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Foreword

These are lecture notes from a graduate course I taught in Spring 2011. They
cover some elementary topics related to Hasse-Weil zeta functions. I hope to add in
the near future a second part, largely independent of the first one, covering p-adic
and motivic zeta functions.
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CHAPTER 1

Introduction: An overview of zeta functions

Zeta functions encode the counting of certain objects of geometric, algebraic,
or arithmetic behavior. What distinguishes them from other generating series are
special analytic or algebraic properties.

Zeta functions come up in a lot of area of mathematics. The ones we will deal
with come in two flavors: local and global. Here local means relative to a prime p
in Z, or in some ring of integers in a number field. In this case, one expects the
zeta function to be a rational function, in a suitable variable. By a global zeta
function we mean an object that takes into account all primes. In this case one
expects to have a product formula in terms of local factors. The basic example is
the well-known factorization of the Riemann zeta function:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

A good understanding of the local factors of the zeta function can be used to show
that the global zeta function is defined in some region {s ∈ C | Re(s) > η}, and
then there are fundamental questions regarding analytic continuation and the ex-
istence of a functional equation. Again, the model is provided by the Riemann
zeta function. However, very little is known in a more general setting. The gen-
eral philosophy is that the analytic properties of the zeta function encode a lot of
information about the geometric/arithmetic/algebraic of the object that is studied.

In what follows we give an overview of the types of zeta functions that we will
discuss in the following chapters. In all this discussion, we restrict to the simplest
possible setting.

1.1. The Hasse-Weil zeta function

This is one of the most famous zeta functions, and it played an important role
in the development of algebraic geometry in the twentieth century. It is attached
to a variety over a finite field, say k = Fq. Suppose, for simplicity, that X ⊂ An

k is
a closed subvariety defined by the equations f1, . . . , fd.

For every m ≤ 1, let

Nm := |{u ∈ X(Fqm)| = |{u ∈ Fnqm | fi(u) = 0 for all i}|.

The Hasse-Weil zeta function of X is

Z(X, t) := exp

∑
m≥1

Nm
m

tm

 ∈ Q[[t]].

A fundamental result is that Z(X, t) is a rational function. This was conjectured
by Weil in [We2], who also proved it for curves and abelian varieties in [We1].
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2 1. INTRODUCTION: AN OVERVIEW OF ZETA FUNCTIONS

The general case was proved by Dwork in [Dwo]. Another proof in the case of
smooth projective varieties was later given by Grothendieck and its school using
étale cohomology, see [Gro]. Both the methods of Grothendieck and of Dwork have
been extremely influential for the development of arithmetic geometry.

When X is a smooth projective variety, ZX(t) satisfies

• The functional equation.
• A connection with the Betti numbers defined over C.
• An analogue of the Riemann hypothesis.

These three properties, together with the rationality mentioned above, form the
Weil conjectures [We2], now a theorem of Grothendieck [Gro] and Deligne [Del3].
See §2.4 for the precise statements.

1.2. The zeta function of an arithmetic variety

Suppose now that X ⊂ An
Z is defined by the ideal (f1, . . . , fd) ⊆ Z[x1, . . . , xn].

For every prime p, we may consider f1, . . . , fd ∈ Fp[x1, . . . , xn] defining Xp ⊆ An
Fp

,

and the corresponding Z(Xp, t). One then defines

LX(s) :=
∏
p 6 |a

Z(Xp, 1/p
s).

If X ⊂ An
Q, then we may assume that the equations defining X have coefficients

in some localization Z[1/a], where a is a positive integer. In this case we may still
define Xp when p does not divide a, and we obtain LX as above, by taking the
product over those p that do not divide a (this definition on the choice of a, but
for us this is not important).

Let us consider the case X = Spec Q, when we may take Xp = Spec Fp for
every prime p. Note that

Z(Xp, t) = exp

∑
e≥1

te

e

 = exp(−log(1− t)) = (1− t)−1.

Therefore LX(s) =
∏
p

(
1− 1

ps

)−1

= ζ(s) is the Riemann zeta function.

In general, it is not hard to see that LX is defined in some half-plane {s ∈
C | Re(s) > η} (we will discuss this in Chapter 6, giving a precise value for η,
as a consequence of the Lang-Weil estimates, which in turn follow from the Weil
conjectures for curves).

It is conjectured that if X is a smooth projective variety over Q, then LX has
an analytic continuation that is a meromorphic function. One also expects that
after a suitable normalization (necessary for taking into account the infinite prime
and the primes of bad reduction) LX satisfies a functional equation. Very little
is know in this direction. Both properties are known for Pn and related varieties
(such as toric varieties or flag varieties). The case of elliptic curves is known as a
consequence of the Taniyama-Shimura conjecture (proved by Wiles [Wil], Taylor-
Wiles [TW] and Breuil-Conrad-Diamond-Taylor [BCDT]), which implies that in
this case LX can be described as the L-function attached to a modular form.
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1.3. The Igusa zeta function

Suppose now, for simplicity, that p is a prime in Z, and X ↪→ An
Zp

is defined

by f ∈ Zp[x1, . . . , xn]. The Igusa zeta function of f is defined by

Zf (s) :=

∫
Znp

|f(x)|spdx.

This is defined using the p-adic absolute value |·|p and the Haar measure on Zp. It is
easy to see using the definition that Zf is analytic in the half-plane {s | Re(s) > 0}.
Let us give some motivation for this definition.

1.3.1. The Archimedean analogue of Zf . The following analogue in the
Archimedean setting (over R or C) appeared before Igusa’s zeta function, in the
setting of complex powers. Suppose, for example, that f ∈ R[x1, . . . , xn], and we
want to define |f(x)|s for s ∈ C as a distribution.

Given a test function Φ, consider the map

s→
∫
Rn

|f(x)|sΦ(x)dx.

It is not hard to see that this is well-defined and analytic in the half-space {s ∈ C |
Re(s) > 0}. Gelfand conjectured that it has a meromorphic continuation to C.

This conjecture was proved by two methods. The first solution, given indepen-
dently by Atiyah [Ati] and by Bernstein-Gelfand [BG], used Hironaka’s theorem
on resolution of singularities. This essentially allows replacing f by a monomial, in
which case the assertion can be easily proved via integration by parts. A second
proof due to Bernstein [Ber] directly used integration by parts, relying on the exis-
tence of what is nowadays called the Bernstein-Sato polynomial of f (in the process
of proving the existence of this polynomial, Bernstein established the basics of the
algebraic D-module theory).

1.3.2. The Poincaré power series of f . For every m ≥ 0, let

cm := |{u ∈ (Z/pmZ)n | f(u) = 0}|
(with the convention c0 = 1). The Poincaré series of f is Pf :=

∑
m≥0

cm
pmn t

m ∈
Q[[t]]. It was a conjecture of Borevich that Pf is a rational function.

It is not hard to see, using the definition of the Haar measure on Znp that

Pf (t) =
1− tZf (s)

1− t
,

where t = (1/p)s. The usefulness of the integral expression for Pf via Zf is that
allows the use of the same methods employed in the Archimedean case. Using
embedded resolution of singularities and the change of variable formula for p-adic
integrals, Igusa showed that Zf (s) is a rational function of (1/p)s, see [Igu]. In
particular, this proved Borevich’s conjecture about the rationality of Pf .

Note that if X = V (f) is smooth over Zp, then the information contained in
Pf is equivalent with that of X(Fp). It is remarkable, in fact, that in general the
behavior of Pf can be linked to invariants of singularities of f . Since an embedded
resolution of singularities comes up in the proof of rationality, it is maybe not too
surprising that invariants that come up via resolutions are related to the poles
of Zf . On the other hand, a very interesting open problem in this field, due to
Igusa, concerns a relation between these poles and the roots of the Bernstein-Sato
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polynomial of f (compare with the Archimedean case; note, however, that there is
no analogue of integration by parts in the p-adic setting).

One can define a global analogue of Igusa’s zeta function, though this has been
a lot less studied. Suppose that f is a polynomial with coefficients in Z (or, more
generally, in a ring of integers in some number field). For every prime p, we may
consider the image fp of f in Zp[x1, . . . , xn], and the corresponding zeta function
Zfp(s). If ap is the constant coefficient of the power series in (1/p)s representing
Zfp(s), then one can define

Z(s) :=
∏

p prime

(
a−1
p Zfp(s)

)
.

All non-trivial results concerning Z are due to du Sautoy and Grunewald [dSG].
They showed that this function has a rational abscissa of convergence, and that it
can be meromorphically continued to the left of this abscissa. However, it is known
that even in simple examples, Z does not have a meromorphic continuation to C.
It is also not clear how properties of the singularities of f can be recast into analytic
properties of Z.

1.4. Motivic versions of the above (local) zeta functions

Both the Hasse-Weil zeta functions and the Igusa zeta functions have mo-
tivic versions. In this setting, motivic means working with coefficients in the
Grothendieck ring of varieties over a field k. Recall that this is the quotient
K0(Var/k) of the free abelian group on the set of isomorphism classes of varieties
over k, by the relations

[X] = [Y ] + [X r Y ],

where Y is a closed subvariety of X.
The motivic analogue of the Hasse-Weil zeta function was introduced by Kapra-

nov [Kap]. If k is any field, and X is a variety over k, let Symn(X) denote the nth

symmetric product of X. Kapranov’s zeta function is

Zmot(X, t) :=
∑
n≥0

[Symn(X)]tn ∈ K0(Var/k)[[t]].

If k is a finite field, then there is a ring homomorphism K0(Var/k) → Z, that
takes [V ] to |V (k)|. One can show that the induced map K0(Var/k)[[t]] → Z[[t]]
takes Zmot(X, t) to Z(X, t). Kapranov proved in [Kap] that if X is any curve,
then Zmot(X, t) is a rational function. On the other hand, Larsen and Lunts [LL1]
showed that if X is a smooth complex surface, then Zmot(X, t) is rational if and only
if X has negative Kodaira dimension. However, it is still open whether Zmot(X, t)
is always rational when inverting the class L of A1 in K0(Var/k).

Igusa’s zeta function also has a motivic version, due to Denef and Loeser, see
[DL]. The idea is to replace Zp by C[[t]] (in this case f is a polynomial with complex
coefficients). The space of integration Znp is replaced by (C[[t]])n, and p-adic integrals
by the so-called motivic integrals. Once the framework of motivic integration is in
place, the results about Igusa’s zeta function extend to this framework without
much effort.
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1.5. Zeta functions in group theory

1.5.1. Subgroup growth zeta functions. Let G be a finitely generated
group. For every n ≥ 1, put an(G) := |{H ≤ G | [G : H] = n}, and let

ζG(s) =
∑
n≥1

an(G)

ns
.

This is a global type of zeta function.
The following facts are known:

• If G is solvable, then ζG is analytic in a half-plane of the form

{s | Re(s) > α(G)}.
• If G is nilpotent, then there is a product formula

ζG(s) =
∏

p prime

ζG,p(s),

where ζG,p(s) =
∑
n≥0

apn (G)
pns . Furthermore, each ζG,p is a rational func-

tion of (1/p)s.

A key point in the study of ζG,p(s) is the fact that it can be computed by a
p-adic integral, very similar to the ones that come up in the definition of Igusa zeta
functions. A fundamental problem concerns the behavior of ζG,p when p varies. In
general, it turns out that this can be rather wild. Some of the key results in the
understanding of this variation of ζG,p are due to du Sautoy and Grunewald [dSG].
For some recent developments concerning functional equations in this context, see
[Voll].

Similar zeta functions can be defined to measure the rate of growth of other
algebraic subobjects. For example, this can be done for Lie subalgebras of a Lie
algebra that is finitely generated as an abelian group over Z, or for ideals in a
ring that is finitely generated as an abelian group over Z. The corresponding zeta
functions have similar properties with the ones measuring the rate of growth of
subgroups, see [dSG].

1.5.2. Representation zeta functions. Given a group G, let rn(G) denote
the number of equivalence classes of n-dimensional representations of G (with suit-
able restrictions: for example, the representations are assumed to be rational if G
is an algebraic group). The representation zeta function of G is

ζrep
G (s) =

∑
n≥1

rn(G)

ns
.

An interesting example is given by G = SLn(Z). One can show that if n ≥ 3,
then

ζrep
SLn(Z)(s) = ζrep

SLn(C)(s) ·
∏

p prime

ζrep
SLn(Zp)(s).

It is somewhat surprising that in the few known examples, the dependence on p
of the p-factors of the representation zeta function is better behaved than in the
case of the subgroup growth zeta functions. Again, a key ingredient in the study
of the the p-factors is given by p-adic integration. We refer to [AKOV] for some
interesting new results on representation zeta functions.





CHAPTER 2

Basics of Hasse-Weil zeta functions

In this chapter we introduce the Hasse-Weil zeta function, prove some elemen-
tary properties, and give the statements of the Weil conjectures. Before doing this,
we review some basic facts about finite fields and varieties over finite fields.

2.1. Review of finite fields

Recall that if k is a finite field, then |k| = pe for some e ≥ 1, where p = char(k).
Furthermore, two finite fields with the same cardinality are isomorphic. We denote
a finite field with q = pe elements (where p is a prime positive integer) by Fq.

Let us fix k = Fq. Given a finite field extension K/k, if r = [K : k], then
|K| = qr. Conversely, given any r ≥ 1, there is a field extension k ↪→ K of degree r.
Furthermore, if k ↪→ K ′ is another such extension, then the two extensions differ by
an isomorphism K ' K ′. More generally, if [K ′ : k] = s, then there is a morphism
of k-algebras K → K ′ if and only if r|s.

If k is an algebraic closure of k, then we have an element σ ∈ G(k/k) given
by σ(x) = xq. This is called the arithmetic Frobenius element, and its inverse in
G(k/k) is the geometric Frobenius element. There is a unique subextension of k of
degree r that is contained in k: this is given by K = {x ∈ Fq | σr(x) = x}.

In fact, the Galois group G(K/k) is cyclic or order r, with generator σ|K .
Furthermore, we have canonical isomorphisms

G(k/k) ' projlimK/k finiteG(K/k) ' projlimr∈Z>0
Z/rZ =: Ẑ,

with σ being a topological generator of G(k/k).

2.2. Preliminaries: varieties over finite fields

By a variety over a field k we mean a reduced scheme of finite type over k
(possibly reducible). From now on we assume that k = Fq is a finite field. Recall
that there are two notions of points of X in this context, as follows.

Note that X is a topological space. We denote by Xcl the set of closed points of
X (in fact, these are the only ones that we will consider). Given such x ∈ Xcl, we
have the local ring OX,x and its residue field k(x). By definition, k(x) is isomorphic
to the quotient of a finitely generated k-algebra by a maximal ideal, hence k(x) is
a finite extension of k by Hilbert’s Nullstellensatz. We put deg(x) := [k(x) : k].

On the other hand, we have the notion of K-valued points of X. Recall that if
k → K is a field homomorphism, the the set of K-valued points of X is

X(K) := HomSpec k(SpecK,X) =
⊔
x∈X

Homk−alg(k(x),K).

We will always consider the case when the extension K/k is algebraic. In this case,
if φ : SpecK → X is in X(K), the point x ∈ X that is the image of the unique point

7



8 2. BASICS OF HASSE-WEIL ZETA FUNCTIONS

in SpecK is closed: indeed, we have dim {x} = trdeg(k(x)/k) = 0. In particular,
we see that if K/k is a finite extension of degree r, then

(2.1) X(K) =
⊔

deg(x)|r

Homk−alg(k(x),K).

Note that if deg(x) = e|r, then Homk−alg(k(x),K) carries a transitive action of
G(Fqr/Fq) ' Z/rZ. The stabilizer of any element is isomorphic to G(Fqr/Fqe),
hence

|Homk−alg(k(x),K)| = e.

In particular, this proves the following

Proposition 2.1. If X is a variety over the finite field k, and K/k is a field
extension of degree r, then

|X(K)| =
∑
e|r

e · |{x ∈ Xcl | deg(x) = e}.

Remark 2.2. It is clear that if X = Y1 ∪ . . . ∪ Ym, where each Yi is a locally
closed subset of X, then X(K) = Y1(K)∪ . . .∪ Ym(K). Furthermore, if the former
union is disjoint, then so is the latter one.

Remark 2.3. Suppose that X is affine, and consider a closed embedding X ↪→
An
k defined by the ideal (F1, . . . , Fd) ⊆ k[x1, . . . , xn]. If K/k is a field extension,

then we have an identification

X(K) = {(u1, . . . , un) ∈ Kn | fi(u1, . . . , un) = 0 for 1 ≤ i ≤ d}.
In particular, we see that if K/k is finite, then X(K) is finite. The formula in
Proposition 2.1 now implies that for every e ≥ 1, there are only finitely many
x ∈ X with deg(x) = e. Of course, by taking an affine open cover of X, we deduce
that these assertions hold for arbitrary varieties over k.

It is often convenient to think of K-valued points in terms of an algebraic
closure of the ground field. Suppose that k is a fixed algebraic closure of k, and
let us write Fqr for the subfield of k of degree r over k. Let X = X ×Spec k Spec k.

This is a variety over k (the fact that X is reduced follows from the fact that X is
reduced and k is perfect; however, we will not need this). Note that by definition
we have X(k) = X(k).

Consider the Frobenius morphism FrobX,q : X → X on X. This is the identity
on X, and the morphism of sheaves of rings OX → OX is given by u → uq (since
uq = u for every u ∈ k, we see that FrobX,q is a morphism of schemes over k. In

particular, it induces a morphism of schemes over k:

FrobX,q = FrobX,q × id : X → X.

Note that this is a functorial construction. In particular, if X is affine and if we
consider a closed immersion X ↪→ AN

k , then FrobX,q is induced by FrobAN
k
,q. This

is turn corresponds to the morphism of k-algebras

k[x1, . . . , xN ]→ k[x1, . . . , xN ], xi → xqi ,

hence on k-points it is given by (u1, . . . , uN )→ (uq1, . . . , u
q
N ). We conclude that the

natural embedding

X(Fqr ) ↪→ X(k) = X(k)
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identifies X(Fqr ) with the elements of X(k) fixed by Frobr
X,q

. Indeed, this is

clear when X = AN
k by the previous discussion, and the general case follows by

considering an affine open cover, and by embedding each affine piece in a suitable
affine space.

In other words, if ∆,Γr ⊂ X ×X are the diagonal, and respectively, the graph
of Frobr

X,q
, then X(Fqr ) is in natural bijection with the closed points of Γr∩∆. The

following proposition shows that when X smooth, this is a transverse intersection.

Proposition 2.4. If X is smooth over k = Fq, then the intersection Γr ∩ ∆
consists of a reduced set of points.

Note that since k is perfect, X is smooth over k if and only if it is nonsingular.

Proof. We have already seen that the set Γr∩∆ is finite, since it is in bijection
with X(Fqr ). In order to show that it is a reduced set, let us consider first the case

when X = An
Fq

. In this case, if R = k[x1, . . . , xn, y1, . . . , yn], then ∆ ⊂ SpecR

is defined by (y1 − x1, . . . , yn − xn) and Γr is defined by (y1 − xq1, . . . , yr − xqr).
Therefore Γr ∩ ∆ is isomorphic to

∏n
i=1 Spec k[xi]/(xi − xqi ), hence it is reduced

(note that the polynomial xqi − xi has no multiple roots).
For an arbitrary smooth variety X, let us consider u ∈ X(Fqe), and let x ∈ X

be the corresponding closed point. If t1, . . . , tn form a regular system of parameters
of OX,x, it follows that (t1, . . . , tn) define an étale map U → An, where U is an

open neighborhood of x. Note that the restriction to U × U of ∆ and Γr are the
inverse images via U×U → An

k
×An

k
of the corresponding subsets for An

k
. Since the

inverse image of a smooth subscheme by an étale morphism is smooth, we deduce
the assertion in the proposition for X from the assertion for An

k . �

Exercise 2.5. Let X and X be as above. The group G = G(k/k) acts on the
right on Spec k, by algebraic automorphisms.

i) Show that G has an induced right action on X, by acting on the second
component of X ×Spec k Spec k. Of course, these automorphisms are not

of schemes over k.
ii) Let τ : X → X be the action of the arithmetic Frobenius element. De-

scribe τ when X = An
k . Show that τ ◦ FrobX,q = FrobX,q ◦ τ , and they

are equal to the absolute q-Frobenius morphism of X (recall: this is the
identity on X, and the morphism of sheaves of rings OX → OX is given
by u→ uq).

iii) We also have a natural left action of G on X(k) that takes (g, φ) to φ ◦ g
(where we identify g with the corresponding automorphism of Spec k).
Show that the arithmetic Frobenius acts on X(k) = X(k) by the map
induced by FrobX,q.

iv) The canonical projection X → X induces a map Xcl → Xcl. Show that
this is identified via X(k) = X(k) = Xcl with the map described at
the beginning of this section, that takes a k-valued point of X to the
corresponding closed point of X.

v) We similarly have a left action of G(Fqr/Fq) on X(Fqr ). Show that the
fibers of the map X(Fqr ) → Xcl that takes an Fqr -valued point to the
corresponding closed point of X are precisely the orbits of the G(Fqr/Fq)-
action.
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2.3. The Hasse-Weil zeta function

2.3.1. The exponential and the logarithm power series. Recall that the
exponential formal power series is given by

exp(t) =
∑
m≥0

tn

n!
∈ Q[[t]].

We will also make use of the logarithm formal power series, defined by

log(1 + t) =
∑
m≥1

(−1)m+1tm

m
∈ Q[[t]].

In particular, we may consider exp(u(t)) and log(1 + u(t)) whenever u ∈ tQ[[t]].
We collect in the following proposition some well-known properties of the ex-

ponential and logarithm formal power series. We will freely use these properties in
what folows.

Proposition 2.6. The following properties hold:

i) We have exp(t)′ = exp(t) and log(1 + t)′ = (1 + t)−1.
ii) exp(s+ t) = exp(s) ·exp(t) in Q[[s, t]]. In particular, we have exp(u+v) =

exp(u) · exp(v) for every u, v ∈ tQ[[t]].
iii) exp(mt) = exp(t)m for every m ∈ Z. In particular, exp(mu) = exp(u)m

for every u ∈ tQ[[t]].
iv) log(exp(u)) = u and exp(log(1 + u)) = 1 + u for every u ∈ tQ[[t]].
v) log((1 + u)(1 + v)) = log(1 + u) + log(1 + v) for every u, v ∈ tQ[[t]].
vi) log((1 + u)m) = m · log(1 + u) for every m ∈ Z and every u ∈ tQ[[t]].

Proof. The proofs are straightforward. i) and ii) follow by direct computation,
while iii) is a direct consequence of i). It is enough to prove the assertions in iv) for
u = t. The first assertion now follows by taking formal derivatives of the both sides.
Note that we have two ring homomorphisms f, g : Q[[t]]→ Q[[t]], f(u) = log(1 + u)
and g(v) = exp(v)−1. They are both isomorphisms by the formal Inverse Function
theorem, and f ◦ g = Id by the first equality in iv). Therefore g ◦ f = Id, which is
the second equality in iv). The assertions in v) and vi) now follow from ii) and iii)
via iv). �

2.3.2. The definition of the Hasse-Weil zeta function. Suppose that X
is a variety over a finite field k = Fq. For every m ≥ 1, let Nm = |X(Fqm)|1. The
Hasse-Weil zeta function of X is

(2.2) Z(X, t) = exp

∑
m≥1

Nm
m

tm

 ∈ Q[[t]].

The following proposition gives a product formula for Z(X, t) that is very useful in
practice.

Proposition 2.7. For every variety X over Fq, we have

(2.3) Z(X, t) =
∏
x∈Xcl

(1− tdeg(x))−1.

1If k′ is a finite extension of k of degree m, then the set X(k′) depends on this extension.
However, any two extension of k of the same degree differ by a k-automorphism, hence |X(k′)|
only depends on |k′|.
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In particular, Z(X, t) ∈ Z[[t]].

By making t = p−s, we see that the above formula is analogous to the product
formula for the Riemann zeta function.

Proof. Let us put ar := |{x ∈ Xcl | [k(x) : Fq] = r}| for every r ≥ 1.
Therefore the right-hand side of (2.3) is equal to

∏
r≥1(1− tr)−ar . It is clear that

this product is well-defined in Z[[t]].
Recall that by Proposition 2.1, we have Nm =

∑
r|m r · ar. It follows from

definition that

log(Z(X, t)) =
∑
m≥1

Nm
m

tm =
∑
m≥1

∑
r|m

r · ar
m

tm =
∑
r≥1

ar·
∑
`≥1

t`r

`
=
∑
r≥1

(−ar)·log(1−tr)

=
∑
r≥1

log(1− tr)−ar = log

∏
r≥1

(1− tr)−ar
 .

The formula (2.3) now follows applying exp on both sides. �

Remark 2.8. Suppose that q = (q′)m. If X is a variety over Fq, we may
consider X as a variety over Fq′ , in the natural way. For every closed point x ∈ X,
we have deg(k(x)/Fq′) = m · deg(k(x)/Fq). It follows from Proposition 2.7 that
Z(X/Fq′ , t) = Z(X,Fq, t

m).

Remark 2.9. One can interpret the formula in Proposition 2.7 by saying that
Z(X, t) is a generating function for the effective 0-cycles on X. Recall that the
group of 0-cycles Z0(X) is the free abelian group generated by the (closed) points
of X. Given a 0-cycle α =

∑r
i=1mixi, its degree is deg(α) =

∑r
i=1mi deg(xi). A

0-cycle
∑
imixi is effective if all mi are nonnegative. With this terminology, we

see that the formula in Proposition 2.7 can be rewritten as

Z(X, t) =
∏
x∈Xcl

(1 + tdeg(x) + t2 deg(x) + . . .),

and multiplying we obtain

(2.4) Z(X, t) =
∑
α

tdeg(α),

where the sum is over all effective 0-cycles on X.

2.3.3. Examples and elementary properties. We start with the example
of the affine space.

Example 2.10. Let k = Fq, and X = An
k . It is clear that for every finite

extension k′/k we have X(k′) = (k′)n, hence |X(k′)| = |k′|n. We conclude that

Z(An, t) = exp

∑
m≥1

qmn

m
tm

 = exp (−log(1− qnt)) =
1

(1− qnt)
.

Example 2.11. More generally, note that for every two varieties X and Y , we
have X×Y (k′) = X(k′)×Y (k′). In particular, if X = An, we have |An×Y (Fqm)| =
|Y (Fqm)|qmn, hence

Z(An × Y, t) = exp

∑
m≥1

|Y (Fqm)|qmn

m
tm

 = Z(Y, qnt).
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Proposition 2.12. If X is a variety over Fq, and Y is a closed subvariety of
X, then Z(X, t) = Z(Y, t) · Z(U, t), where U = X r Y .

Proof. It is clear that for every m ≥ 1 we have |X(Fqm)| = |Y (Fqm)| +
|U(Fqm)|. The assertion in the proposition is an immediate consequence of this
and of the fact that exp(u+ v) = exp(u) · exp(v) for every u, v ∈ tQ[[t]]. �

Corollary 2.13. The zeta function of the projective space is given by

Z(Pn
Fq , t) =

1

(1− t)(1− qt) · · · (1− qnt)
.

Proof. The assertion follows from Example 2.10 by induction on n, using
Proposition 2.12, and the fact that we have a closed embedding Pn−1

Fq
↪→ Pn

Fq
,

whose complement is isomorphic to An
Fq

. �

Proposition 2.14. Let X be a variety over k = Fq, and let k′/k be a field
extension of degree r. If X ′ = X ×Spec k Spec k′, then

Z(X ′, tr) =

r∏
i=1

Z(X, ξit),

where ξ is a primitive root of order r of 1.

Proof. Let us put N ′m := |X ′(Fqrm)| and Nm = |X(Fqm)|, hence N ′m = Nmr.
By definition, it is enough to show that∑

m≥1

Nmr
m

tmr =

r∑
i=1

∑
`≥1

N`
`
ξi`t`.

This is a consequence of the fact that
∑r
i=1 ξ

i` = 0 if r does not divide `, and it is
equal to r, otherwise. �

2.4. The statements of the Weil conjectures

Suppose that X is a smooth, geometrically connected, projective variety, of
dimension n, defined over a finite field k = Fq. We put Z(t) = Z(X, t).

Conjecture 2.15 (Rationality). Z(t) is a rational function, i.e. it lies in
Q(t).

Conjecture 2.16 (Functional equation). If E = (∆2) is the self-intersection
of the diagonal ∆ ↪→ X ×X, then

Z

(
1

qnt

)
= ±qnE/2tEZ(t).

Conjecture 2.17 (Analogue of Riemann hypothesis). One can write

Z(t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)
,

with P0(t) = 1− t, P2n(t) = 1− qnt, and for 1 ≤ 2n− 1, we have Pi(t) ∈ Z[t],

Pi(t) =
∏
j

(1− αi,jt),

with αi,j algebraic integers with |αi,j | = qi/2.
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Note that the conditions in the above conjecture uniquely determine the Pi.

Conjecture 2.18. Assuming Conjecture 2.17, define the “ith Betti number of
X” as bi(X) := deg(Pi(t)). In this case, the following hold:

i) E =
∑2n
i=0(−1)ibi(X).

ii) Suppose that R is a finitely generated Z-subalgebra of the field C of com-

plex numbers, X̃ is a smooth projective scheme over SpecR, and P ∈
SpecR is a prime ideal such that R/P = Fq and X̃×SpecRSpecR/P = X.
Then

bi(X) = dimQH
i
(

(X̃ ×SpecR Spec C)an,Q
)
.

As we will see in §4.3, one can in fact formulate Conjecture 2.18 without as-
suming Conjecture 2.17. We will give in the next chapter the proofs of the above
conjectures in the case of curves. In Chapter 4 we will give a brief introduction
to `-adic cohomology, and explain how this formalism allows one to prove Conjec-
tures 2.15, 2.16, and 2.18 (where in Conjecture 2.15 one just has to assume that X
is of finite type over Fq). The harder Conjecture 2.17 was proved by Deligne [Del3],
and a later proof was given by Laumon [Lau], but both these proofs go far beyond
the scope of our notes. On the other hand, the first proof of Conjecture 2.15, for
arbitrary schemes of finite type over Fq, was obtained by Dwork [Dwo] using p-adic
analysis. We present his proof in Chapter 8.

2.5. Comments on the conjectures

Remark 2.19. Let X be an arbitrary variety over k = Fq, and let Y ↪→ X
be a closed subvariety, and U = X r Y . It follows from Proposition 2.12 that
Z(X, t) = Z(Y, t) · Z(U, t). Therefore if two of Z(X, t), Z(Y, t) and Z(U, t) are
known to be rational, then the third one is rational, too.

Remark 2.20. The above remark implies that if we assume resolution of sin-
gularities over finite fields, then a positive answer to Conjecture 2.15 for smooth
projective varieties implies the rationality of Z(X, t) for every variety X over a
finite field. Indeed, suppose by induction on dimension that the assertion is known
for varieties of dimension < n. Remark 2.19 and the induction hypothesis imply
that if X and Y are varieties of dimension n that have dense open subsets U , re-
spectively V , that are isomorphic, then Z(X, t) is rational if and only if Z(Y, t) is
rational. Given any n-dimensional variety X, there is a projective variety Y such
that there are U and V as above. Furthermore, if we have resolution of singularities
over our ground field, then we may assume that Y is also smooth. Therefore Z(Y, t)
is rational by Conjecture 2.15 (note that the irreducible components Yi of Y are
disjoint, hence Z(Y, t) =

∏
i Z(Yi, t), any we apply Conjecture 2.15 to each Yi).

Remark 2.21. In a similar vain, in order to prove that Z(X, t) is rational
for every variety X, it is enough to prove it in the case when X is an irreducible
hypersurface in An

Fq
. Indeed, arguing as in the previous remark we see that we

may assume that X is affine and irreducible, in which case it is birational (over Fq)
with a hypersurface in an affine space.

Remark 2.22. There is the following general formula in intersection theory:
if i : Y ↪→ X is a closed embedding of nonsingular varieties of pure codimension r,
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then i∗(i∗(α)) = cr(NY/X) ∩ α for every α ∈ A∗(X), where NY/X is the normal
bundle of Y in X.

In particular, if X is smooth, projective, of pure dimension n, and ∆: X ↪→
X ×X is the diagonal embedding, then NX/X×X = TX , and therefore

(∆2) = deg(cn(TX)).

Example 2.23. Let us check the Weil conjectures when X = Pn
Fq

. As we have

seen in Corollary 2.23, we have

(2.5) Z(Pn, t) =
1

(1− t)(1− qt) · · · (1− qnt)
.

In particular, it is clear that Conjectures 2.15 and 2.17 hold in this case. It follows
from (2.5) that

Z(X, 1/qnt) =
1(

1− 1
qnt

)(
1− 1

qn−1t

)
· · ·
(
1− 1

t

) = (−1)n+1tn+1qn(n+1)/2Z(X, t).

Hence in order to check Conjecture 2.16, it is enough to show that E = n+ 1. The
Euler exact sequence

0→ OPn → OPn(1)⊕(n+1) → TPn → 0

implies c(TPn) = c(OPn(1)⊕(n+1)) = (1 + h)n+1, where h = c1(OPn(1)). This
implies that deg(cn(TPn)) = n+ 1.

Since H∗(Pn
C,Q) ' Q[t]/(tn+1), with deg(t) = 2, the assertions in Conjec-

ture 2.18 also follow.

Remark 2.24. Let X be a variety over Fq, and suppose we know that Z(X, t)

is rational. Let us write Z(X, t) = f(t)
g(t) , with f, g ∈ Q[t]. After dividing by the

possible powers of t, we may assume that f(0), g(0) 6= 0, and after normalizing,
that f(0) = 1 = g(0).

We write f(t) =
∏r
i=1(1− αit) and g(t) =

∏s
j=1(1− βjt). If Nm = |X(Fqm)|,

then ∑
m≥1

Nm
m

tm =

r∑
i=1

log(1− αit)−
s∑
j=1

log(1− βjt),

hence Nm =
∑s
j=1 β

m
j −

∑r
i=1 α

r
i for every m ≥ 1.

2.6. Two examples: computing the Betti numbers for Grassmannians
and full flag varieties

One can use the above Conjecture 2.18 to compute the Betti numbers of smooth
complex projecive varieties. We illustrate this by computing the Poincaré polyno-
mials for Grassmannians and full flag varieties. For a famous example, in which
the Weil conjectures are used to compute the Betti numbers of the Hilbert schemes
of points on smooth projective surfaces, see [Göt2].

Recall that both the Grassmannian and the flag variety can be defined over Z.
More precisely, if 1 ≤ r ≤ n−1, there is a scheme Gr(r, n) defined over Spec Z, such
that for every field K, the K-valued points of Gr(r, n) are in bijection with the r-
dimensional subspaces of Kn. Similarly, we have a scheme Fl(n) defined over Spec Z
such that for every field K, the K-valued points of Fl(n) are in bijection with the full
flags on Kn, that is, with the n-tuples of linear subspaces V1 ⊂ V2 ⊂ . . . ⊂ Vn = Kn,
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with dim(Vi) = i for every i. It is well-known that both Gr(r, n) and Fl(n) are
smooth, geometrically connected, and projective over Spec Z. For every field K,
we put Gr(r, n)K = Gr(r, n)× SpecK and Fl(n)K = Fl(n)× SpecK.

Recall that the Poincaré polynomial of a complex algebraic variety X is given

by PX(y) =
∑2 dim(X)
i=0 (−1)i dimQH

i(X(C)an,Q)yi. In order to compute the
Poincaré polynomials of Gr(r, n)C and Fl(n)C, we need to compute the zeta func-
tions Z(Gr(r, n)Fq , t) and Z(Fl(n)Fq , t). Therefore we need to determine the num-
bers aq(r, n) and bq(n) of r-dimensional linear subspaces of Fnq , respectively, of full
flags on Fnq .

In fact, we first compute bq(n), and then use this to compute aq(r, n). In order
to give a full flag in Fnq , we first need to give a line L1 in Fnq , then a line L2 in
Fnq /L1, and so on. This shows that

bq(n) = |Pn−1(Fq)| · |Pn−2(Fq)| · · · |P1(Fq)|,
and therefore
(2.6)

bq(n) =
(qn − 1)(qn−1 − 1) · · · (q − 1)

(q − 1)n
= (1 + q)(1 + q + q2) · · · (1 + q + . . .+ qn−1).

We now compute aq(r, n). Note that the natural action of GLn(Fq) on Fnq
induces an action on Gr(r, n)(Fq). This action is transitive, and the stabilizer of
the subspace W generated by e1, . . . , er (where e1, . . . , en is the standard basis of
Fnq ) is the set of matrices

{A = (ai,j) ∈ GLn(Fq) | ai,j = 0 for r + 1 ≤ i ≤ n, 1 ≤ j ≤ r}.
If A = (ai,j) ∈ Mn(Fq) is such that ai,j = 0 for r + 1 ≤ i ≤ n and 1 ≤ j ≤ r,
then A is invertible if and only if the two matrices (ai,j)i,j≤r and (ai,j)i,j≥r+1 are
invertible. We conclude that the number of elements in the stabilizer of W is

(2.7) |GLr(Fq)| · |GLn−r(Fq)| · |Mr,n−r(Fq)|.
In order to compute |GLr(Fq)|, we use the transitive action of GLr(Fq) on

Fl(r)(Fq) induced by the natural action on Frq. The stabilizer of the flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ Fnq

is the set of upper triangular matrices in GLr(Fq), and there are (q − 1)rqr(r−1)/2

such matrices. We conclude that

|GLr(Fq)| = bq(r)q
r(r−1)/2(q − 1)r = qr(r−1)/2(qr − 1)(qr−1 − 1) · · · (q − 1).

We now deduce from (2.7) that

aq(r, n) =
|GLn(Fq)|

|GLr(Fq)| · |GLn−r(Fq)| · qr(n−r)
=

(qn − 1) · · · (q − 1)

(qr − 1) · · · (q − 1)(qn−r − 1) · · · (q − 1)

(2.8) =
(qn − 1) · · · (qn−r+1 − 1)

(qr − 1) · · · (q − 1)
.

The expression in (2.8) is called the Gaussian binomial coefficient, and it is denoted
by
(
n
r

)
q

(there are many analogies with the usual binomial coefficients; in any case,

note that limq→1

(
n
r

)
q

=
(
n
r

)
).

Exercise 2.25. Prove the following properties of Gaussian binomial coeffi-
cients:
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i)
(
n
r

)
q

= qr
(
n−1
r

)
q

+
(
n−1
r−1

)
q

(generalized Pascal identity).

ii) Using i) and induction on n, show that if λn,r(j) denotes the number of
partitions of j into ≤ n− r parts, each of size ≤ r, then

(2.9)

(
n

r

)
q

=

r(n−r)∑
j=0

λn,r(j)q
j .

A variety X over Fq is called of polynomial count if there is a polynomial
P ∈ Z[y] such that the number of Fqm -valued points of X is P (qm) for every m ≥ 1.
It follows from (2.6) that Fl(n)Fq is of polynomial count. Similarly, Gr(r, n)Fq is of
polynomial count by (2.8) and part ii) in the above exercise.

Lemma 2.26. Suppose that X is a variety over Fq, and P (y) = ady
d+ad−1y

d−1+
. . . + a0, with all ai ∈ Z, is such that |X(Fmq )| = P (qm) for every m ≥ 1. In this
case the zeta function of X is given by

Z(X, t) =

d∏
i=0

(1− qit)−ai .

Proof. We have∑
m≥1

Nm
m

tm =

n∑
i=0

ai
∑
m≥1

qmi

m
tm =

n∑
i=0

−ailog(1− qit).

Therefore by taking exp we get the formula in the lemma. �

Remark 2.27. In the context of the lemma, if X is smooth and projective,
then the analogue of the Riemann hypothesis implies that ai ≥ 0 for all i. In this
context, we have bi(X) = 0 for i odd, and b2i(X) = ai for 1 ≤ i ≤ n.

By combining Lemma 2.26 with Conjecture 2.18, our computations for the flag
variety and the Grassmannian give the following.

Corollary 2.28. The Poincaré polynomial of Fl(n)C is
∏n
i=1(1+y2+. . .+y2i),

and the Poincaré polynomial of Gr(r, n)C is
∑r(r−n)
i=0 λn,r(i)y

2i.



CHAPTER 3

The Weil conjectures for curves

In this chapter we consider a smooth projective curve X defined over k = Fq.

Let k denote an algebraic closure of k and X = X ×Spec k Spec k. If π : X → X
is the natural projection, then for every quasicoherent sheaf F on X, we have
canonical isomorphisms Hi(X,F)⊗k k ' Hi(X,π∗(F)).

We always assume that X is geometrically connected, that is, X is connected.
In this case X is a smooth, irreducible, projective curve over k. Since H0(X,OX) =

k, we get H0(X,OX) = k. Recall that the genus of X is g := h1(X,OX) =
h1(X,OX).

Our goal in this chapter is to prove the Weil conjectures in this setting. As we
have seen in Chapter 2, Z(X, t) can be viewed as a generating function for effective
0-cycles on X. Since X is a curve, a 0-cycle is the same as a Weil divisor on X.
We start by recalling a few generalities about divisors and line bundles on X.

A divisor on X is a finite formal combination
∑r
i=1 aiPi, where ai ∈ Z and Pi

is a closed point of X. One says that D is effective if ai ≥ 0 for all i. Note that
every such divisor is automatically Cartier since X is nonsingular. The degree of
D is deg(D) :=

∑
i ai · [k(Pi) : k]. The line bundle associated to D is denoted by

OX(D). The degree map induces a morphism of abelian groups deg : Pic(X)→ Z.
Given a line bundle L on X, the set of effective divisors D on X with OX(D) '

L is in bijection with the quotient of H0(X,L)r {0} by the action of the invertible
elements in H0(X,OX) via multiplication. By assumption, H0(X,OX) = k, hence
this space of divisors is nonempty if and only if H0(X,L) 6= 0, and in this case it

is in bijection with Ph0(L)−1(Fq), hence it has qh
0(L)−1
q−1 elements.

The Riemann-Roch theorem says that for every divisor D on X,

(3.1) χ(X,OX(D)) = deg(D)− g + 1.

Furthermore, recall that if deg(OX(D)) ≥ 2g − 1, then H1(X,OX(D)) = 0, in
which case h0(X,OX(D)) = deg(D)−g+1. We will also make use of Serre duality:
if ωX = ΩX/k is the canonical line bundle on X, then for every line bundle L on

X we have h1(X,L) = h0(X,ωX ⊗ L−1). Note that deg(ωX) = 2g − 2. All the
above assertions can be proved by passing to k, and using the familiar results over
algebraically closed fields, see [Har, Chapter IV.1].

There is a variety J(X) defined over k, with the following property: for every
field extension k′ of k, the k′-valued points of J(X) are in natural bijection with
the line bundles of degree zero on X ×Spec k Spec k′. In particular, the number h
of line bundles on X of degree zero is equal to |J(X)(k)|, hence it is finite (and,
of course, positive). Note that if Picm(X) denotes the set of line bundles on X of
degree m, then Picm(X) is either empty, or it has h elements (we will see below
that Picm(X) is never empty).

17
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3.1. Rationality of the zeta function

We first prove the first of the Weil conjectures. In fact, we will prove the
following more precise statement below. In this section and the next one, we follow
[Lor, Chapter 8].

Theorem 3.1. If X is a smooth, geometrically connected, projective curve of
genus g over Fq, then

Z(X, t) =
f(t)

(1− t)(1− qt)
,

where f ∈ Z[t] is a polynomial of degree ≤ 2g, with f(0) = 1 and f(1) = h, where
h = |J(X)(Fq)|.

Proof. It follows from Proposition 2.7 that

Z(X, t) =
∏
x∈Xcl

1

1− tdeg(x)
=
∑
D≥0

tdeg(D),

where the last sum is over the effective divisors D on X. We will break this sum
into two sums, depending on whether deg(D) ≥ 2g − 1 or deg(D) ≤ 2g − 2.

Let e > 0 be the positive integer such that deg(Pic(X)) = eZ. For every m
such that e|m, we have

|{L ∈ Pic(X) | deg(L) = m}| = h.

As we have seen, if h0(X,L) ≥ 1, then the number of effective divisors D with

OX(D) ' L is qh
0(L)−1
q−1 . In particular, if m is a nonegative integer with m ≥ 2g−1,

then for every L ∈ Pic(X) with deg(L) = m, we have exactly qm−g+1−1
q−1 effective

divisors D with OX(D) ' L.
Let d0 be the smallest nonnegative integer such that d0e ≥ 2g − 1. We deduce

that

(3.2) Z(X, t) =
∑

D≥0,deg(D)≤2g−2

tdeg(D) +
∑
d≥d0

h
qde−g+1 − 1

q − 1
tde.

Note that the first sum in (3.2) is a polynomial in te of degree ≤ (2g − 2)/e.

Since
∑
d≥d0 t

de = td0e

1−te and
∑
d≥d0 q

detde = (qt)d0e

1−(qt)e , the second sum in (3.2) is

equal to

(3.3)
h

(q − 1)
·
(
q1−g · (qt)d0e

1− (qt)e
− td0e

1− te

)
.

We conclude that we may write

(3.4) Z(X, t) =
f(te)

(1− te)(1− qete)
,

where f is a polynomial with rational coefficients of degree ≤ max{2+ 2g−2
e , d0 +1}.

In fact, since Z(X, t) has integer coefficients, we see that f has integer coefficients,
as well.

This already shows that Z(X, t) is a rational function. We now show the more
precise assertions in the statement of the theorem. Note first that the expression
in (3.3) implies that

(3.5) lim
t→1

(t− 1)Z(X, t) = − h

q − 1
· lim
t→1

t− 1

1− te
=

h

e(q − 1)
.
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In particular, we see that Z(X, t) has a pole of order one at t = 1.
We now show that, in fact, e = 1. Consider X ′ = X ×SpecFq Spec Fqe . We

have seen in Proposition 2.14 that

Z(X ′, te) =

e∏
i=1

Z(X, ξit),

where ξ is an eth primitive root of 1. It follows from the formula in (3.4) that
Z(X ′, te) = Z(X, t)e. On the other hand, applying what we have proved so far to
X ′, we see that Z(X ′, t) has a pole of order one at t = 1, and therefore Z(X ′, te)
has the same property. This implies that e = 1. If g ≥ 0, then d0 = 2g− 1, so that
deg(f) ≤ 2g. On the other hand, d0 = 0 if g = 0, and the formula in (3.3) shows
that f = h in this case. The remaining assertions in the theorem now follow from
(3.4) and (3.5). �

For future reference, we state explicitly the following result that was showed
during the proof of Theorem 3.1.

Corollary 3.2. If X is a smooth, geometrically connected, projective curve
over Fq, then all Picm(X) have the same (nonzero) number of elements.

3.2. The functional equation

In our setting, if ∆ is the diagonal in X ×X, then (∆2) can be computed via
the adjunction formula: if `1 = X × pt and `2 = pt × X, then (`21) = 0 = (`02),
(`1 · `2) = 1, and (∆ · `1) = 1 = (∆ · `2). Therefore we have

2g − 2 = (∆ · (∆ + (2g − 2)`1 + (2g − 2)`2)) = (∆2) + 2(2g − 2).

Hence (∆2) = 2 − 2g, and the statement of the second Weil conjecture for curves
becomes the following.

Theorem 3.3. If X is a smooth, geometrically connected, projective curve over
Fq, then

Z(X, 1/qt) = q1−gt2−2gZ(X, t).

Proof. As we will see, the key ingredient in the proof is Serre duality. If
g = 0, it follows from Theorem 3.1 that Z(X, t) = h

(1−t)(1−qt) , and the formula in

the theorem is straightforward in this case. Hence from now on we may assume
that g ≥ 1. We follow the approach to Z(X, t) =

∑
D≥0 t

D used in the previous
section.

Recall that for every line bundle L ∈ Pic(X) with h0(L) ≥ 1, the effective

divisors D with O(D) ' L form the Fq-points of a projective space Ph0(L)−1,

hence there are qh
0(L)−1
q−1 such divisors. Using the fact that h0(L) = deg(L)− g + 1

when deg(L) ≥ 2g − 1 and Corollary 3.2, we conclude that
(3.6)

Z(X, t) =

2g−2∑
m=0

 ∑
L∈Picm(X)

qh
0(L) − 1

q − 1

 tm +
∑

m≥2g−1

h
qd−g+1 − 1

q − 1
td = S1 + S2,

where

(3.7) S1 =

2g−2∑
m=0

∑
L∈Picm(X)

qh
0(L)

q − 1
tm, S2 = − h

q − 1
· 1

1− t
+
hq1−g(qt)2g−1

(q − 1)(1− qt)
.
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Note that

S2(1/qt) = − h

q − 1
· qt

1− qt
− hq1−gt2−2g

(q − 1)(1− t)

= q1−gt2−2g ·
(

hqgt2g−1

(q − 1)(1− qt)
− h

(q − 1)(1− t)

)
= q1−gt2−2gS2(t).

On the other hand, L → ωX ⊗ L−1 gives a bijection between the set of line
bundles on X of degree in [0, 2g − 2], and Serre duality plus Riemann-Roch gives
h0(ωX ⊗ L−1) = h0(L)− (deg(L)− g + 1). Therefore

S1(1/qt) =

2g−2∑
m=0

 ∑
L∈Picm(X)

qh
0(L)

q − 1

( 1

qt

)m

=

2g−2∑
m=0

 ∑
L∈Picm(X)

qh
0(ωX⊗L−1)

q − 1

( 1

qt

)2g−2−m

=

2g−2∑
m=0

 ∑
L∈Picm(X)

qh
0(L)−m+g−1

q − 1

 (qt)m+2−2g

= t2−2gq1−g
2g−2∑
m=0

 ∑
L∈Picm(X)

qh
0(L)

q − 1

 tm = q1−gt2−2gS1(t).

This completes the proof of the theorem. �

Remark 3.4. With the notation in Theorem 3.1, we write f(t) =
∏2g
i=1(1−ωit),

with ωi ∈ C, possibly zero. We have

Z(X, 1/qt) =

∏2g
i=1

(
1− ωi

qt

)
(

1− 1
qt

) (
1− 1

t

) =
qt2(qt)−2g

∏2g
i=1(qt− ωi)

(1− t)(1− qt)

= q1−gt2−2g ·
∏2g
i=1(1− ωit)

(1− t)(1− qt)
,

where the last equality is a consequence of Theorem 3.3. Therefore
∏2g
i=1(t−ωi/q) =

q−g ·
∏2g
i=1(1− ωit).

The first consequence is that ωi 6= 0 for all i, that is, deg(f) = 2g. Furthermore,

we see that
∏2g
i=1 ωi = qg, and the multiset {ω1, . . . , ω2g} is invariants under the

map x→ q/x.

Remark 3.5. Note that the assertion in the fourth Weil conjecture in now clear
in our setting. Indeed, we have B0 = B2 = 1 and B1 = 2g. Recall that E = 2− 2g,
hence E = B0 − B1 + B2. Furthermore, if X is the closed fiber of a smooth

projective curve X̃ over a finite type Z-algebra R, then X̃C := X̃ ×SpecR Spec C
is a smooth connected complex curve of genus g. Its Betti numbers are b0 =
b2 = 1, and b1 = 2g (the formula for b1 is a consequence of Hodge decomposition:

b1(X̃C) = h0(ΩX̃C
) + h1(OX̃C

) = 2g). This proves all the assertions in the fourth
Weil conjecture for X.
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3.3. The analogue of the Riemann hypothesis

We use the notation for the zeta function Z(X, t) introduced in Remark 3.4:

(3.8) Z(X, t) =

∏2g
i=1(1− ωit)

(1− t)(1− qt)
.

The following proves the analogue of the Riemann hypothesis in our setting.

Theorem 3.6. With the above notation, every ωi is an algebraic integer, and
|ωi| = q1/2 for every i.

Remark 3.7. If we show that |ωi| ≤ q1/2 for every i, since the multiset
{ω1, . . . , ω2g} is invariant by the map x → q/x (see Remark 3.4) we conclude

that we also have |ωi| ≥ q1/2, hence |ωi| = q1/2 for every i. The fact that the ωi are

algebraic integers is clear: since
∏2g
i=1(1− ωit) = (1− t)(1− qt)Z(X, t) has integer

coefficients, it follows that all elementary symmetric functions sj = sj(ω1, . . . , ω2g)

are integers, and ωi is a root of t2g +
∑2j
j=1(−1)jsjt

2g−j .

Before proving Theorem 3.6 we make some general considerations that are very
useful in general when considering zeta functions of curves. Let Nm = |X(Fqm)|,
and let am ∈ Z be defined by

(3.9) Nm = 1− am + qm.

It follows from the definition of the zeta function and from (3.8) that
(3.10)∑
m≥1

Nm
m

tm =

2g∑
i=1

log(1−ωit)−log(1−t)−log(1−qt) =
∑
m≥1

1

m
·

(
1 + qm −

2g∑
i=1

ωmi

)
tm,

hence am =
∑2g
i=1 ω

m
i for everym ≥ 1. The following lemma rephrases the condition

in Theorem 3.6 as an estimate for the integers am. This estimate, in fact, is
responsible for many of the applications of the Weil conjectures in the case of
curves.

Lemma 3.8. With the above notation, we have |ωi| ≤ g1/2 for every i if and
only if |am| ≤ 2gqm/2 for every m ≥ 1.

Proof. One implication is trivial: since am =
∑2g
i=1 ω

m
i , if |ωi| ≤ q1/2 for

every i, it follows that |am| ≤ 2gm/2. For the converse, note that

(3.11)
∑
m≥1

amt
m =

2g∑
i=1

∑
m≥1

ωmi t
m =

2g∑
i=1

ωit

1− ωit
.

If |am| ≤ 2gqm/2 for all m, then for t ∈ C with |t| < q−1/2 we have

(3.12) |
∑
m≥1

amt
m| ≤ 2g

∑
m≥1

(q1/2|t|)m =
2gq1/2|t|

1− q1/2|t|
.

Note that (3.11) implies that the rational function
∑
m≥1 amt

r has a pole at t =

1/ωi. The estimate in (3.12) implies that 1/|ωi| ≥ q−1/2, as required. �

We can now prove the main result of this section.
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Proof of Theorem 3.6. As it follows from Remark 3.7 and Lemma 3.8, it
is enough to show that |Nm − (qm + 1)| ≤ 2gqm/2 for every m. In fact, if we prove
this for m = 1, then we may apply this to X ×SpecFq Spec Fqm in order to get the
bound for |Nm − (qm + 1)|.

We recall the description of N1 given in Proposition 2.4. Consider the smooth
projective surface S = X × X, where X = X ×SpecFq Spec Fq. We have two

divisors on S, the diagonal ∆ and the graph Γ of the morphism FrobX,q on X.
The two divisors intersect transversely, and the number of intersection points is
(Γ ·∆) = |X(Fq)|.

It is an elementary consequence of the Hodge index theorem (see Proposition 3.9
below) that if `1 = X × pt and `2 = pt×X, then for every divisor D on S we have

(3.13) (D2) ≤ 2(D · `1) · (D · `2).

Let us apply this for D = a∆+bΓ. Note that (∆·`1) = (∆·`2) = 1, while (Γ·`1) = q
and (Γ · `2) = 1.

We now compute (Γ2) and (∆2) via the adjunction formula. Note that the
canonical class KS on S is numerically equivalent to (2g − 2)(`1 + `2). Since both
∆ and Γ are smooth curves of genus g, we have

2g − 2 = (∆ · (∆ +KS)) = (∆2) + 2(2g − 2),

2g − 2 = (Γ · (Γ +KS)) = (Γ2) + (q + 1)(2g − 2).

Therefore (∆2) = −(2g − 2) and (Γ2) = −q(2g − 2).
Applying (3.13) for D = a∆ + bΓ gives

−a2(2g − 2)− qb2(2g − 2) + 2abN1 ≤ 2(a+ bq)(a+ b).

After simplifying, we get

ga2 − ab(q + 1−N1) + gqb2 ≥ 0.

Since this holds for all integer (or rational) a and b, it follows that (q+ 1−N1)2 ≤
4qg2. Therefore |N1 − (q + 1)| ≤ 2gq1/2, as required. This completes the proof of
Theorem 3.6. �

The following proposition is [Har, Exercise V.1.9].

Proposition 3.9. Let C1 and C2 be smooth projective curves over an alge-
braically closed field, and let S = C1 × C2. If `1 = C1 × pt and `2 = pt× C2, then
for every divisor D on S we have

(D2) ≤ 2(D · `1)(D · `2).

Proof. Recall that the Hodge index theorem says that if E is a divisor on S
such that (E ·H) = 0, where H is ample, then (E2) ≤ 0 (see [Har, Theorem 1.9]).

We apply this result for the ample divisor H = `1 + `2, and for E = D− (b`1 +
a`2), where a = (D · `1) and b = (D · `2). Note that (E ·H) = 0, hence (E2) ≤ 0.
Since (E2) = (D2)− 2ab, we get the assertion in the proposition. �

Example 3.10. Consider the case when X is an elliptic curve (that is, g = 1).
In this case it follows from Theorem 3.6 and Remark 3.4 that

Z(X, t) =
(1− αt)(1− βt)
(1− t)(1− qt)

=
1− at+ qt2

(1− t)(1− qt)
,
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where |α| = |β| = q1/2, and a ∈ Z. Note that |X(Fqm)| = (1 + qm)− 2Re(αm). In
particular, a = (1 + q)− |X(Fq)|.





CHAPTER 4

Weil cohomology theories and the Weil conjectures

Weil realized that the rationality and the functional equation part of the Weil
conjectures would follow from the existence of a cohomology theory with suitable
properties. Such a cohomology theory is nowadays called a Weil cohomology the-
ory. In the first section we describe the axioms of such a cohomology theory, and
derive some consequences. These will be used in the second section to deduce the
rationality and the functional equation for the Hasse-Weil zeta function. In the
last section, we give a brief introduction to the first Weil cohomology over fields of
positive characteristic, the `-adic cohomology.

4.1. Weil cohomology theories

In this section we work over a fixed algebraically closed field k. All varieties
are defined over k. Recall that given a variety X and r ∈ Z≥0, the group of r-
cycles on X is the free abelian group on the set of closed irreducible r-dimensional
subvarieties of X. If V is such a variety, then we write [V ] for the corresponding
element of the cycle group. For a closed subscheme Z of X of pure dimension r, the
cycle of Z is [Z] =

∑r
i=1 `(OZ,Zi)[Zi], where the Zi are the irreducible components

of Z, and OZ,Zi is the zero-dimensional local ring of Z at the generic point of Zi.
Our presentation of the formalism of Weil cohomology theories follows with

small modifications and a few extra details de Jong’s note [deJ1]. A Weil coho-
mology theory with coefficients in the characteristic zero field K is given by the
following data:

(D1) A contravariant functor X → H∗(X) = ⊕iHi(X) from nonsingular, con-
nected, projective varieties (over k) to graded commutative1 K-algebras.
The product of α, β ∈ H∗(X) is denoted by α ∪ β.

(D2) For every nonsingular, connected, projective algebraic variety X, a linear
trace map Tr = TrX : H2 dim(X)(X)→ K.

(D3) For every nonsingular, connected, projective algebraic variety X, and for
every closed irreducible subvariety Z ⊆ X of codimension c, a cohomology
class cl(Z) ∈ H2c(X).

The above data is supposed to satisfy the following set of axioms.

(A1) For every nonsingular, connected, projective variety X, all Hi(X) have fi-
nite dimension over K. Furthermore, Hi(X) = 0 unless 0 ≤ i ≤ 2 dim(X).

(A2) (Künneth property) If X and Y are nonsingular, connected, projective
varieties, and if pX : X × Y → X and pY : X × Y → Y are the canonical

1Recall that graded commutative means that αβ = (−1)deg(α) deg(β)βα for every homoge-
neous elements α and β.

