Preliminary Exam Syllabus
Montek Gill

Examiners: Igor Kriz (advisor), Yongbin Ruan

Model categories

1. Definition of model categories. Basic consequences of the axioms: the retract argument, closure properties of the distinguished classes of morphisms, lifts and extensions, Ken Brown’s lemma.

2. Homotopies in a model category. The Whitehead theorem in a model category. Construction of the derived category (i.e. homotopy category) of a model category.

5. Definition of cofibrantly generated model categories.

6. Examples:
 • The standard model structure on topological spaces.
 • The projective and injective model structures on unbounded chain complexes.
 • The standard model structure on simplicial sets.
 • The stable homotopy category:
 – Definitions of May spectra, L-spectra and S-modules.
 – Construction of the smash product of each of the above.
 – Definitions of ring and module spectra.
 – The model structure on May spectra and the induced model structure on S-modules.

References:

Other contexts for homotopy theory. Models for (\infty, 1)-categories

1. Homotopical categories.
 • Definition of homotopical categories.
 • The underlying homotopical category of a model category.
 • Derived functors on homotopical categories via deformations.

2. Simplicially enriched categories.
 • Definition of simplicially enriched categories.
 • The Dwyer-Kan hammock localization of a homotopical category producing a simplicially enriched category.
3. Quasicategories.

- Definition of quasicategories.
- The homotopy coherent nerve functor from simplicially enriched categories to quasicategories.
- Examples:
 - Nerves of ordinary categories are quasicategories.
 - Singular complexes of topological spaces are quasicategories.
- The homotopy category of a quasicategory. Adjoint relationship to the nerve functor.
- Mapping spaces in a quasicategory. Mapping spaces are quasigroupoids.

References: