Energy-efficient Controller Design for a Redundantly-actuated Hybrid Feed Drive with Application to Machining

Molong Duan, Student Member, IEEE, Chinedum E. Okwudire, Member, IEEE

Abstract—This paper presents a method for designing a controller that achieves the best positioning performance while maximizing the energy efficiency of a redundantly-actuated hybrid feed drive. A two degree-of-freedom controller, consisting of a feed forward (FF) controller for tracking and a feedback (FB) controller for regulation, is assumed. It is shown that the ideal FF controller, which achieves perfect tracking with maximum efficiency, is not always stable. Therefore, a method for designing a stable FF controller that achieves perfect tracking with near optimal efficiency is proposed. Furthermore, the optimal relationship between FB control inputs, which guarantees maximum efficiency for any specified regulation performance, is derived. Two approaches for using the derived optimal relationship to synthesize a FB controller that achieves the best positioning performance while maximizing efficiency are proposed. Simulations and machining experiments are conducted to demonstrate the effectiveness of the proposed energy-efficient FF and FB controller design methods. Significant improvements in energy efficiency (without sacrificing positioning performance) are reported.

Index Terms—Energy Efficiency; Control Structure Design; H_2/H_{∞} Optimization; Hybrid Feed Drive; Redundant Actuation

I. INTRODUCTION

Feed drives are used for coordinated motion delivery in manufacturing machines. Consequently, their positioning accuracy and speed are critical to the quality and productivity of a variety of manufacturing processes [1]. Moreover, they account for a significant portion of the energy consumption of manufacturing machines [2], [3]. Therefore, a lot of work has been done in the literature related to improving their energy efficiency, e.g., [4]–[10]. It is however recognized that, to achieve truly sustainable manufacturing, improvements in energy efficiency must be achieved without unduly sacrificing quality and productivity [11].

Most machine tools utilize screw drives (SDs) for actuating their feed axes [1]. The reason is that SDs are cost effective and have high mechanical advantage which allows them to support high cutting (i.e., machining) forces with very low energy consumption [12], [13]. The speed and accuracy of SDs are however limited because of mechanical issues like vibration, wear, backlash and geometric errors of the screw and associated mechanical components [1], [13]. To mitigate these shortcomings, linear motor drives (LMDs) are increasingly being resorted to [13]–[18]. LMDs can achieve higher speeds and accelerations than SDs and are not subject to the inaccuracies caused by geometric errors, wear and structural deformations arising from the screw and other mechanical components like bearings, couplers and nuts that are connected to it [1], [13]. LMDs are therefore generally more precise than SDs. However, because they provide no mechanical advantage, they consume a lot more electrical energy to support cutting forces than SDs, thus significantly increasing the energy consumption of the machine [15].

When two or more actuators provide complementary benefits (as in SDs and LMDs), it is not uncommon to resort to hybrid feed drives (HFDs). In HFDs, dissimilar but complementary actuators are synergistically combined to meet conflicting requirements with little or no tradeoff. HFDs are most commonly designed with actuators that act in series to achieve long-range coarse motion and short-range fine motion, thus improving positioning speed and precision [19]–[24]. A relatively uncommon configuration of HFDs is the parallel HFD, where two dissimilar actuators are coupled together in parallel. For example, Shinno et al. [25] developed a tilting platform consisting of a pneumatic actuator and a couple of voice coil motors, in order to simultaneously generate high-precision and high-torque motions. Frey et al. [26] proposed a parallel HFD consisting of an SD and an LMD, which was controlled to actively damp the axial vibration of the SD. Okwudire and Rodgers [27] proposed a parallel HFD which synergistically combined an LMD and an SD to achieve speeds and accuracies similar to LMDs while consuming up to 80% less energy [27], [28]. However, the controller design technique they employed was ad hoc and could not guarantee that the best positioning performance and/or energy efficiency was achieved.

Manuscript received on February 6, 2015. This work is funded by the National Science Foundation’s CAREER Award #1350202: Dynamically Adaptive Feed Drives for Smart and Sustainable Manufacturing.

M. Duan and C.E. Okwudire are with University of Michigan, Ann Arbor, MI 48109 USA. (e-mail: molong@umich.edu; okwudire@umich.edu).
ensuring that the selected weighting filters/matrices provide the best tradeoff, especially when applied to redundantly-actuated systems, like HFDS, for which it is desired to have little or no tradeoff. This paper presents a systematic methodology for designing a controller that achieves the best positioning performance while maximizing the energy efficiency of a redundantly-actuated parallel HFD. Specifically, it proposes a near energy optimal feed forward controller for perfect tracking; it also proposes a means of determining the best feedback gain structure (or weighting filter) to use in H_2/H_{∞} controller synthesis in order to achieve maximum energy efficiency. Section II gives a brief overview of a parallel HFD and presents a model for its low-order dynamics and actuator efficiency. In Section III, details of the proposed energy-efficient controller design methodology are provided. Comparative simulations and experiments are reported in Section IV to evaluate the effectiveness of the proposed technique, followed by discussions, conclusions and future work.

II. OVERVIEW AND MODELING OF HYBRID FEED DRIVE

A. Overview of Hybrid Feed Drive (HFD)

Machining operations typically consist of a combination of two modes – rapid traverse (i.e., high-speed, zero-cutting-force positioning moves) and cutting, usually involving low feed rates and large cutting forces. The idea behind the HFD is to: (i) drive the machine table using the LMD during rapid traverse to achieve very high speeds and accelerations with low energy consumption; (ii) drive the table using a low-speed SD during cutting to achieve the required cutting speeds with low energy consumption; (iii) use the LMD to compensate for vibrations and errors introduced by the SD during cutting; and (iv) ensure that the switch between the LMD and SD can be achieved rapidly and energy efficiently at any position of the table within its travel.

![Schematic of HFD Prototype Proposed by Okwudire and Rogers](image)

Fig. 1. Schematic of HFD Prototype Proposed by Okwudire and Rogers [10]

Fig. 1 shows the schematic of a HFD prototype whose design is detailed by Okwudire and Rogers [27]. An air core linear motor is employed to drive the table, because it does not need to support large cutting forces for which iron core motors are better suited. The SD is driven by a brushless DC motor. The HFD is equipped with a 0.08 μm resolution optical linear encoder fixed to one side of the table, and a 157 μrad resolution motor-mounted optical rotary encoder.

To facilitate easy engagement and disengagement of the SD from the table, a traction drive SD which uses a rolling element ball bearings that trace a screw motion (of lead = 5 mm) along a smooth shaft of 25 mm diameter and 965 mm length. It is designed to carry up to 444 N of thrust force without slippage between the nut and shaft. The Roh’lix nut consists of two spring-loaded halves that can be separated to disengage the smooth shaft from the nut at any given location. A simple toggle mechanism is designed to separate the two halves of the nut using a pair of fast-acting pneumatic pistons. The HFD thus has two modes – (i) the rapid traverse mode, when the nut is disengaged from the shaft and the LMD acts alone; and (ii) the cutting mode, when the nut is engaged to the shaft, allowing the SD and LMD to work together in parallel to actuate the table. This paper is focused on the design of a controller for optimal control effort allocation to the LMD and SD during the cutting mode.

B. Modeling of HFD Dynamics and Actuator Efficiency

A simple two-mass model (like the one shown in Fig. 2 for the HFD) is commonly used to analyze the mechanical dynamics of SDs for control purposes [33]–[36]. Even though more advanced SD models are available in the literature (e.g., [37]), the two-mass model is preferred because it is simple and it captures the first axial/torsional vibration mode, which is well known to be the bottleneck for controller design for SDs [33]–[36]. The LMD does not add any new low-order mechanical dynamics to the HFD shown in Fig. 1. Therefore, the two-mass model used for SDs can also be used for controller design and analysis of the HFD [26].

In the two-mass model of Fig. 2, m_1 and m_2 are the (equivalent) masses of the rotating and translating components of the HFD, while k and c represent the stiffness and viscous damping coefficient of the connecting mechanical components; x_1, x_2 and b_1, b_2 are the (equivalent) displacements and viscous damping coefficients at m_1 and m_2, respectively; u_1 and u_2 are the (equivalent) control forces applied by the rotary and linear motors, while d_1 and d_2 represent external disturbance forces (e.g., non-viscous friction and cutting forces) applied to m_1 and m_2, respectively. The equation of motion of the HFD is given by

$$m_1\ddot{x}_1 + b_1\dot{x}_1 + c(x_1 - \dot{x}_2) + k(x_1 - x_2) = u_1 + d_1,$$

$$m_2\ddot{x}_2 + b_2\dot{x}_2 + c(x_2 - \dot{x}_1) + k(x_2 - x_1) = u_2 + d_2. \tag{1}$$

Defining s as the Laplace variable, the plant transfer function matrix, G, between the input forces, $\mathbf{u} = \{u_1, u_2\}$ and $\mathbf{d} = \{d_1, d_2\}$, and the output displacements, $\mathbf{x} = \{x_1, x_2\}$, of the HFD is derived as

$$\mathbf{x}(s) = \begin{bmatrix} G_{11}(s) & G_{12}(s) \\ G_{21}(s) & G_{22}(s) \end{bmatrix} \begin{bmatrix} \mathbf{u}(s) \\ \mathbf{d}(s) \end{bmatrix}, \tag{2}$$

where...
by properly designing C_g and C_{fb} is proposed in the following two subsections.

A. Design of Energy-efficient FF Controller

Let us consider the tracking problem, where d is ignored and $u_{fb} = 0$ such that $u = u_{ff}$. The machine tool is provided with a desired position trajectory $x_d(t)$ to follow (where t represents time). The best FF positioning performance is for the position of the table, x_2, to perfectly track x_{d2}, i.e., $x_2 - x_{d2} = 0$. Note that the motor shaft position, x_1, needs not follow x_2. Accordingly, we define $x_{d2} = x_d$ as the reference command to the HFD’s table, so that the perfect tracking constraint boils down to the condition $x_2 = x_{d2} = x_d$. Assuming that the HFD’s dynamics is accurately modeled by its two-mass model, G, the following condition holds true under perfect tracking:

$$
\begin{cases}
 x_1 = G_{11} u_{ff1} + G_{12} u_{ff2} \\
 x_2 = G_{21} u_{ff1} + G_{22} u_{ff2}
\end{cases}
$$

The operator δ represents the variation of a function or functional [38]; $\delta x_d = 0$ because x_d is a specified function of time.

The most energy efficient FF controller must generate u_{ff} to minimize objective functional

$$
\int \left(\frac{u_{ff1}^2}{K_{n1}} + \frac{u_{ff2}^2}{K_{n2}} \right) dt,
$$

which represents the heat dissipated in both actuators of the HFD based on (4). The functional is minimized when its variation is zero [38]; i.e.,

$$
\delta \int \left(\frac{2u_{ff1}^2}{K_{n1}} \delta u_{ff1} + \frac{2u_{ff2}^2}{K_{n2}} \delta u_{ff2} \right) dt = 0
$$

which gives the heat optimal FF control law as

$$
\begin{align*}
 u_{ff1} &= \kappa \delta u_{ff1} \\
 u_{ff2} &= \kappa \delta u_{ff2}
\end{align*}
$$

where $\kappa = K_{n1}/K_{n2}$. Combining (7) with the perfect tracking constraint of (5) gives the energy optimal FF control law as

$$
\begin{align*}
 G_{ff1} &= \kappa G_{22}^{-1} G_{12} x_d \\
 G_{ff2} &= \kappa G_{22}^{-1} G_{12} x_d
\end{align*}
$$

Accordingly, x_1 is given by
It can be shown that there always exists a Tomizuka’s discrete-time ZPETC \[39\]. Approximation for literature (e.g., \[40\], \[41\]). We therefore seek a minimum phase similar approximate inversion methods available in the literature. It satisfies neither (5) nor (7); this is also the case for the other non-minimum phase (NMP) zeros, as such, it may not have a stable inverse. There are several methods in the literature for calculating a stable approximation for the inverse for a transfer function with NMP zeros (e.g., \[39\]–[41]). Amongst them, the most notable is Tomizuka’s zero phase error tracking control \(G_{ff,neo}\) that, even though each element of the polynomial numerator and denominator polynomials of \(G_{ff,neo}\) is minimum phase, the transfer function \(G_{ff,neo}\) may have non-minimum phase (NMP) zeros. Note that if \(G_{ff}\) is minimum phase, \(K_{ff}\) = 0 becomes the default solution for \(K_{ff}\), in which case \(G_{ff,neo}\) equals \(G_{ff}\), which is the energy optimal solution. Given \(K_{ff}\), \(x_{f}\) can be calculated as

\[\begin{align*}
x_{f} &= G_{1f}u_{f1} + G_{2f}u_{f2} \\
&= (k^{2}G_{1f}G_{2f}^{-1}G_{1f} + G_{2f})G_{2f}^{-1}x_{f}.
\end{align*}\]

One major challenge that arises with the energy optimal FF controller (given by (8)) is that, even though each element of \(G_{ff}\) is minimum phase, the transfer function \(G_{ff}\) may have non-minimum phase (NMP) zeros, as such, it may not have a stable inverse. There are several methods in the literature for calculating a stable approximation for the inverse for a transfer function with NMP zeros (e.g., \[39\]–[41]). Amongst them, the most notable is Tomizuka’s zero phase error tracking control \(G_{ff,neo}\) that, even though each element of the polynomial numerator and denominator polynomials of \(G_{ff,neo}\) is minimum phase, the transfer function \(G_{ff,neo}\) may have non-minimum phase (NMP) zeros. Note that if \(G_{ff}\) is minimum phase, \(K_{ff}\) = 0 becomes the default solution for \(K_{ff}\), in which case \(G_{ff,neo}\) equals \(G_{ff}\), which is the energy optimal solution. Given \(K_{ff}\), \(x_{f}\) can be calculated as

\[\begin{align*}
x_{f} &= G_{1f}u_{f1} + G_{2f}u_{f2} \\
&= (k^{2}G_{1f}G_{2f}^{-1}G_{1f} + G_{2f})G_{2f}^{-1}x_{f}.
\end{align*}\]

B. Design of Energy-efficient FF Controller

For the regulation problem, \(e_{f}\) and \(u_{f}\) are ignored such that \(u_{f} = u_{fb}\) can be written as

\[u_{fb} = -K_{fb}z\]

Observe that \(z\) contains all four states of the two-mass model of the HFD, plus an additional state, \(x_{s}\), representing the integral of the table’s position signal, added to ensure zero steady-state regulation of the table’s position. Let us assume that \(K\) is a full state FB matrix which can be expressed as

\[K = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} & K_{15} \\ K_{21} & K_{22} & K_{23} & K_{24} & K_{25} \end{bmatrix}\]

where \(K_{11}…K_{25}\) are its gains. This means that the general form of \(C_{fb}\), indicated in Fig. 3, can be written as

\[C_{fb}(s) = \begin{bmatrix} K_{12} + K_{14}s & K_{11}s + K_{13} + K_{15}s \\ K_{22} + K_{24}s & K_{21}s + K_{23} + K_{25}s \end{bmatrix}\]

In the rest of this section, we will show that there always exists some redundancy in the general form of \(C_{fb}\), in terms of achieving the best FB positioning performance. We therefore propose a systematic method for using the available redundancy to maximize actuator efficiency without sacrificing positioning performance.

1) Redundancy in Achieving Best Positioning Performance

Recall that it is the precise positioning of the table (i.e., \(x_{2}\)) that is of primary concern for the HFD. Therefore, the goal of the FB controller is to minimize the effect of disturbance \(d\) on \(e_{2}\). This objective can be written as

\[\min J \leq \left\|W_{d}S_{d}\right\| \text{ s.t. stability constraints,} \]

where \(\left\| \cdot \right\|\) represents a suitable norm (e.g., \(H_{\infty}\) or \(H_{2}\)), \(W_{d}\) is a scalar weighting function of \(s\) that indicates the frequencies in \(\omega_{d}\) that are of utmost importance, and \(S_{d}\) is defined as a scaled version of the closed loop (CL) disturbance transfer function from \(d\) to \(e_{2}\), given by the expression

\[S_{d} = \begin{bmatrix} 0 \\ I + GC_{fb} \end{bmatrix}\]

where \(I\) is the identity matrix and \(W_{d} = \text{diag}(d_{1,max}, d_{2,max})\) is a matrix that scales \(d_{1}\) and \(d_{2}\) by their respective maximum values, \(d_{1,max}\) and \(d_{2,max}\), so that their magnitudes are comparable when calculating the norm of (20) \[29\].

Let \(J\) represent the minimum value of \(J\) obtained using the full state (i.e., unstructured) FB matrix \(K\) of (18); it represents the best positioning performance that can be achieved using \(C_{fb}\), defined in (19). The corresponding optimal CL disturbance transfer function, \(S_{d}^{*}\), can be expressed as
The implication of (25) is that to satisfy a given requirement at maximum efficiency, the control inputs are bound by an optimal transfer function relationship given by β. This result is very powerful and can be used to directly or indirectly determine a FB controller that achieves the best performance, J^*, more efficiently than the optimal full state FB controller.

a. Energy-efficient FB Controller Design ~ Direct Approach

The direct approach seeks to structure K such that (25) is satisfied (as much as possible) without compromising J^*. To do this, note that u_{pb} can be written as

$$u_{pb} = S_d \bar{d},$$

where $\bar{d}_1, \bar{d}_2 \in [-1, 1]$ represent the scaled values of d_1 and d_2. Combining (26) with (25), we get the relationship that must be satisfied by the elements of the re-structured K in order to maximize efficiency; it is given by

$$\Gamma_1 \triangleq (K_e^T \hat{Q} K_e + p_2^T K_e - \beta p_2^T K_e) d_{1,\text{max}} = 0$$

$$\Gamma_2 \triangleq (p_1^T K_e - \beta (K_e^T \hat{Q} K_e + p_1^T K_e)) d_{2,\text{max}} = 0$$

where

$$\Gamma_1 = \begin{bmatrix} m_s^2 + (c + h) s + k & cs + k \\ cs^2 + ks & m_s^2 + (c + h) s^2 + ks \\ sc^2 + k^2 & m_s^2 + (c + h) s + k^2 \\ 0 & 0 & s^2 & 0 \\ 1 & 0 & s^2 & 0 \\ 0 & -s & 0 & -s^2 \\ 0 & -s^2 & 0 & -s \\ 0 & -s^2 & 0 & -s^2 \end{bmatrix}$$

$$\Gamma_2 = \begin{bmatrix} cs + k & m_s^2 + (c + h) s + k \\ cs^2 + k^2 & m_s^2 + (c + h) s^2 + ks \\ sc^2 + k^2 & m_s^2 + (c + h) s + k^2 \end{bmatrix}$$

$K_e = \begin{bmatrix} K_{e1} & K_{e2} & K_{e3} & K_{e4} & K_{e5} \end{bmatrix}$

Substituting $s = j\omega$ into $\Gamma_1(s)$ and $\Gamma_2(s)$ in (27) (where ω represents the frequency content of d), we get a pair of complex-valued equations which are bilinear with respect to the elements of K. The real and imaginary parts of both equations must equal zero at every ω contained in d in order to attain optimal efficiency. Obviously, K may not have enough redundant gains to satisfy the equations for every ω contained in d. Therefore, one can maximize efficiency using the available redundancy by determining the K that minimizes the least-squares objective

$$\min_{J, \beta} \| \Gamma(j\omega) \|^2 \Gamma(j\omega) \text{ s.t.} \left\{ \begin{array}{l} W S_d = J^* \\ \text{stability constraints} \end{array} \right.$$
the actuators. The addition of the constraint related to J' indicates the knowledge that there is redundancy in K such that the same performance can be achieved in a more efficient manner. The weighting matrix, W_o, is very important because it indirectly determines the structure of K used in the optimization; a poor choice of W_o could lead to a sub-optimal structure for K, which cannot attain the best energy efficiency. In practice, W_o is typically chosen by intuition or trial and error. However, the optimum structure for K can be obtained, in theory, by selecting $W_o = \text{diag}(1, \beta)$, thereby eliminating the sub-optimality that could be created by a poor choice of W_o. Notice that the setup of (30) is very similar to (29). The only difference is that the objective in (29) is designed to directly enforce (as much as possible) the optimal relationship between u_{fb1} and u_{fb2}. On the other hand, (30) enforces the optimal relationship indirectly by minimizing the feedback control forces using a suitable norm of S_m weighted by W_o. A demonstration of the direct and indirect approaches is provided in Section IV.

It must be noted before leaving this section that the assumption of a static FB controller in (16) is arbitrary. It has been made purely based on its relevance to the desired control method for the HFD (which seeks to avoid high-order controllers). The methods proposed in this section can also be applied to the design of dynamic controllers (e.g., controllers with observers). Moreover, even though the proposed FF and FB controller design methods are presented in the context of the HFD described in Section II, they can be applied more broadly to other HFDs. The methods are valid as long as the plant is dual input, controllable and minimum phase with positioning performance defined on one of its outputs (e.g., x_2 in this paper).

C. Stability Constraints and Higher-order Dynamics

Thus far, only the low-order dynamics of the HFD, which is assumed to be accurately represented by its two-mass model, G, has been considered. Note, however, that stability constraints cannot be enforced in (20), (29) or (30) based on a CL system determined using G. This is because G has no NMP zeros, hence the gains of the FB controller can be infinitely high without causing any stability issues [29]. To enforce stability constraints, the actual plant dynamics G_p, which includes un-modeled higher-order dynamics, must be considered. Let us assume that G_p is available in the form of a plant model or a frequency response function (FRF) measured at discrete frequencies, ω. Let N_p denote the number of unstable poles in the system’s loop transfer function given by $L = G_p C_{fb}$. According to the Generalized Nyquist Theorem [29], the CL system is stable if and only if the Nyquist curve of $\text{det}(1 + L)$ makes N_p counter-clockwise encirclements of the origin without passing the origin.

Most often, it is desired to enforce robust stability, meaning that there are sufficient margins of stability. This is achieved by confining the maximum singular values δ of the CL sensitivity function, $S = (I + L)\omega$, below a specified threshold δ_{max} at frequencies above the CL bandwidth, ω_{FBF}, where instability is likely to occur [29]; i.e.

$$\delta((I + L(\omega))) \leq \delta_{\text{max}}. \quad (31)$$

IV. SIMULATIONS AND EXPERIMENTS

Simulation and experiment results are presented in this section to demonstrate the effectiveness of the proposed FF and FB controller design methods. Fig. 4 shows an in-house built prototype of the HFD discussed in Section II.A. The motor constants for its rotary and linear motors are $K_m = 380.8$ N/s/\text{m} and $K_n = 21$ N/s/\text{m}, respectively, where K_m has been converted from its nominal value in Nm/s/\text{m} using a factor of $2\pi/l$, with lead $l = 5 \times 10^{-3}$ m. Therefore, $k^2 = (K_m/K_n)^2 = 328.8$, indicating two orders of magnitude difference in the efficiencies of the two actuators. The HFD is modeled as a two mass system whose parameters, reported in Table I, are identified by curve fitting measured FRFs. Fig. 5 compares the FRFs of the two-mass model (i.e., $G(\omega)$) with the experimentally measured FRFs (i.e., $G_p(\omega)$). As seen, the two FRFs are in good agreement up to 100 Hz, hence G captures the critical axial/torsional mode of the HFD, occurring at 41 Hz.

Fig. 4. HFD Prototype used for Simulations and Experiments

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFIED PARAMETERS OF THE HFD’S TWO-MASS MODEL</td>
</tr>
<tr>
<td>m_1 [kg]</td>
</tr>
</tbody>
</table>

Fig. 5. Comparison of Two-mass Model with Experimentally Measured FRF

A. Evaluation of FF Controllers using Simulations

Simulations are conducted to evaluate the tracking performance and energy efficiency of the near energy optimal (NEO) FF control method proposed in Section III.A. FB control is not considered in the simulations because the plant is assumed to be perfectly described by its two-mass model, G, and no disturbances are introduced. Under the conditions described, the proposed NEO FF controller is able to achieve perfect tracking with near optimal or optimal efficiency, depending on whether G_f defined in (8) has NMP zeros or not. Evaluating G_f using the reported parameters of the HFD reveals that it has a complex conjugate pair of NMP zeros located at $s = 196 \pm 314j$. Therefore, the gain K_f must be
selected to ensure a stable inverse of G_{ff-neo} while providing near energy optimality. Fig. 6 shows the root locus of G^{-1}_{ff-neo} as K_f is varied in the interval $[0, \infty)$. It is found that the unstable pole pair in G^{-1}_{ff-neo} (corresponding to the NMP zero pair in G_{ff-neo}) becomes stable for values of $K_f \geq 30.3$. Note that the point marked $K_f = 1000$ has been highlighted on purpose in the figure; it represents a value of K_f which is utilized for comparative simulations later in this section.

![Root Locus of G_{ff-neo} as a Function of K_f](image)

For tracking tests, a desired position trajectory, x_d, of stroke 15 mm, with kinematic limits of 100 mm/s, 1×10^4 mm/s2, 1.5×10^5 mm/s3, and 5×10^5 mm/s4 for velocity, acceleration, jerk and snap, respectively, is used. Its velocity profile is shown in Fig. 7(a); its position, acceleration, jerk and snap profiles are omitted due to space limitations. A FF technique called rigid body FF (RB FF) [42] is used as the benchmark for evaluating the proposed NEO FF controller. RB FF is generated by specifying $x_{ri} = x_{r} = x_d$ such that

$$
u_{ff} = G^{-1}\left[\begin{array}{c} x_d \\ x_d \\
\end{array}\right] = \left[\begin{array}{c} m_s s^2 + b_s s \\ m_s s^2 + b_s s \\
\end{array}\right] x_d. \tag{32}$$

The implication of (32) is that in RB FF each actuator is given the responsibility to move the mass to which it is attached, such that the two-mass system moves as one rigid body. It is very elegant and it guarantees perfect tracking. Note that the zero phase error FF approximation of (10) is not selected as the benchmark because it does not meet the perfect tracking requirement stipulated for FF control.

Fig. 7 (b)-(d) and Table II compare the tracking error (e_t) at the table, and the power/heat wasted by each actuator using RB FF and the proposed NEO FF, with $K_f = 30.3$ and $K_f = 1000$. All three controllers achieve perfect tracking, as expected. Notice, however, that RB FF depends heavily on the inefficient LMD. As a result, it is 71.5% less efficient than NEO FF, using $K_f = 1000$. In theory, NEO FF with $K_f = 30.3$ should be the most efficient. However, notice from the figure that $K_f = 30.3$ results in undesirable ringing of the control signals because it gives rise to poorly damped poles in G^{-1}_{ff-neo}. The near optimal energy formulation of (12) does not recognize the effect of poorly damped poles/zeros (much like the optimal energy formulation of (8) misses the effect of NMP poles/zeros). Therefore, the onus falls on the controller designer to select a value of K_f that is high enough to avoid poorly damped poles in G^{-1}_{ff-neo}. Fig. 8 plots the total heat energy of NEO FF in tracking the reference trajectory of Fig. 7(a) using values of K_f ranging from 30.3 to 1000. Notice that the energy is initially very high but drops rapidly as the value of K_f increases and the poles become more damped. For this particular case, the energy continues to reduce as K_f is increased but the rate of decrease becomes very low after about $K_f = 50$. The decrease in energy continues until $K_f = 1000$ and beyond, but the difference between the energy at $K_f = 1000$ and that at $K_f = 10000$ is just 0.03 J. It must be noted that the relationship between K_f and energy highly depends on the system and desired trajectory. (For instance see the Appendix for the energy vs. K_f plot of a slightly different desired trajectory). Nonetheless, it appears that as long as K_f is tuned to provide sufficiently damped poles in G^{-1}_{ff-neo}, the energy performance remains near optimal.

![Reference Velocity Profile and Comparison of Tracking Errors and Actuator Power of FF Controllers (Simulation)](image)

Table II

<table>
<thead>
<tr>
<th>Max Tracking Error [mm]</th>
<th>RB FF</th>
<th>NEO FF ($K_f = 30.3$)</th>
<th>NEO FF ($K_f = 1000$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Heat Energy SD [J]</td>
<td>7.398</td>
<td>27.918</td>
<td>3.242</td>
</tr>
<tr>
<td>Heat Energy LMD [J]</td>
<td>7.398</td>
<td>24.358</td>
<td>0.001</td>
</tr>
<tr>
<td>Total Heat Energy [J]</td>
<td>11.365</td>
<td>52.276</td>
<td>3.243</td>
</tr>
</tbody>
</table>

Fig. 8. Total Heat Energy of Proposed NEO FF as a Function of K_f (based on Reference Trajectory of Fig. 7(a)) – Simulation

B. Evaluation of FB Controllers using Simulations

Simulations are conducted to evaluate EE direct and EE indirect, the direct and indirect methods for using the optimal transfer function relationship, β, derived in Section III.B for FB controller design. The benchmark is selected as the full (i.e., unstructured) state FF controller discussed in Section III.B. The practical scenario where $d_{1,\text{max}} = 0$ and $d_{2,\text{max}} = 400$ N (which is the cutting force limit of the HFD of Fig. 4 [27]) is assumed. MATLAB’s hinfsyn command (which performs H_∞ optimization based on a structured gain matrix) is used to determine the S_f that minimizes the objective of (20) using the H_∞ norm. A weighting function, W_s, suggested by Skogestad and Postlethwaite [29] is adopted; it is given by

$$W_s = \frac{\left(s/M_s^{\infty} + \omega_s\right)^n}{\left(s + \omega_s A_s^{\infty}\right)^n}. \tag{33}$$

Equation (33) represents a filter of order n, designed to weight very low frequencies by a factor of M_s^{∞} compared to very high frequencies (i.e., frequencies much higher than ω_s), so as to enforce integral action. We select $n = 2$, $M_s = 2$, $A_s = 5 \times 10^{-6}$ and
\[\omega_B = 200\pi \text{ rad/s} \] (indicating that we want integral action to taper off beyond 100 Hz).

The HFD is assumed to be perfectly modeled by \(G \), and the table-side disturbance force, \(d_s \), is assumed to be a harmonic cutting force at 60 Hz, with an additional DC component; it is given by

\[d_s(t) = 200 + 200\sin(120\pi t) \quad [N]. \] (34)

However, as discussed in Section III.C, applying the optimization of (20) to \(G \) could yield infinitely large gains. Therefore, a 7th order Butterworth low-pass filter, with cutoff frequency of 1000 Hz, is applied to each element of \(G \) before carrying out the \(H_s \), optimization in order to have finite stability limits. The default stability settings of MATLAB’s \textit{hinfstruct} command are maintained for the optimization. The resulting \(S_d^*(1,2) \) (scaled by \(1/d_{s,\text{max}} \)) is plotted in Fig. 9(a) and the elements of the optimal full state FB gain matrix (i.e., \(K^* \)) are given in Table III. Note that only \(S_d^*(1,2) \) is shown in the figure because \(S_d(1,1) = 0 \) based on the assumption that \(d_{s,\text{max}} = 0 \).

Fig. 9(b) shows the optimal transfer function relationship, \(\beta \), for the HFD. It requires the magnitude of the transfer \(\mu_{d/\omega} \) to be 50.3 dB at \(\omega = 0 \), and to be 23.5 dB at \(\omega = 120\pi \) rad/s. In employing \(\beta \) for energy efficiency optimization of \(K \), we have chosen to use \(S_d^* \) instead of its infinity norm, \(J^* \), as the performance constraint in (29) and (30). This is done in order to ensure that the exact same regulation performance as the optimal full state FB controller is achieved at all frequencies. Therefore, using (22), we derive 7 constraint equations to ensure that the poles and zeros of \(S_d^*(1,2) \) are matched with 7 out of the 10 gains of \(K \), leaving us with 3 redundant gains. To obtain the energy efficient controller using the direct method (i.e., EE direct), one of the remaining 3 gains is used to perfectly enforce (27) at \(\omega = 0 \). In theory, the last two gains could be used to satisfy the real and imaginary parts of (27) at \(\omega = 120\pi \) rad/s, but the equations are highly nonlinear and difficult to solve analytically. Therefore, the remaining two gains are used to minimize \(J_{ee,d} \) (i.e., (29)) at \(\omega = 120\pi \) rad/s. The elements of the resulting gain matrix are given in Table III.

To determine the energy efficient controller using the indirect method (i.e., EE indirect), MATLAB’s \textit{hinfstruct} command is used to minimize the \(H_s \), norm of (30). A weighting function given by \(W_\omega = W_\omega, \text{diag}(1, \beta) \) is selected, where \(W_\omega \) is a weighting filter designed to emphasize frequencies \(\omega = 0 \) and \[\omega = 120\pi \] rad/s contained in \(d_2 \). It is defined as

\[W_\omega = W_s + \frac{\omega_s^2}{\zeta^2 s^2 + 2\zeta\omega_s s + \omega_s^2}, \] (35)

Note that \(W_s \) is the exact same filter defined in (33); it is used in \(W_\omega \) to place a higher weight on frequencies close to \(\omega = 0 \). The second-order filter multiplying \(W_\omega \) is designed with \(\omega_s = 120\pi \) rad/s and \(\zeta = 8.2 \times 10^{-5} \), such that its magnitude at resonance is equal to \(W_s(0) \). The constraint equations that were used to match the poles and zeros of \(S_d^*(1,2) \) for the EE direct method are used to structure \(K \) within MATLAB’s \textit{hinfstruct} function so that \(S_d^*(1,2) \) is also matched perfectly in EE indirect. The elements of the resulting FB gain matrix are reported in Table III.

Fig. 9(a) compares the magnitudes of \(S_d(1,2)/d_{s,\text{max}} \) for the EE direct and EE indirect controllers to the original \(S_d(1,2)/d_{s,\text{max}} \) determined based on the optimal state FB controller; the plots are coincident, indicating that all three methods achieve the best positioning performance at all frequencies. Fig. 9(c) and (d) respectively compare \(S_d(1,2)/d_{s,\text{max}} \) and \(S_d(2,2)/d_{s,\text{max}} \) for the three methods. Notice that \(S_d(1,2)/S_d(2,2) = 50.3 \) dB for the EE direct controller, meaning that it perfectly matches \(\beta \) at \(\omega = 0 \). However, at \(\omega = 120\pi \) rad/s, it achieves a \(S_d(1,2)/S_d(2,2) \) ratio of 32 dB instead of the 23.5 dB stipulated by \(\beta \), due to errors in the least squares solution applied at that frequency. The EE indirect controller does not perform as well as the EE direct in terms of matching \(\beta \). This is because, in determining the gain matrix for the EE indirect controller, the \textit{hinfstruct} command was initialized with the gain matrix of the optimal full state FB controller (i.e., \(K^* \)). Comparing the elements of the full state FB controller’s gain matrix to those of the EE indirect controller in Table III, one can conclude that the gradient-based algorithm used in \textit{hinfstruct} may have gotten stuck in a local minimum close to its initial value, thus preventing it from reaching a better solution. This is a well-known limitation of gradient based methods when performing non-convex optimizations. It could be mitigated by testing various initial values in hopes of finding other local minima. Note that the direct method was also initialized with the elements of the full state FB matrix, when performing the nonlinear least-squares optimization of (29). Therefore, its solution could also get stuck in local minima around its starting point, but it appears from Table III that its gains are quite different from those of the full state FB matrix.

The expression

\[\sum_{i=1}^{n} \frac{1}{K_{ii}} \left[\left(\frac{200 S_{d,i}(2,i)}{d_{s,\text{max}}} \right) \right]^2 + \frac{1}{2} \left[\left(\frac{200 S_{d,i}(2,i)}{d_{s,\text{max}}} \right) \right]^2, \] (36)

representing the sum of the average power at \(\omega = 0 \) and \(\omega = 120\pi \) rad/s of each actuator’s steady-state response to \(d_2(t) \) given in (34), is used to calculate the average power dissipated in heat by each FB controller. The results are shown in Table IV. EE direct and EE indirect are respectively 60% and 33% more efficient than the full state FB method. Fig. 10 compares the ratio of the average power of the EE direct and EE indirect based controllers, relative to that of the full state FB controller, using a disturbance input of \(d_2(t) = \sin(2\pi f t) \). The EE direct controller is much more efficient than the full controller from \(f = 0 \) through \(f = 44 \) Hz, after which it becomes less efficient. Note that its relative efficiency is 8 dB worse at \(f = 60 \) Hz, due to the aforementioned errors in the least square solution. The EE indirect controller, on the other hand, is more efficient than the full controller at all frequencies, but only by a very small (0.6 dB) margin (except at \(f = 0 \) and \(f = 60 \) Hz where it shows slightly better relative efficiencies of 4.2 dB and 0.8 dB, respectively).
C. Machining Experiments

Machining experiments are conducted to evaluate the performance and energy efficiency of the proposed controller design methods. To perform the experiments, the HFD prototype of Fig. 4 is mounted on the x axis of a FADAL VMC 4020 3-axis milling machine to cut a 15 mm long, 1 mm deep slot in an AISI 1018 steel workpiece. Table V summarizes the key cutting parameters for the operation. A spindle speed of 3600 rpm (i.e., 60 Hz) is selected for the cutting tests. To maintain a reasonable feed per tooth, the desired position trajectory, \(x_d \), is prescribed to travel at a maximum speed of 300 mm/min (i.e., 5 mm/s), with acceleration, jerk and snap limits of 62.5 mm/s\(^2\), 3125 mm/s\(^3\) and 6.25x10\(^5\) mm/s\(^4\), respectively. At such low speeds and accelerations, the theoretical energy contributions of RB FF and NEO FF are negligible (< 6 mJ), and are indistinguishable from noise in the control signals. Consequently, the effect of FF is not considered in the machining tests.