25
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projections, then the K-algebra homomorphism

H∗(X)⊗K H∗(Y )→ H∗(X × Y ), α⊗ β → p∗X(α) ∪ p∗Y (β)

is an isomorphsim.
(A3) (Poincaré duality) For every nonsingular, connected, projective variety X,

the trace map Tr: H2 dim(X)(X)→ K is an isomorphism, and for every i
with 0 ≤ i ≤ 2 dim(X), the bilinear map

Hi(X)⊗K H2 dim(X)−i(X)→ K, α⊗ β → TrX(α ∪ β)

is a perfect pairing.
(A4) (Trace maps and products) For every nonsingular, connected, projective

varieties X and Y , we have

TrX×Y (p∗X(α) ∪ p∗Y (β)) = TrX(α)TrY (β)

for every α ∈ H2 dim(X)(X) and β ∈ H2 dim(Y )(Y ).
(A5) (Exterior product of cohomology classes) For every nonsingular, con-

nected, projective varieties X and Y , and every closed irreducible sub-
varieties Z ⊆ X and W ⊆ Y , we have

cl(Z ×W ) = p∗X(cl(Z)) ∪ p∗Y (cl(W )).

(A6) (Push-forward of cohomology classes) For every morphism f : X → Y
of nonsingular, connected, projective varieties, and for every irreducible
closed subvariety Z ⊆ X, we have for every α ∈ H2 dim(Z)(Y )

TrX(cl(Z) ∪ f∗(α)) = deg(Z/f(Z)) · TrY (cl(f(Z)) ∪ α).

(A7) (Pull-back of cohomology classes) Let f : X → Y be a morphism of non-
singular, connected, projective varieties, and Z ⊆ Y an irreducible closed
subvariety that satisfies the following conditions:

a) All irreducible components W1, . . . ,Wr of f−1(Z) have pure dimen-
sion dim(Z) + dim(X)− dim(Y ).

b) Either f is flat in a neighborhood of Z, or Z is generically transverse
to f , in the sense that f−1(Z) is generically smooth.

Under these assumptions, if [f−1(Z)] =
∑r
i=1miWi, then f∗(cl(Z)) =∑r

i=1micl(Wi) (note that if Z is generically transverse to f , then mi = 1
for all i).

(A8) (Case of a point) If x = Spec(k), then cl(x) = 1 and Trx(1) = 1.

A basic example of a Weil cohomology theory is given by singular cohomology
in the case k = C, when we may take K = Q. In the last section we will discuss an
example of a Weil cohomology theory when char(k) = p > 0, the `-adic cohomology
(with K = Q`, for some ` 6= p). Another example, still when char(k) > 0, is given
by crystalline cohomology (with K = W (k), the ring of Witt vectors of k).

In the rest of this section we assume that we have a Weil cohomology theory
for varieties over k, and deduce several consequences. In particular, we relate the
Chow ring of X to H∗(X). We will review below some of the basic definitions
related to Chow rings. For our applications in the next section, the main result is
the trace formula in Theorem 4.7 below.

Proposition 4.1. Let X be a smooth, connected, n-dimensional projective
variety.

i) The structural morphism K → H0(X) is an isomorphism.
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ii) We have cl(X) = 1 ∈ H0(X).
iii) If x ∈ X is a closed point, then TrX(cl(x)) = 1.
iv) If f : X → Y is a generically finite, surjective morphism of degree d be-

tween smooth, connected, projective varieties, TrX(f∗(α)) = d · TrY (α)
for every α ∈ H2 dim(Y )(Y ). In particular, if Y = X, then f∗ acts as
multiplication by d on H2 dim(X)(X).

Proof. Applying condition (A3) with i = 0 implies that dimK H
0(X) = 1,

hence the structural morphism of the K-algebra H∗(X) induces an isomorphism
K ' H0(X). Applying condition (A7) to the morphism X → Spec k, as well as
condition (A8), we get cl(X) = 1 ∈ H0(X).

Given x ∈ X, let us apply condition (A6) to the morphism X → Spec k,
by taking Z = {x} and α = 1 ∈ H0(Spec k). We deduce using also (A8) that
TrX(cl(x)) = 1.

If f : X → Y is as in iv), let us choose a general point Q in Y . If the cycle of
the fiber f−1(Q) is [f−1(Q)] =

∑r
i=1miPi, then by hypothesis

∑r
i=1mi = d. Since

f is flat around Q by generic flatness, condition (A7) implies

TrX(f∗(cl(Q))) = TrX(
∑
i

mi · cl(Pi)) = d · TrY (cl(Q)).

Since cl(Q) generates H2 dim(Y )(Y ), this proves the assertion in iv). �

We now use Poincaré duality to define push-forwards in cohomology. Let
f : X → Y be a morphism between nonsingular, connected, projective varieties,
with dim(X) = m and dim(Y ) = n. Given α ∈ Hi(X), there is a unique
f∗(α) ∈ H2n−2m+i(Y ) such that

TrY (f∗(α) ∪ β) = TrX(α ∪ f∗(β))

for every β ∈ H2m−i(Y ). It is clear that f∗ is K-linear. The following proposition
collects the basic properties of the push-forward map.

Proposition 4.2. Let f : X → Y be a morphism as above.

i) (Projection formula) f∗(α ∪ f∗(γ)) = f∗(α) ∪ γ.
ii) If g : Y → Z is another morphism, with Z smooth, connected, and projec-

tive, then (g ◦ f)∗ = g∗ ◦ f∗ on H∗(X).
iii) If Z is an irreducible, closed subvariety of X, then

f∗(cl(Z)) = deg(Z/f(Z))cl(f(Z)).

Proof. Properties i) and ii) follow easily from definition, using Poincaré du-
ality. Property iii) is a consequence of (A6). �

Proposition 4.3. Let X and Y be nonsingular, connected, projective varieties,
and p : X × Y → X and q : X × Y → Y the canonical projections. If α ∈ Hi(Y ),
then p∗(q

∗(α)) = TrY (α) if i = 2 dim(Y ), and p∗(q
∗(α)) = 0, otherwise.

Proof. Note that p∗(q
∗(α)) ∈ Hi−2 dim(Y )(X), hence it is clear that p∗(q

∗(α)) =
0 when i 6= 2 dim(Y ). On the other hand, if α ∈ H2 dim(Y )(Y ) and β ∈ H2 dim(X)(X),
then

TrX(p∗(q
∗(α)) ∪ β) = TrX×Y (q∗(α) ∪ p∗(β)) = TrY (α)TrX(β),

where the last equality follows from condition (A4). Therefore p∗(q
∗(α)) = TrY (α).

�
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Our next goal is to show that taking the cohomology class induces a ring homo-
morphism from the Chow ring A∗(X) to H2∗(X), the even part of the cohomology
ring. Before doing this, let us review a few facts about Chow rings. For details and
proofs, we refer to [Ful1, Chapters I-VIII].

Let X be an arbitrary variety over k. The Chow group Ar(X) is the quotient
of Zr(X) by the rational equivalence relation. Recall that this equivalence relation
is generated by putting divW (φ) ∼ 0, where W is an (r + 1)-dimensional closed
irreducible subvariety of X, and φ is a nonzero rational function of X. We do not
give the general definition of divW (φ), but only mention that for W normal, this
is the usual definition of the principal divisor corresponding to a rational function.

In particular, if φ defines a morphism φ̃ : W → P1, then divW (φ) = [φ̃−1(0)] −
[φ̃−1(∞)].

For a proper morphism f : X → Y one defines f∗ : Zr(X) → Zr(Y ) such that
for an irreducible variety V of X, f∗([V ]) = deg(V/f(V ))[f(V )]. One shows
that if φ is a nonzero rational function on an (r + 1)-dimensional irreducible
closed subvariety W of X, one has f∗(divW (φ)) = 0 if dim(f(W ) < dim(V ), and
f∗(divW (φ)) = divf(W )(N(φ)), otherwise, where N : K(f(W )) → K(W ) is the
norm map. Therefore we get an induced morphism f∗ : Ar(X) → Ar(Y ). Note
that when X is complete, the induced map deg : A0(X)→ A0(Spec k) = Z is given
by taking the degree of a cycle. We extend this map by defining it to be zero on
Ai(X) with i 6= 0.

If X is nonsingular, connected, and dim(X) = n, then one puts Ai(X) =
An−i(X), and A∗(X) = ⊕ni=0A

i(X) has a structure of commutative graded ring.
One denotes by α ∪ β the product of α, β ∈ A∗(X). If X is complete, and
α1, . . . , αr ∈ A∗(X), then the intersection number (α1 · . . . ·αr) is given by deg(α1∪
. . . ∪ αr).

Taking X to A∗(X) gives, in fact, a contravariant functor from the category
of nonsingular quasiprojective2 varieties to that of graded rings. One defines the
pull-back f∗ : A∗(Y ) → A∗(X) of a morphism f : X → Y of nonsingular varieties
in terms of a suitable (refined) intersection product. For us, it is enough to use
the following property: if Z is an irreducible subvariety of Y such that f−1(Z) has
pure dimension dim(Z) + dim(X)− dim(Y ), and either f is flat in a neighborhood
of Z, or Z is generically transverse to f , then f∗([Z]) = [f−1(Z)]. In fact, one can
always reduce to one of these two situations: every f admits the decomposition

X
j
↪→ X × Y prY→ Y,

where j = (IdX , f) is the graph of f . Therefore

f∗([Z]) = j∗(prY
∗([Z])) = j∗([X × Z]).

Furthermore, by the Moving Lemma, [X × Z] is rationally equivalent with a sum∑
` n`[W`], with eachW` generically transverse to j. Therefore f∗([Z]) =

∑
` n`[j

−1(W`)].
The product of A∗(X) can be described in terms of pull-back, as follows. If Z1

and Z2 are irreducible closed subvarieties of X, then

[Z1] ∪ [Z2] = ∆∗([Z1 × Z2]) ∈ A∗(X),

2This assumption is only made for convenience, since we want to use the Moving Lemma,
and since we are concerned with projective varieties.
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where ∆: X ↪→ X × X is the diagonal embedding. In particular, suppose that
Z1 and Z2 are generically transverse, in the sense that all irreducible components
W1 . . . ,Wr of Z1 ∩ Z2 have dimension dim(Z1) + dim(Z2)− dim(X), and Z1 ∩ Z2

is generically smooth. In this case Z1 × Z2 is generically transverse to ∆, hence
[Z1] ∪ [Z2] =

∑r
`=1[W`].

Suppose now that we have a Weil cohomology theory for varieties over k. If X
is a smooth, connected, projective n-dimensional variety over k, taking the coho-
mology class induces a group homomorphism cl : Zr(X)→ H2(n−r)(X). Note that
if f : X → Y is a morphism of such varieties, then it follows from Proposition 4.2
iii) that

(4.1) f∗(cl(α)) = cl(f∗(α)).

Lemma 4.4. If α =
∑r
i=1 ni[Vi] is an r-cycle that is rationally equivalent to

zero, then
∑
i nicl(Vi) = 0 in A2(n−r)(X).

Proof. We may assume that there is an irreducible (r + 1)-dimensional sub-
variety W of X, and a nonzero rational function φ on W such that α = divW (φ).

We have a rational map φ̃ : W 99K P1 defined by φ. Let π : W ′ → W be a pro-

jective, generically finite morphism, with W ′ an integral scheme, such that φ̃ ◦ π
is a morphism ψ̃. After possibly replacing W ′ by a nonsingular alteration (see
[deJ2]), we may assume that W ′ is nonsingular, connected, and projective. If
d = deg(W ′/W ) and ψ = f∗(φ) ∈ K(W ′), then we have the equality of cycles
f∗(div(ψ)) = d · div(φ). Since char(K) = 0, it follows from (4.1) that it is enough
to show that cl(div(ψ)) = 0 in H∗(W ′). On the other hand, by construction we

have div(ψ) = [ψ̃−1(0)] − [ψ̃−1(∞)], and condition (A7) implies that it is enough
to show that cl(0) = cl(∞) ∈ H1(P1). This follows from assertion iii) in Proposi-
tion 4.1. �

The above lemma implies that for every nonsingular, connected, projective n-
dimensional variety X, we have a morphism of graded groups cl : A∗(X)→ H2∗(X).

Proposition 4.5. The morphism cl : A∗(X) → H2∗(X) is a ring homomor-
phism. Furthermore, it is compatible with both f∗ and f∗.

Proof. Compatibility with f∗ follows from (4.1). We next show compatibility
with f∗, where f : X → Y is a morphism between nonsingular, connected, pro-

jective varieties. Writing f as the composition X
j
↪→ X × Y pY→ Y , we note that

f∗ = j∗ ◦ p∗Y both at the level of H∗ and at the level of A∗. The fact that taking
the cohomology class commutes with both p∗Y and j∗ is a consequence of condition
(A7) (and, in the case of j∗, of the Moving Lemma).

We now show that cl is a ring homomorphism. If V and W are irreducible
subvarieties of X, and ∆: X ↪→ X ×X is the diagonal embedding, then using the
compatibility with pull-back and condition (A5) we get

cl([V ] ∪ [W ]) = cl(∆∗([V ×W ])) = ∆∗(cl(V ×W )) = ∆∗(p∗X(cl(V )) ∪ p∗Y (cl(W )))

= ∆∗(p∗X(cl(V ))) ∪∆∗(p∗Y (cl(W ))) = cl(V ) ∪ cl(W ).

�

Corollary 4.6. If X is a smooth, connected, projective variety, and αi ∈
Ami(X) for 1 ≤ i ≤ r are such that m1 + . . .+mr = dim(X), then (α1 · . . . · αr) =
TrX(cl(α1) ∪ . . . ∪ cl(αr)).
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Proof. Since the map cl : A∗(X) → H2∗(X) is a ring homomorphism, it is
enough to show that for α ∈ Z0(X), we have deg(α) = TrX(cl(α)). By additiv-
ity, we may assume α = P , in which case it is enough to apply assertion iii) in
Proposition 4.1. �

Theorem 4.7. (The trace formula) If φ : X → X is an endomorphism of the
nonsingular, connected, projective variety X, and if Γφ,∆ ⊂ X ×X are the graph
of φ, and respectively, the diagonal, then

(Γφ ·∆) =

2 dim(X)∑
i=0

(−1)itrace(φ∗|Hi(X)).

In particular, if Γφ and ∆ intersect transversely, then the above expression computes
|{x ∈ X | φ(x) = x}|.

We will apply this result in the next section by taking φ to be the Frobenius
morphism. On the other hand, by taking φ to be the identity, we obtain the
following

Proposition 4.8. If X is a smooth, connected, n-dimensional projective vari-
ety, and ∆ ⊂ X ×X is the diagonal, then

(∆2) =

2n∑
i=0

(−1)i dimK H
i(X).

We give the proof of Theorem 4.7 following [Mil, Chapter VI, §12]. We need two
lemmas. With the notation in Theorem 4.7, let dim(X) = n, and let p, q : X×X →
X denote the projections onto the first, respectively second, component.

Lemma 4.9. If α ∈ H∗(X), then p∗(cl(Γφ) ∪ q∗(α)) = φ∗(α).

