ǧT−1(d) ≤ δgT−1(d). It
follows that there exists a minimizer α̂ such that the relationship given in the statement of the
lemma holds.

We have thus shown that for a fixed value of d, we can find a solution to the penultimate period
that is not more than a multiplicative error of δ away from the optimal solution for this value of d
in that period. We then proceed to find ĝT−1(d), the delta approximation function of ǧT−1(d) as
before. Notice that as we do so, we accumulate more errors since ĝT−1(d) ≤ δǧT−1(d) by Definition
A.2, and hence ĝT−1(d) ≤ δ2gT−1(d) by Lemma A.6. The whole process is repeated for each of
the time periods T − 2, ..., 1. The following lemma generalizes Lemma A.6 and summarizes the
relationship between ĝt(d) and gt(d) for all t.

Lemma A.7. In period t, t = 1, ..., T , we have ĝt(d) ≤ δT+1−tgt(d).

Proof. We prove the lemma by induction on t. From Corollary A.5, we know that the result holds
for the base case t = T . The proof for period t is similar to the arguments we considered for
period T − 1. Assume inductively that the relationship holds for period t+ 1 and consider ǧt(d) =
minαt E

[
p2 (αtxt − d)+ + ḡt+1(d)− αtxt)+

]
. The first term in this expectation is the same as that

in the problem of minimizing gt(d), and by the induction hypothesis ĝt+1(d) ≤ δT−tgt+1(d) and
hence ḡt+1(d) ≤ ĝt+1(d) ≤ δT−tgt+1(d). Therefore by the same arguments as in Lemma A.6, there
exists a minimizer for ǧt(d) such that ǧt(d) ≤ δT−tgt(d). Calculating the δ-approximation function
ĝt(d) for ǧt(d) and using Definition A.2, we have ĝt(d) ≤ δǧt(d) ≤ δδT−tgt(d) = δT+1−tgt(d).

With Lemma A.7 in place, we can give the main result of this section.
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Theorem A.8. For any ε ∈ (0, 1], the ad delivery problem admits an FPTAS by setting δ = 1+ ε
2T .

That is, we can find ĝ1(D) such that g1(D) ≤ ĝ1(D) ≤ (1 + ε)g1(D) by using this value of δ to
approximate gt, t = 1, ..., T .

Proof. From Lemma A.7, we have ĝ1(D) ≤ δT g1(D). Setting δ equal to the value in the statement

of the theorem we have ĝ1(D) ≤ (1+ ε
2T )T g1(D). Because 1+ ε

2T = 1+ ε/2
T , we can use the inequality

(1 + x
n)n ≤ 1 + 2x which holds for every x ∈ [0, 1] to get ĝ1(D) ≤ (1 + ε)g1(D). It remains to show

that the time taken by the algorithm is polynomial in the input size. Consider one iteration of
the algorithm and let the largest value produced by the algorithm at any stage be B. Because we
know that the values produced by the algorithm are at most δT away from the values produced
by the optimal algorithm, the upper bound B is polynomial in the size of the problem and in δ
(or, equivalently, 1/ε). Evaluating ḡt takes time tg and finding a δ-approximation set S takes time
O(tg logδ B logD). Because 0 < ε ≤ 1, we know δ < 2, and using the relationship given in the
statement of the theorem, we can rewrite the time it takes to compute a δ-approximation set as
O(tg

T
ε logB logD). Finding a convex extension for ĝt is linear in the size of S, and is dominated

by the time it takes to compute the δ-approximation set. Repeating these steps for each period,
the overall running time is given by O(tg

T 2

ε logB logD), which is polynomial in the input size, the
number of periods, and 1/ε, as desired.

Notice that, because of the way the approximation works, there is a tendency to over-deliver
impressions, but not by much. This happens because, by (A.4), for any value of demand d ∈ [a, b] at
the beginning of a period, where a and b are in the δ-approximation set of the value function in that
period, the algorithm operates as if the remaining number of impressions is b ≥ d. Nevertheless,
we are assured that in doing so the extra expected cost at the end of the horizon will not be more
than a multiplicative factor of ε away from the optimal solution.
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