The optimal full state FB controller is designed by optimizing the \(H_\infty \) norm of (20) with the actual (i.e., measured) plant dynamics, \(\mathbf{G}_u(\omega) \) substituted for \(\mathbf{G} \). The Coulomb friction in the bearings of the rotary motor is small and can be easily cancelled by feed forward action. Therefore, \(d_{1,max} = 0 \) is assumed, and \(d_{2,max} \) is selected as 400 N. Notch filters are placed at the 847 Hz resonance peak appearing in \(\mathbf{G}_u(1) \) (in Fig. 5), and at the 400 Hz and 487 Hz resonance peaks appearing in \(\mathbf{G}_u(2) \) in order to increase stability margins. Robust stability constraints are enforced by limiting the maximum singular values of the sensitivity function for frequencies higher than \(\omega_{BW} = 628 \text{ rad/s} \) (100 Hz) to \(\sigma_{max} = 2.65 \).

MATLAB’s hinfsyn command, which was used in the simulations, could not be employed for carrying out the optimization in (20) using \(\mathbf{G}_u \) instead of \(\mathbf{G} \). This is because \(\mathbf{G}_u \) is given as a FRF at discrete frequencies, not as a transfer function modeled in \(s \)-domain. Therefore, a Particle Swarm Optimization (PSO) Toolbox in MATLAB [43] is used to carry out the \(H_\infty \) optimization, based on a technique similar to the one reported in [44]. The elements of the resulting optimal full state FB gain matrix are provided in Table VI.

Feed forces in milling typically have a DC portion, as well as harmonics at the spindle and tooth passing frequencies [45]. Therefore, for the EE direct controller, we follow the exact same procedure as used in Section IV.B. The elements of \(\mathbf{K} \) are constrained to match \(\mathbf{S}_d(1,2) \) using (22), and the 3 redundant gains are used for enforcing the \(\beta \) constraint at \(\omega = 0 \) and \(\omega = 120\pi \text{ rad/s} \), representing the lowest harmonic in \(d_2 \). For the EE indirect method, MATLAB’s PSO toolbox is used to carry out the optimization of (30) based on \(\mathbf{G}_u \), with the elements of \(\mathbf{K}^* \) as its initial values; constraints are added to match \(\mathbf{S}_d(1,2) \) using (22), following the exact same procedure as in the simulations reported in Section IV.B. The gains of the EE direct and indirect controllers are reported in Table VI.

Table III

<table>
<thead>
<tr>
<th>(K_{21})</th>
<th>(K_{22})</th>
<th>(K_{23})</th>
<th>(K_{24})</th>
<th>(K_{25})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full State FB</td>
<td>-8.2x10(^4)</td>
<td>-3.1x10(^3)</td>
<td>-3.1x10(^3)</td>
<td>-5.8x10(^3)</td>
</tr>
<tr>
<td>EE direct</td>
<td>+9.2x10(^3)</td>
<td>-3.1x10(^3)</td>
<td>+3.8x10(^3)</td>
<td>-5.8x10(^3)</td>
</tr>
<tr>
<td>EE indirect</td>
<td>-4.5x10(^3)</td>
<td>-3.1x10(^3)</td>
<td>-1.8x10(^3)</td>
<td>-5.8x10(^3)</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th></th>
<th>Full State FB</th>
<th>EE direct</th>
<th>EE indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Power Dissipated in Heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD [W]</td>
<td>1.36</td>
<td>125.80</td>
<td>0.51</td>
</tr>
<tr>
<td>LMD [W]</td>
<td>381.80</td>
<td>26.31</td>
<td>254.44</td>
</tr>
<tr>
<td>Total [W]</td>
<td>383.16</td>
<td>152.11</td>
<td>254.95</td>
</tr>
</tbody>
</table>

Table V

| | | | | |
|---|---|---|---|
| Spindle speed | 3600 rpm | | |
| Tool | 3/8” dia. HSS end mill | | |
| Number of flutes | 4 | | |
| Feed per tooth | 0.02 mm/tooth | | |
| Feed rate | 300 mm/min | | |
| Lubrication | None | | |

Table VI

<table>
<thead>
<tr>
<th></th>
<th>(K_{11})</th>
<th>(K_{12})</th>
<th>(K_{13})</th>
<th>(K_{14})</th>
<th>(K_{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full State FB</td>
<td>4.65x10(^4)</td>
<td>4.92x10(^4)</td>
<td>1.06x10(^5)</td>
<td>1.29x10(^5)</td>
<td>6.50x10(^5)</td>
</tr>
<tr>
<td>EE Direct</td>
<td>5.48x10(^4)</td>
<td>4.92x10(^4)</td>
<td>8.90x10(^4)</td>
<td>1.29x10(^5)</td>
<td>5.93x10(^5)</td>
</tr>
<tr>
<td>EE Indirect</td>
<td>4.80x10(^4)</td>
<td>4.92x10(^4)</td>
<td>8.57x10(^4)</td>
<td>1.29x10(^5)</td>
<td>5.46x10(^5)</td>
</tr>
</tbody>
</table>

Table VII

<table>
<thead>
<tr>
<th></th>
<th>(K_{21})</th>
<th>(K_{22})</th>
<th>(K_{23})</th>
<th>(K_{24})</th>
<th>(K_{25})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full State FB</td>
<td>1.52x10(^5)</td>
<td>6.15x10(^5)</td>
<td>1.02x10(^6)</td>
<td>4.85x10(^6)</td>
<td>4.30x10(^6)</td>
</tr>
<tr>
<td>EE Direct</td>
<td>2.54x10(^5)</td>
<td>1.59x10(^6)</td>
<td>1.12x10(^6)</td>
<td>1.02x10(^6)</td>
<td>4.30x10(^6)</td>
</tr>
<tr>
<td>EE Indirect</td>
<td>6.16x10(^6)</td>
<td>1.57x10(^4)</td>
<td>1.06x10(^6)</td>
<td>4.25x10(^6)</td>
<td>4.30x10(^6)</td>
</tr>
</tbody>
</table>

Fig. 11(a) compares \(S_d(1,2)/d_{2,max} \) generated using the EE direct and EE indirect controllers to \(S_d(1,2)/d_{2,max} \) generated using the full state FB controller. An almost perfect match is
obtained, indicating that the positioning performances of all three controllers are virtually the same. Fig. 11(b) compares the maximum singular values of the CL sensitivity function for the three controllers; they are very similar and all satisfy $\sigma_{\text{max}} \leq 2.65$ for frequencies above 100 Hz. Fig. 11 (c) and (d) respectively compare $S_d(1,2)/d_{2,\text{max}}$ and $S_d(2,2)/d_{2,\text{max}}$ of all three controllers. In both figures, the two-mass model, G, has been used to generate data below 10 Hz which are not contained in the measured FRF, G_a. Again, EE direct is able to match the β criterion at $\omega = 0$. At $\omega = 120\pi$ rad/s, $S_d(1,2)/S_d(2,2) = 21.7$ dB, which is much closer to the target value of 23.5 dB than obtained in the simulations. A plot of the efficiencies of the EE direct and indirect controllers is provided in Fig. 12, following the same procedure used in the simulation to generate Fig. 10. The EE direct controller is more efficient than the full state FB controller for frequencies ranging from $f = 0$ to $f = 170$ Hz; and at its worst, it is only 0.3 dB less efficient than the full state FB controller (at 848 Hz). The EE indirect controller is 3.1 dB and 2.8 dB more efficient than the full state FB controller at $f = 0$ and $f = 60$ Hz, respectively; at its worst, it is 3.8 dB less efficient than the full state FB controller (at 0.83 Hz).