Proof. Let j : X ↪→ X × X be the embedding onto the graph of φ, so that
p◦ j = IdX and q ◦ j = φ. Since j∗(cl(X)) = cl(Γφ), we deduce using the projection
formula

p∗(cl(Γφ)∪q∗(α)) = p∗(j∗(cl(X))∪q∗(α)) = p∗(j∗(cl(X)∪j∗(q∗(α))) = p∗(j∗(φ
∗(α)))

= φ∗(α).

�

Lemma 4.10. Let (eri ) be a basis of Hr(X) and (f2n−r
i ) the dual basis of

H2n−r(X) with respect to Poincaré duality, such that TrX(f2n−r
` ∪ eri ) = δi,`. With

this notation, we have

cl(Γφ) =
∑
i,r

p∗(φ∗(eri )) ∪ q∗(f2n−r
i ) ∈ H2n(X ×X).

Proof. We know by the Künneth property that we can write

cl(Γφ) =
∑
`,s

p∗(a`,s) ∪ q∗(f2n−s
` ),

for unique elements a`,s ∈ Hs(X). It follows from Lemma 4.9 and the projection
formula that that

φ∗(eri ) =
∑
`,s

p∗(p
∗(a`,s) ∪ q∗(f2n−s

` ) ∪ q∗(eri )) =
∑
`,s

a`,s ∪ p∗(q∗(f2n−s
` ∪ eri )).
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Lemma 4.3 implies that p∗(q
∗(f2n−s

` ∪ eri ) is zero, unless r = s, in which case it is

equal to TrX(f2n−r
` ∪ eri ). By assumption, this is zero, unless i = `, in which case

it is equal to 1. We conclude that φ∗(eri ) = ai,r. �

Proof of Theorem 4.7. It follows from Lemma 4.10 that

cl(Γφ) =
∑
i,r

p∗(φ∗(eri )) ∪ q∗(f2n−r
i ).

Applying the same lemma to the identity morphism, and to the dual bases (fs` )

and ((−1)se2n−s
` ), we get

cl(∆) =
∑
`,s

(−1)sp∗(fs` ) ∪ q∗(e2n−s
` ).

Therefore we obtain

(Γφ ·∆) = TrX×X(cl(Γφ) ∪ cl(∆))

= TrX×X

∑
i,j,r,s

(−1)s+s(2n−r)p∗(φ∗(eri ) ∪ fs` ) ∪ q∗(f2n−r
i ∪ e2n−s

` )


=
∑
i,r

TrX(φ∗(eri ) ∪ f2n−r
i ) · TrX(f2n−r

i ∪ eri ) =
∑
r

(−1)rtrace(φ∗|Hr(X)).

�

4.2. Rationality and the functional equation via Weil cohomology

In this section we assume that we have a Weil cohomology theory for varieties
over k = Fp, and show how to get the statements of Conjectures 2.15 and 2.16
for varieties over Fpe . We start with the rationality of the zeta function. As we
have seen in § 2.2, given a variety X defined over Fq, with q = pe, we have the
q-Frobenius morphism FrobX,q : X → X (a morphism over Fq). Furthermore, if

X = X×SpecFqSpec k, then we have an endomorphism F := FrobX,q = FrobX,q×Id

of X̃. Note that FrobX,qm = Fm.

Theorem 4.11. If X is a nonsingular, geometrically connected, n-dimensional
projective variety over Fq, then

Z(X, t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)
,

where for every i with 0 ≤ i ≤ 2n we have Pi(t) = det(Id − tF ∗|Hi(X)). In
particular, Z(X, t) ∈ Q(t).

We will make use of the following general formula for the characteristic poly-
nomial of a linear endomorphism.

Lemma 4.12. For every endomorphism φ of a finite dimensional vector space
V over a field K, we have

det(Id− tφ) = exp

−∑
m≥1

trace(φm|V )
tm

m

 .
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Proof. After replacing K by its algebraic closure K, V by V = V ⊗K K,
and φ by φ ⊗K K : V → V , we may assume that K is algebraically closed. After
choosing a suitable basis for V , we may assume that φ is represented by an upper
diagonal matrix. If the entries on the diagonal are a1, . . . , ad, then det(Id− tφ) =
(1− a1t) · · · (1− adt). On the other hand,

exp

−∑
m≥1

trace(φm|V )
tm

m

 = exp

−∑
m≥1

d∑
i=1

ami t
m

m

 = exp

(
d∑
i=1

log(1− ait)

)

=

d∏
i=1

(1− ait).

�

Proof of Theorem 4.11. Let Nm = |X(Fqm)|. As we have seen in § 2.2,

we have Nm = |{x ∈ X | Fm(x) = x}|. Furthermore, the graph Γm ⊂ X ×
X of Fm is transverse to the diagonal, hence by Theorem 4.7 we have Nm =∑2n
i=0(−1)itrace((Fm)∗|Hi(X)). Using Lemma 4.12, we get

Z(X, t) = exp

∑
m≥1

2n∑
i=0

(−1)itrace((F ∗)m|Hi(X))
tm

m


=

2n∏
i=0

det(Id− tF ∗|Hi(X))(−1)i+1

.

This clearly shows that Z(X, t) lies in K(t). On the other hand, since Z(X, t) ∈
Q[[t]], the proposition below shows that Z(X, t) lies in Q(t). �

Proposition 4.13. Let L be an arbitrary field, and f =
∑
m≥0 amt

m ∈ L[[t]].

We have f ∈ L(t) if and only if there are nonnegative integers M and N such that
the linear span of the vectors

(4.2) {(ai, ai+1, . . . , ai+N ) ∈ L⊕(N+1) | i ≥M}

is a proper subspace of L⊕(N+1). In particular, if L′/L is a field extension, then f
lies in L′(t) if and only if it lies in L(t).

Proof. We have f ∈ L(t) if and only if there are nonnegative integers M and

N , and c0, . . . , cN ∈ L, not all zero, such that f(t) ·
∑N
i=0 cit

i is a polynomial of
degree < M +N . In other words, we need

(4.3) cNai + cN−1ai+1 + . . .+ c0ai+N = 0 for all i ≥M.

This condition holds precisely when the linear function `(x0, . . . , xN ) =
∑N
j=0 cN−jxj

vanishes on the linear span of the vectors in (4.2), hence the first assertion in the
proposition. The second assertion follows from the fact that if v1, . . . , vr are ele-
ments of a vector space V over L, then v1, . . . , vr are linearly independent if and
only if v1 ⊗ 1, . . . , vr ⊗ 1 are linearly independent over L′ in V ⊗L L′. �

We now turn to the functional equation. We keep the same assumption and
notation as in Theorem 4.11.
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Theorem 4.14. If X is a nonsingular, geometrically connected, n-dimensional
projective algebraic variety over Fq, and E = (∆2), where ∆ ⊂ X × X is the
diagonal, we have

Z(X, 1/qnt) = ±qnE/2tEZ(X, t).

The key ingredient is the following linear algebra lemma (see [Har, Lemma 4.3,
App. C]).

Lemma 4.15. Let φ : V × W → K be a perfect pairing of vector spaces of
dimension r over the field K. If λ ∈ Kr{0} and f ∈ EndK(V ) and g ∈ EndK(W )
are such that φ(f(v), g(w)) = λφ(v, w) for every v ∈ V , w ∈W , then

(4.4) det(Id− tg|W ) =
(−1)rλrtr

det(f |V )
det(Id− λ−1t−1f |V )

and

(4.5) det(g|W ) =
λr

det(f |V )
.

Proof. After replacing K by its algebraic closure K, and extending the scalars
to K, we may assume that K is algebraically closed. In this case we can find a
basis e1, . . . , er of V such that if we write f(ei) =

∑r
j=1 ai,jej , we have ai,j = 0 for

i > j. Let e′1, . . . , e
′
r be the basis of W such that φ(ei, e

′
j) = δi,j for every i and j.

Note that g is invertible: if g(w) = 0, then 0 = φ(f(v), g(w)) = λφ(v, w) for
every v ∈ V , hence w = 0. Since φ(f(ei), e

′
j) = 0 for j < i, we deduce that

φ(ei, g
−1(e′j)) = 0. If we write g−1(e′j) =

∑r
`=1 bj,`e

′
`, we have bj,i = 0 for i > j.

Furthermore,

aj,j = φ(f(ej), e
′
j) = λφ(ej , g

−1(e′j)) = λbj,j .

Since det(f |V ) =
∏r
i=1 ai,i and det(g|W ) =

∏r
j=1 b

−1
j,j = λr/

∏r
i=1 ai,i, we get (4.5).

We also have

det(Id− tg|W ) = det(g|W ) · det(g−1 − tId|W ) =
λr

det(f |V )
·
r∏
j=1

(aj,jλ
−1 − t)

=
(−1)rλrtr

det(f |V )
·
r∏
j=1

(1− aj,jλ−1t−1) =
(−1)rλrtr

det(f |V )
det(Id− λ−1t−1f |V ).

�

Proof of Theorem 4.14. We apply the lemma to the perfect pairing given
by Poincaré duality:

φi : H
i(X)⊗H2n−i(X)→ H2n(X)→ K, φi(α⊗ β) = Tr(α ∪ β).

Note that F : X → X is a finite morphism of degree qn: indeed, it is enough to show
that FrobX,q : X → X has this property. Arguing as in the proof of Proposition 2.4,
we reduce the assertion to the case X = An, when it follows from the fact that
k[x1, . . . , xn] is free of rank qn over k[xq1, . . . , x

q
n].

Proposition 4.1 implies that F ∗ is given by multiplication by qn on H2n(X).
Therefore

φi(F
∗(α), F ∗(β)) = TrX(F ∗(α ∪ β)) = TrX(qdα ∪ β) = qdφi(α, β),
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for every α ∈ Hi(X) and β ∈ H2n−i(X). Lemma 4.15 implies that if we put
Bi = dimK H

i(X) and Pi(t) = det(Id− tF ∗|Hi(X)), then

(4.6) det(F ∗|H2n−i(X)) = qnBi/det(F ∗|Hi(X)) and

(4.7) P2n−i(t) =
(−1)BiqnBitBi

det(F ∗|Hi(X))
Pi(1/q

nt).

Using (4.6), (4.7) and Theorem 4.11, as well as the fact that E =
∑2n
i=0(−1)iBi

by Proposition 4.8, we deduce

Z(1/qnt) =

2n∏
i=0

Pi(1/q
nt)(−1)i+1

=

2n∏
i=0

P2n−i(t)
(−1)i+1

· (−1)EqnEtE∏2n
i=0 det(F ∗|Hi(X))(−1)i

= ±Z(X, t) · q
nEtE

qnE/2
= ±qnEtEZ(X, t).

�

Remark 4.16. It follows from the above proof that the sign in the functional
equation is (−1)E+a, where a = 0 if det(F ∗ | Hi(X)) = qnBn/2, and a = 1 if

det(F ∗ | Hi(X)) = −qnBn/2. If we write Pn(t) =
∏Bn
i=1(1 − αit), an easy compu-

tation using the identity (4.7) for i = n implies that the multiset {α1, . . . , αBn}
is invariant under α → qBn/α, and

∏Bn
i=1 αi = (−1)aqnBn/2. Therefore a has the

same parity as the number of αi equal to −qn/2.

4.3. A brief introduction to `-adic cohomology

In this section we give a brief overview of étale cohomology, in general, and of
`-adic cohomology, in particular. Needless to say, we will only describe the basic
notions and results. For details and for proofs, the reader is referred to [Del1] or
[Mil].

The basic idea behind étale topology is to replace the Zariski topology on an
algebraic variety by a different topology. In fact, this is not a topology in the
usual sense, but a Grothendieck topology. Sheaf theory, and in particular sheaf
cohomology still make sense in this setting, and this allows the definition of `-adic
cohomology.

As a motivation, note that in the case of a smooth, projective, complex algebraic
variety we would like to recover the singular cohomology, with suitable coefficients
There are two ways of doing this algebraically. The first one consists in taking
the hypercohomology of the de Rham complex. This approach, however, is known
to produce pathologies in positive characteristic. The second approach consists in
“refining” the Zariski topology, which as it stands, does not reflect the classical
topology. The key is the notion of étale morphism. It is worth recalling that a
morphism of complex algebraic varieties is étale if and only if it is a local analytic
isomorphism in the classical topology.

Let X be a fixed Noetherian scheme. The role of the open subsets of X will
be played by the category Ét(X) of étale schemes Y → X over X. Instead of

considering inclusions between open subsets, we consider morphisms in Ét(X) (note
that if Y1 and Y2 are étale schemes over X, any morphism Y1 → Y2 of schemes over
X is étale). The category Ét(X) has fiber products. The role of open covers is
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played by étale covers: these are families (Ui
fi→ U)i of étale schemes over X such

that U =
⋃
i fi(Ui). The set of étale covers of U is denoted by Cov(U).

What makes this data into a Grothendieck topology is the fact that it satisfies
the following conditions:

(C1) If φ : U → V is an isomorphism in Ét(X), then (φ) ∈ Cov(V ).
(C2) If (Ui → U)i ∈ Cov(U) and for every i we have (Ui,j → Ui)j ∈ Cov(Ui),

then (Ui,j → U)i,j ∈ Cov(U).

(C3) If (Ui → U)i ∈ Cov(U), and V → U is a morphism in Ét(X), then we
have (Ui ×U V → V )i ∈ Cov(V ).

This Grothendieck topology is the étale topology on X.
It follows from definition that if U ∈ Ét(X), and if (Ui)i is an open cover of

U , then (Ui → U)i is in Cov(U). Another important type of cover is the following.
A finite étale morphism V → U is a Galois cover with group G if G acts (on the
right) on V over U , and if the natural morphism⊔

g∈G
Vg → V ×U V, y ∈ Vg → (y, yg)

is an isomorphism, where Vg = V for every g ∈ G. Note that this is a G-equivariant
isomorphism if we let G act on the left-hand side so that h ∈ G takes Vg to Vgh via
the identity map. It is a general fact that every finite étale morphism V → U can
be dominated by a Galois cover W → U .

Once we have a Grothendieck topology on X, we can extend the notions of
presheaves and sheaves. An étale presheaf on X (say, of abelian groups) is a con-

travariant functor from Ét(X) to the category of abelian groups. An étale presheaf

F is a sheaf if for every U ∈ Ét(X) and every étale cover (Ui → U)i, the following
complex

0→ F(U)→
∏
i

F(Ui)→
∏
i,j

F(Ui ×U Uj)

is exact. In particular, F defines a sheaf FU on U , in the usual sense, for every U
in Ét(X). On the other hand, if V → U is a Galois cover in Ét(X) with group G,
then the corresponding condition on F is that F(U) ' F(V )G (note that G has a
natural action on F since F is a presheaf). Let us consider some examples of étale
sheaves.

Example 4.17. If M is a quasi-coherent sheaf of OX -modules on X (in the

usual sense), then we put for U
f→ X in Ét(X)

W (M)(U) = Γ(U, f∗(M)).

It is a consequence of faithfully flat descent that W (M) is an étale sheaf on X.
Abusing notation, we usually denote W (M) simply by M.

Example 4.18. If A is any abelian group, then we get an étale constant sheaf
on X that takes every U → X in Ét(X) to Aπ0(U), where π0(U) is the set of
connected components of U . This is denoted by AX , but whenever the scheme X
is understood, we drop the subscript.

Example 4.19. Suppose that G is an abelian group scheme over X. We
may consider G as an étale presheaf on X by defining for U → X in Ét(X),
G(U) = HomX(U,G). It is another consequence of faithfully flat descent that G
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is an étale sheaf on X. For example, if G = Gm = X ×SpecZ Spec Z[t, t−1], then
Gm(U) is the set O(U)∗ of invertible elements in O(U). Another example is given
by the closed subscheme

µn = X ×SpecZ Spec Z[t]/(tn − 1) ↪→ Gm.

In this case we have µn(U) = {u ∈ OX(U) | un = 1}.

Example 4.20. As a last example, consider the case when X = Spec k, where
k is a field. Note that in this case an object in Ét(X) is just a disjoint union of
finitely many Spec Ki, where the Ki are finite, separable extensions of k. It is clear
that every étale sheaf F over X is determined by its values MK := F(SpecK),
for K/k as above. Furthermore, G(K/k) has an induced action on MK , and for
every Galois extension L/K of finite, separable extensions of k, we have a functorial
isomorphism MK ' (ML)G(L/K). Let M := lim−→

K/k

MK . This carries a continuous

action of G = G(ksep/k), where ksep is a separable closure of k (the action being
continuous means that the stabilizer of every element in M is an open subgroup
of G). One can show that this defines an equivalence of categories between the
category of étale sheaves on Spec k and the category of abelian groups with a
continuous G-action.

Suppose now that X is an arbitrary Noetherian scheme. It is easy to see that
the category Pshét(X) of étale presheaves on X is an abelian category. If Shét(X)
is the category of étale sheaves on X, then one can show that the natural inclusion
Pshét(X) ↪→ Shét(X) has a left adjoint, that takes an étale presheaf F to the
associated étale sheaf. Using this, one can show that also Shét(X) is an abelian
category. We note that a complex of étale sheaves on X

F ′ u→ F v→ F ′′

is exact if and only if for every U → X in Ét(X), every a ∈ F(U) such that

v(a) = 0, and every x ∈ U , there is f : V → U in Ét(X) with x ∈ f(V ), such that
the image of a in F(V ) lies in Im(F ′(V )→ F(V )).

Example 4.21. Suppose that X is a scheme over Fp, and let us assume, for
simplicity, that X is integral. There is an important exact sequence of étale sheaves
on X, the Artin-Schreier sequence, given by

(4.8) 0 // (Fp)X // OX
Frobp−Id// OX // 0,

where for every U → X in Ét(X), we recall that Frobp : OX(U)→ OX(U) is given
by u → up. It is clear that (Fp)X is the kernel of Frobp − Id: this follows from
the fact that for every domain A over Fp, we have Fp = {a ∈ A | ap = a}. Note
that Frobp − Id is surjective on OX (for the étale topology). Indeed, given any
Noetherian ring A and a ∈ A, the morphism φ : A→ B = A[t]/(tp − t− a) is étale
and surjective, and there is b = t ∈ B such that φ(a) = bp − b.

Example 4.22. Suppose now that X is a scheme over a field k, and n is a
positive integer, not divisible by char(k). In this case we have an exact sequence of
étale sheaves, the Kummer sequence

0→ µ` → Gm
n→ Gm → 0.
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In order to see that the morphism Gm → Gm that takes u→ un is surjective, it is
enough to note that for every k-algebra A, and every a ∈ A, the natural morphism
φ : A→ B = A[t]/(tn − a) is étale and surjective, and there is b = t ∈ B, such that
φ(a) = tn.

Note that if k is separably closed, then it is clear that for every k-algebra that
is an integral domain, we have {u ∈ A | un = 1} ⊆ k. Suppose, for simplicity, that
X is an integral scheme. In this case, the choice of a primitive nth root of 1 gives
an isomorphism µn ' (Z/nZ)X .

If f : X → Y is a morphism of Noetherian schemes, for every U → Y in Ét(Y ),

we have X ×Y U → X in Ét(X). Furthermore, if (Ui → U)i is an étale cover of U ,
then (X×Y Ui → X×Y U)i is an étale cover of X×Y U . Using this, it is easy to see
that we have a functor f∗ : Shét(X)→ Shét(Y ), such that f∗(F)(U) = F(X×Y U).
This is a left exact functor, and one can show that it has a left adjoint, denoted by
f∗. For example, we have f∗(AY ) ' AX .

One can show that the category Shét(X) has enough injectives. In particular,

for every U → X in Ét(X) we can consider the right derived functors of the left
exact functor F → F(U). These are written as Hi

ét(U,F), for i ≥ 0.

Example 4.23. If M is a quasi-coherent sheaf on X, and W (M) is the corre-
sponding étale sheaf associated to M as in Example 4.17, then one can show that
there are canonical isomorphisms Hi(X,M) ' Hi

ét(X,W (M)).

Example 4.24. Let X = Spec k, where k is a field. If we identify an étale
sheaf on X with an abelian group M with a continuous G-action, where G =
G(ksep/k), then the functor of taking global sections for the sheaf gets identified
to the functor M →MG. Therefore its derived functors are given precisely by the
Galois cohomology functors.

Example 4.25. One can show that as in the case of the Zariski topology,
there is an isomorphism H1

ét(X,Gm) ' Pic(X). Suppose now that X is an integral
scheme over a separably closed field k, and n is a positive integer that is not divisible
by char(k). It follows from Example 4.22 that we have an exact sequence

Γ(X,OX)∗
α→ Γ(X,OX)∗ → H1

ét(X,Z/nZ)→ Pic(X)
β→ Pic(X),

where both α and β are given by taking the nth-power.

Example 4.26. Suppose that X is an integral scheme over Fp. The Artin-
Schreier exact sequence from Example 4.21, together with the assertion in Exam-
ple 4.23 implies that we have a long exact sequence of cohomology
(4.9)

. . . // Hi
ét(X,Fp)

// Hi(X,OX)
Id−Frobp// Hi(X,OX) // Hi+1

ét (X,Fp) . . . .

Suppose now that X is complete over a field k, so each Hi(X,OX) is finite-
dimensional over k. Since Frobp : Hi(X,OX) → Hi(X,OX) has the property that
Frobp(au) = apFrobp(u), it is a general fact that if k is algebraically closed, the
morphism Id − Frobp is always surjective. It follows that under this assumption,
the above long exact sequence breaks into short exact sequences

(4.10) 0 // Hi
ét(X,Fp)

// Hi(X,OX)
Id−Frobp// Hi(X,OX) // 0.
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It turns out that it is particularly interesting to compute the étale cohomology
of schemes with coefficients in finite abelian groups. The basic computation is that
of the étale cohomology groups of a curve. In fact, the proofs of the fundamen-
tal results about étale cohomology are reduced to the case of curves via involved
dévissage arguments.

Theorem 4.27. Let X be a smooth, connected, projective curve, over an al-
gebraically closed field k. If n is a positive integer that is not divisible by char(k),
then there are canonical isomorphisms

H0
ét(X,µn) ' µn(Spec k),

H1
ét(X,µn) ' {L ∈ Pic(X) | Ln ' OX},

H2
ét(X,µn) ' Z/nZ,

while Hi
ét(X,µn) = 0 for i > 2.

The key point is to show that Hi
ét(X,Gm) = 0 for i ≥ 2. This is deduced

from a theorem of Tsen, saying that every nonconstant homogeneous polynomial
f ∈ k[x1, . . . , xn] of degree < n has a nontrivial zero. The assertions in the above
theorem then follow from the long exact sequence in cohomology corresponding to
the Kummer exact sequence. Note that µn(Spec k) is non-canonically isomorphic
to Z/nZ. Furthermore, every L ∈ Pic(X) such that Ln ' OX lies in Pic0(X).
Since Pic0(X) consists of the k-rational points of a g-dimensional abelian variety
over k (where g is the genus of X), it follows that

{L ∈ Pic(X) | Ln ' OX} ' (Z/nZ)2g

(see [Mum1, p. 60]). Furthermore, multiplication by n is surjective on Pic0(X)
(see [Mum1, p. 40]), which gives the isomorphism H2

ét(X,µn) ' Z/nZ in the
theorem.

Remark 4.28. When the characteristic of k divides n, the ranks of the cohomol-
ogy groups Hi

ét(X,Z/nZ) do not behave as expected. Suppose, for example, that X
is an elliptic curve defined over an algebraically closed field of characteristic p > 0. It
follows from the exact sequence (4.10) that dimFp H

1
ét(X,Z/pZ) ≤ 1 (compare with

the fact that for a prime ` 6= p, we have dimF` H
1
ét(X,Z/pZ) = 2). On the other

hand, this étale cohomology group detects interesting information about the elliptic
curve: it follows from the exact sequence (4.10) that dimFp H

1
ét(X,Z/pZ) = 1 if

and only if the Frobenius action on H1(X,OX) is nonzero (in this case one says
that X is ordinary ; otherwise, it is supersingular).

The `-adic cohomology groups are defined as follows. Let k be an algebraically
closed field, and let ` be a prime different from char(k) (in case this is positive).
For every i ≥ 0, and every m ≥ 1, consider the Z/`mZ-module Hi

ét(X,Z/`
mZ).

We have obvious maps

Hi
ét(X,Z/`

m+1Z)→ Hi
ét(X,Z/`

mZ)

and one puts
Hi

ét(X,Z`) := lim←−
m

Hi
ét(X,Z/`

mZ).

This has a natural structure of Z`-module, where Z` is the ring of `-adic integers,
and one defines

Hi
ét(X,Q`) := Hi

ét(X,Z`)⊗Z` Q`.
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It is worth pointing out that taking cohomology does not commute with projective
limits, hence Hi

ét(X,Z`) is not the étale cohomology group of X with coefficients
in the constant sheaf Z`. It follows from the fundamental theorems on étale co-
homology that when restricting to smooth, connected, projective varieties over k,
one gets in this way a Weil cohomology theory with coefficients in Q` (see [Mil,
Chapter VI]).

In particular, if X is a smooth, geometrically connected, n-dimensional projec-
tive variety over Fq, with q = pe, let ` be a prime different from p. Theorem 4.11
gives the following expression for the zeta function of X:

(4.11) Z(X, t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)
,

where Pi(t) = det
(
Id− tF ∗|Hi

ét(X ×k k,Q`)
)
.

Furthermore, general results about étale cohomology give a proof for the Weil
conjecture relating the zeta function Z(X, t) with the Betti numbers for singu-
lar cohomology (see Conjecture 2.18). Note first that we have already seen the
first assertion in this conjecture: with the above notation, Proposition 4.8 gives∑
i≥0(−1)ideg(Pi) = (∆2), where ∆ ⊆ X ×X is the diagonal. Suppose now that

X̃ is a smooth projective scheme over a finitely generated Z-subalgebra R of C,

and P ∈ Spec(R) is such that R/P = Fq, and X̃ ×SpecR Spec Fq = X. It is a
consequence of the smooth base change theorem (see [Mil, Corollary VI.4.2]) that
there are isomorphisms

Hi
ét(X,Z/`

mZ) ' Hi
ét(X̃ ×SpecR Spec C,Z/`mZ).

Furthermore, a comparison theorem between singular and étale cohomology (see
[Mil, Theorem III.3.12]) implies that the étale and singular cohomology groups of
smooth complex varieties, with coefficients in finite abelian groups are isomorphic.
In particular,

Hi
ét(X̃ ×SpecR Spec C,Z/`mZ) ' Hi(X̃(C)an,Z/`mZ).

After taking the projective limit over m ≥ 1, and tensoring with Q`, we get

Hi
ét(X,Q`) ' Hi(X̃(C)an,Q`).

Therefore we have deg(Pi) = dimQH
i(X̃(C)an,Q), proving the fourth of the Weil

conjectures.
The fundamental result of Deligne [Del1], settling the hardest of the Weil

conjectures, the analogue of the Riemann Hypothesis, is the following.

Theorem 4.29. If X is a smooth, geometrically connected, projective variety
over Fq, and F = FrobX,q is the induced Frobenius morphism on X = X×k k, then

det
(
Id− tF ∗|Hi

ét(X,Q`)
)

=
∏
i

(1− αit) ∈ Z[t],

and for every choice of an isomorphism Q` ' C, we have |αi| = qi/2 for all i.

We mention that one can give a proof for the rationality of the zeta function
for arbitrary varieties in the setting of `-adic cohomology. The point is that if k
is an algebraically closed field of characteristic p, and ` is a prime different from
p, then for every separated variety over k one can define `-adic cohomology groups
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with compact supports Hi
c(Y,Q`). These are always finite-dimensional Q`-vector

spaces, and they are zero unless 0 ≤ i ≤ 2 dim(Y ).
If X is a separated variety over a finite field Fq, and if F = FrobX,q is the

Frobenius endomorphism of X = X ×k k, then one has the following formula for
the zeta function of X (see [Mil, Theorem VI.13.1]):

Z(X, t) =
∏
i≥0

det(F ∗ | Hi
c(X,Q`)

(−1)i+1

.

In particular, it follows that Z(X, t) is a rational function, and this implies the
rationality of the zeta function for every variety over Fq.



CHAPTER 5

Fulton’s trace formula for coherent sheaf
cohomology

Our goal in this chapter is to give a proof, following [Ful3], of a trace formula
for the Frobenius action on the cohomology of the structure sheaf.

5.1. The statement of the main theorem

Suppose that X is a scheme over the finite field k = Fq. Recall that we have the
q-Frobenius morphism F = FrobX,q : X → X, whose corresponding morphism of
sheaves OX → F∗(OX) = OX is given by u→ uq. This is an Fq-linear morphism,
and therefore we get induced Fq-linear actions F : Hi(X,OX)→ Hi(X,OX).

Theorem 5.1. If X is a projective scheme over a finite field Fq, then

(5.1) |X(Fq)|mod p =

dim(X)∑
i=0

(−1)itrace(F |Hi(X,OX)).

Remark 5.2. Note that we have |X(Fq)| = |Xred(Fq)|. However, it is not
a priori clear that the term on the right-hand side of (5.1) only depends on the
reduced scheme structure of X.

Remark 5.3. Given X as in the above theorem, let Xm = X×SpecFq Spec Fqm .
Note that FrobXm,qm = FrobmX,q × Id, and we have a canonical isomorphism

Hi(Xm,OXm) ' Hi(X,OX)⊗Fq Fqm .

By applying the theorem for Xm, we get

|X(Fqm)|mod p =

dim(X)∑
i=0

(−1)itrace(Fm|Hi(X,OX)).

Recall from § 2.2 that we may identify X(Fq) with the closed points x ∈ X
with k(x) = Fq. In what follows we will often make this identification without any
further comment.

A stronger congruence formula was proved be Deligne [Del2] and Katz [Katz].
In fact, we will also prove a strengthening of the above statement, but in a different
direction. The first extension is to sheaves with a Frobenius action.

A coherent F -module on X is a coherent sheaf M on X, together with a
Frobenius action onM, that is, a morphism of sheaves of OX -modules FM : M→
F∗(M). In other words, FM is a morphism of sheaves of Fq-vector spacesOX → OX
such that FM(am) = aqFM(m) for every a ∈ OX(U) and m ∈ M(U), where U is
any open subset of X. As above, since FM is Fq-linear, it follows that it induces
Fq-linear maps on cohomology that, abusing notation, we write FM : Hi(X,M)→

41
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Hi(X,M). Despite the fact that FM is not OX -linear, for every x ∈ X(Fq) we get
an Fq-linear endomorphism of M(x) :=Mx ⊗ k(x), that we denote by FM(x).