(a) $S_d(1,2)/d_{2,\text{max}}$ [\mu m/N]
(b) Singular Value of Sensitivity
(c) $S_d(1,2)/d_{2,\text{max}}$ [dB]
(d) $S_d(2,2)/d_{2,\text{max}}$ [dB]

Fig. 11. Comparison of Positioning Performance, Robustness and Control Effort of the Full State FB and the Energy-efficient FB Controllers designed using the EE Direct Approach based on Experiments

Fig. 12. Comparison of Efficiencies of Controllers designed using the EE Direct and EE Indirect Methods (Relative to Efficiency of Full State FB Controller) – Experiments

Fig. 13. Plots of Positioning Error, Cutting Force Spectrum and Actuator Power Dissipated in Heat during Machining Experiment

The controllers are implemented on a dSPACE 1103 motion control platform at a sampling frequency of 10 kHz. A table-mounted high-resolution encoder (see Fig. 1) is used to measure the position of the table, x_2. However, the rotary position of the motor shaft x_1 is obtained using the approach proposed in [46]. This is because readings from the motor-mounted rotary encoder had an undesirable drift caused by micro slippage, which is known to occur between the Roh‘l’ix nut and smooth shaft [32]. The velocity feedback signals, \dot{x}_1 and \dot{x}_2, are acquired by taking discrete derivatives of the position signals measured from the rotary and linear encoders, respectively. Fig. 13 (a) shows a comparison of the positioning errors (e2), measured from the linear encoder. Notice that all three controllers have nearly identical positioning performance, as also confirmed by the maximum and RMS errors reported in Table VII. The disturbance force d_2 during cutting is estimated from the linear motor’s current by performing the cut using the LMD only (i.e., by disengaging the Roh‘l’ix nut from the shaft). Fig. 13 (b) shows the frequency spectrum of the estimated d_2, which clearly shows dominant peaks at 0 and 60 Hz. Fig. 13 (c) and (d) show the power dissipated as heat in the SD and LMD (calculated using (4) without the integral) for each controller; Table VII summarizes the average power dissipated in heat by each actuator during cutting. Observe that even though the positioning performance of all three controllers is almost the same, the EE direct and EE indirect controllers are respectively 26% and 20% more efficient than the full state FB controller.

V. CONCLUSION AND FUTURE WORK

This paper has presented a method for designing a controller that achieves the best positioning performance while maximizing the energy efficiency of a redundantly-actuated hybrid feed drive (HFD). The control structure is assumed to have a feed forward (FF) controller for tracking and a feedback (FB) controller for regulation. An approach for designing the FF controller to achieve perfect tracking while remaining stable and near energy optimal has been proposed and verified using comparative simulations. For FB controller design, an optimal transfer function relationship between the control inputs of the HFD has been derived; the relationship ensures that maximum efficiency is attained for any specified performance. Two approaches have been proposed for using the derived optimal transfer function relationship for energy efficient controller design, without sacrificing performance. The first approach directly constrains the control inputs to achieve the requirements of the optimal transfer function relationship. The second approach indirectly implements the optimal relationship in the form of a weighting filter for use in traditional H_∞ controller synthesis. Simulations and machining experiments
have been used to demonstrate the benefits of the proposed approaches in significantly improving energy efficiency without sacrificing positioning performance for a redundantly-actuated HFD. The proposed FF and FB controller design methods are general enough to apply to any plant (HFD) that is dual input, controllable and minimum phase with positioning performance defined on one of its outputs. Future work will seek to generalize the proposed methods to plants with more than two inputs. Performance and stability issues that could arise when the HFD studied in this paper switches rapidly between its two modes of operation will also be investigated.

REFERENCES

VI. APPENDIX

The coefficients of D_{ij} as functions of the elements of K^* and plant parameters are given below:

$$a_{ij} = m_{ij} a_{i,j}, \quad a_{i,j} = m_i \left(k_{ij} + b_i + c \right) + m_j \left(k_{ji} + b_j + c \right),$$

$$a_{i,j} = k \left(k_{ij} + k_{ji} + b_i + b_j \right) + h_i k_{ij} + b_i k_{ii} + h_j k_{ji} + b_j k_{jj} + \cdots$$

$$a_{i,j} = k \left(k_{ij} + k_{ji} + b_i + b_j \right) + h_i k_{ij} + b_i k_{ii} + h_j k_{ji} + b_j k_{jj} + \cdots$$

(37)

Fig. 14 shows the energy vs. K_{gf} plot generated based on a desired position trajectory, x_d, of stroke 15 mm, with kinematic limits of 100 mm/s, 1×10^4 mm/s^2, 5×10^4 mm/s^3 and 1×10^7 mm/s^4 for velocity, acceleration, jerk and snap, respectively. Just as in Fig. 8, there is initially a sharp drop in energy as K_{gf} is increased and ringing is reduced. However, in Fig. 14 there are three local minima at $K_{gf} = 66, 200$ and 500; beyond $K_{gf} = 500$, the energy begins to increase slightly but steadily. The difference in the energy vs. K_{gf} profiles of Fig. 8 and Fig. 14 is because the trajectory used in Fig. 14 is less aggressive than that used in Fig. 8. Therefore, it has less ringing due to poorly damped poles, and its efficiency is hurt rather than helped by having very high values of K_{gf}. This is because, in theory (i.e., in the absence of ringing), efficiency should decrease as K_{gf} increases. Nonetheless, just as in Fig. 8, as long as K_{gf} is high enough to provide sufficiently damped poles in G^{-1}_{ff-noe}, the efficiency of the proposed NEO FF remains near its optimal value, irrespective of the value of K_{gf}.

![Graph showing Total Heat Energy of Proposed NEO FF as a Function of K_{gf}](image-url)