Theorem 5.4. If X is a projective scheme over Fq, and (M, FM) is a coherent
F -module on X, we have

(5.2)
∑

x∈X(Fq)

trace(FM(x)) =

dim(X)∑
i=0

(−1)itrace(FM|Hi(X,M)).

An obvious example of a coherent F -module on X is given by (OX , F ). Note
that if x ∈ X(Fq), then F (x) is the identity on OX(x) = Fq. Therefore the result
in Theorem 5.1 is a special case of the one in Theorem 5.4.

In fact, Theorem 5.4 will follow from a result describing the Grothendieck
group of coherent F -modues. Given a scheme X of finite type over Fq, consider
the category CohF (X) consisting of coherent F -modules. A morphism (M, FM)→
(M′, FM′) in this category is a morphism f : M →M′ of coherent sheaves, such
that f ◦ FM = FM′ ◦ f . It is easy to see that if f is a morphism of coherent
F -modules, then Ker(f) and Coker(f) have induced Frobenius actions that makes
them coherent F -modules. We thus see that CohF (X) is an abelian category. When-
ever the Frobenius action is understood, we simply write M instead of (M, FM).

The Grothendieck group KF
• (X) of coherent F -modules is the quotient of

the free abelian group on isomorphism classes of coherent F -modules (M, FM)
as above, by the following type of relations:

(A) (M, FM) = (M′, FM) + (M′′, FM′′), for every exact sequence

0→ (M′, FM′)→ (M, FM′)→ (M′′, FM′′)→ 0.

(B) (M, F1 + F2) = (M, F1) + (M, F2) for every morphisms of OX -modules
F1, F2 : M→ F∗(M), where M is a coherent sheaf on X.

Given a coherent F -module (M, FM), we denote by [M, FM] its class in the
Grothendieck group. Note that KF

• (X) is, in fact, an Fq-vector space, with λ ·
[M, FM] = [M, λFM].

Lemma 5.5. We have an isomorphism KF
• (Spec Fq) ' Fq of Fq-vector spaces,

given by
[M, FM]→ trace(FM(x)),

where x is the unique point of Spec Fq.

Proof. Note that CohF (Spec Fq) is the category of pairs (V, φ), where V is
a finite-dimensional vector space over Fq, and φ is a linear endomorphism. Since
trace(φ1 +φ2) = trace(φ1)+trace(φ2), and given an exact sequence 0→ (V ′, φ′)→
(V, φ) → (V ′′, φ′′) → 0 we have trace(φ) = trace(φ′) + trace(φ′′), taking (V, φ) to
trace(φ) gives a morphism of Fq-vector spaces u : KF

• (Spec Fq) → Fq. We have a
map w in the opposite direction that takes a ∈ Fq to [Fq, a ·Id]. It is clear that u◦w
is the identity. In order to show that u and w are inverse isomorphisms, it is enough
to show that w is surjective. The fact that [V, φ] lies in the image of w follows easily
by induction on dim(V ), since whenever dim(V ) ≥ 2, φ can be written as a sum of
maps, each of which has an invariant proper nonzero subspace. �

If f : X → Y is a proper morphism, note that the higher direct images induce
functors Rif∗ : CohF (X)→ CohF (Y ). Indeed, if U ⊆ Y is an affine open subset of
Y , and (M, FM) ∈ CohF (X), then Hi(f−1(U),M) has an endomorphism induced
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by FM, and these endomorphisms glue together to give the Frobenius action on
Rif∗(M). As a consequence, we get a morphism of Fq-vector spaces f∗ : KF

• (X)→
KF
• (Y ) given by f∗([M]) =

∑
i≥0(−1)i[Rif∗(M)]. Note that this is well-defined:

if
0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0

is an exact sequence of coherent F -modules, then the long exact sequence in coho-
mology

. . .→ Rif∗(M′)→ Rif∗(M)→ Rif∗(M′′)→ Ri+1f∗(M′)→ . . .

is compatible with the Frobenius actions, and therefore we get∑
i≥0

(−1)i[Rif∗(M)] =
∑
i≥0

(−1)i[Rif∗(M′)] +
∑
i≥0

(−1)i[Rif∗(M′′)] in KF
• (Y ).

The compatibility with the type (B) relations is straightforward, hence f∗ : KF
• (X)→

KF
• (Y ) is well-defined.

Exercise 5.6. Use the Leray spectral sequence to show that if g : Y → Z is
another proper morphism, then we have (g ◦ f)∗ = g∗ ◦ f∗ : KF

• (X)→ KF
• (Z).

In fact, we will only use the assertion in the above exercise when f is a closed
immersion, in which case everything is clear since Rig∗ ◦ f∗ = Ri(g ◦ f)∗ for all
i ≥ 0, and Rjf∗ = 0 for all j ≥ 1. The proof of the next lemma is straightforward.

Lemma 5.7. If X is the disjoint union of the subschemes X1, . . . , Xr, then the
inclusions Xi ↪→ X induce an isomorphism

r⊕
i=1

KF
• (Xi) ' KF

• (X).

The following is the main result of this chapter. For a scheme X, we consider
X(Fq) as a closed subscheme of X, with the reduced scheme structure. Note that
by Lemmas 5.5 and 5.7, we have an isomorphism KF

• (X(Fq)) ' ⊕x∈X(Fq)Fq(x),

and we denote by 〈x〉 ∈ KF
• (X(Fq)) the element corresponding to 1 ∈ Fq(x).

Theorem 5.8. (Localization Theorem) For every projective scheme X over Fq,
the inclusion ι : X(Fq) ↪→ X induces an isomorphism KF

• (X(Fq)) ' KF
• (X). Its

inverse is given by t : KF
• (X)→ KF

• (X(Fq)),

t([M, FM]) =
∑

x∈X(Fq)

trace(FM(x))〈x〉.

Let us see that this gives Theorem 5.4.

Proof of Theorem 5.4. Consider the structure morphism f : X → Spec Fq.
Let 〈pt〉 denote the element of KF

• (Spec Fq) that corresponds to 1 ∈ Fq via the
isomorphism given by Lemma 5.5. By definition, for every [M, FM] ∈ KF

• (X), we
have

f∗([M, FM]) =

dim(X)∑
i=0

(−1)itrace(FM|Hi(X,M))

 〈pt〉.

On the other hand, if we apply the isomorphism t in Theorem 5.8, we have

u := t([M, FM]) =
∑

x∈X(Fq)

trace(FM(x))〈x〉.
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If ι : X(Fq)→ X is the inclusion, then it is clear that

f∗

ι∗
 ∑
x∈X(Fq)

mx〈x〉

 =

 ∑
x∈X(Fq)

mx

 〈pt〉.

In particular, we have f∗ ◦ ι∗(u) =
(∑

x∈X(Fq)
trace(FM(x))

)
〈pt〉. Since t and ι

are inverse to each other, the assertion in Theorem 5.4 follows. �

Remark 5.9. In fact, Theorem 5.8 is proved in [Ful3] also for arbitrary schemes
of finite type over Fq. In particular, Theorems 5.1 and 5.4 also hold if X is only
assumed to be complete.

5.2. The proof of the Localization Theorem

We start with a few lemmas.

Lemma 5.10. For every scheme X, and every coherent sheaf on X with Frobe-
nius action (M, FM) such that FM is nilpotent, we have [M, FM] = 0 in KF

• (X).

Proof. We prove the assertion by induction on m such that φm = 0. If
m = 1, it is enough to use relation (B) in the definition of KF

• (X), that gives
[M, 0] = [M, 0] + [M, 0]. If m ≥ 2, and M′ = Ker(FM), then M′ is a coherent
OX -submodule of M, and we have an exact sequence of coherent sheaves with
Frobenius action

0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0.

This gives [M, FM] = [M′, FM′ ] + [M′′, FM′′ ]. Since FM′ = 0 and Fm−1
M′′ = 0, it

follows by the induction hypothesis that [M′, FM′ ] = 0 = [M′′, FM′′ ]. Therefore
[M, FM] = 0. �

Lemma 5.11. If j : X ↪→ Y is a closed embedding, then we have a morphism of
Fq-vector spaces j∗ : KF

• (Y )→ KF
• (X) given by j∗([M, FM]) = [M⊗OY OX , FM],

where FM is the Frobenius action induced by FM on M⊗OY OX . In particular,
the composition j∗ ◦ j∗ is the identity on KF

• (X).

Proof. Let I be the ideal defining X in Y . Since FM(IM) ⊆ IqM, it
follows that FM indeed induces a Frobenius action FM on M/IM. We have
F1 + F2 = F1 + F2, hence in order to show that we have an induced morphism
KF
• (Y )→ KF

• (X), we only need to show that if

0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0

is an exact sequence of coherent F -modules on Y , then

[M/IM] = [M′/IM′] + [M′′/IM′′]
in KF

• (X). Note that we have an exact sequence of coherent F -modules on X

0→M′/M′ ∩ IM→M/IM→M′′/IM′′ → 0,

and a surjection M′/IM′ →M′/M′ ∩ IM, with kernel M′ ∩ IM/IM′. In light
of Lemma 5.10, it is enough to show that the Frobenius action on M′ ∩ IM/IM′
is nilpotent. Since FmM(IM) ⊆ Iqm(M), we see that M′ ∩ FmM(IM) ⊆ IM′ for
m� 0 by Artin-Rees. This shows that j∗ is well-defined, and the fact that j∗ ◦ j∗
is the identity follows from definition. �
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Note that if X is any scheme, and we consider j : X(Fq) ↪→ X, then j∗ is
the morphism t in Theorem 5.8. Since j∗ ◦ j∗ is the identity, in order to prove
Theorem 5.8 for a projective scheme X, it is enough to show that j∗ ◦ j∗ is the
identity on KF

• (X). In fact, it is enough to show that j∗ is surjective.

Lemma 5.12. If (M, φ) is a coherent OX-module with a Frobenius action, and

M decomposes asM =M1⊕ . . .⊕Mr, and if φi,j is the compositionMi →M
φ→

M→Mj, then [M, φ] =
∑r
i=1[Mi, φi,i] in KF

• (X).

Proof. Let φ̃i,j : M→M be the map induced by φi,j , so that φ =
∑
i,j φ̃i,j .

By condition (B) we have [M, φ] =
∑
i,j [M, φ̃i,j ]. For every i 6= j we have φ̃2

i,j = 0,

hence [M, φ̃i,j ] = 0 by Lemma 5.10. Therefore

[M, φ] =

r∑
i=1

[M, φ̃i,i] =

r∑
i=1

[Mi, φi,i],

by condition (A). �

The key ingredient in the proof of Theorem 5.8 is provided by the caseX = Pn
Fq

.

We now turn to the description of KF
• (Pn

Fq
). We will use the Serre correspondence

between coherent sheaves on Pn
Fq

and finitely generated graded modules over S =

Fq[x0, . . . , xn].
Suppose thatM is a coherent sheaf on Pn

Fq
with a Frobenius action FM : M→

F∗(M). This induces for every i a morphism

M(i)→ F∗(M)⊗O(i)→ F∗(M(qi)),

where we used the projection formula, and the fact that for every line bundle L we
have F ∗(L) ' Lq. It follows that if M = Γ∗(M) := ⊕i≥0Γ(Pn

Fq
,M(i)), then we

get a graded Frobenius action on M : this is an Fq-linear map FM : M → M such
that FM (Mi) ⊆Mqi and FM (au) = aqFM (u) for a ∈ S and u ∈M .

Conversely, given a finitely generated graded S-module M with a graded Frobe-

nius action FM , we get an induced coherent F -module structure on M̃ , as follows.

If Ui ⊂ Pn
Fq

is the open subset defined by xi 6= 0, then Γ(Ui, M̃) = (Mxi)0, and

F
M̃

(
u
xNi

)
= FM (u)

xqNi
for every u ∈MN . It is straightforward to check that this gives

a Frobenius action on M̃ . If (M, FM) is a coherent F -module and M = Γ∗(M),
with the graded Frobenius action described above, then we have an isomorphism

of graded F -modules F ' M̃ .
If M = S(−i), then giving a graded Frobenius action FM on M , is equivalent to

giving f = FM (1) ∈ S(q−1)i. In particular, if i < 0, then the only graded Frobenius
action on S(−i) is the zero one. For an arbitrary finitely generated graded S-module
M , we consider a graded free resolution of M

0→ Fn → . . .→ F1 → F0 →M → 0,

where each Fj is a direct sum of of S-modules of the form S(−bi,j), with bi,j ∈ Z.
If we have a graded Frobenius action on M , then we can put graded Frobenius
actions on each Fi, such that the above exact sequence is compatible with the

graded Frobenius actions. In particular, we get [M̃ ] =
∑n
i=0(−1)i[F̃i] in KF

• (Pn
Fq

).

It follows from the above discussion and Lemma 5.12 that KF
• (Pn

Fq
) is generated (as

an Fq-vector space) by [O(−i), xa00 · · ·xann ], where a` ≥ 0 and
∑n
`=0 a` = i(q − 1).
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Proposition 5.13. The Fq-vector space KF
• (Pn

Fq
) is generated by [O(−i), xa00 · · ·xann ],

with 0 ≤ a` ≤ q − 1 for all `, with some a` < q − 1, and where
∑n
`=0 a` = i(q − 1).

Proof. Let us show first that KF
• (Pn

Fq
) is generated by [O(−i), xa00 · · ·xann ],

with 0 ≤ a` ≤ q−1 for all `, and with
∑n
`=0 a` = i(q−1). In light of the discussion

preceding the proposition, it is enough to show the following: if u is a monomial
such that u = xqiw, then [O(−i), u] = [O(−i + 1), xiw] in KF

• (Pn
Fq

). If H is the

hyperplane in Pn
Fq

defined by (xi = 0), we have an exact sequence of coherent

sheaves with Frobenius action

0→ O(−i) ·xi→ O(−i+ 1)→ OH(−i+ 1)→ 0,

where the Frobenius actions on O(−i) and O(−i + 1) are defined by u and xiw,
respectively. Since xiw restricts to zero on H, it follows that the Frobenius action on
OH(−i+1) is zero, and we conclude from the above exact sequence that [O(−i), u] =
[O(−i+ 1), xiw].

In order to complete the proof of the proposition, it is enough to show that we
can write [O(−(n + 1)), (x0 · · ·xn)q−1] in terms of the remaining elements of the
above system of generators. In order to do this, let us consider the Koszul complex
on Pn

Fq
corresponding to the global sections x0, . . . , xn of O(1):

0→ En+1 → . . .→ E1 = O(−1)⊕(n+1) h→ E0 = OPnFq
→ 0,

where h = (x0, . . . , xn). Using the above decomposition E1 = L0 ⊕ . . .⊕ Ln, then

Er =
⊕

0≤i1<...<ir≤n

(Li1 ⊗ . . .⊗ Lir ) ' O(−r)(
n+1
r ).

If on the factor Li1⊗. . .⊗Lir of Er we consider the F -module structure given by the

monomial xq−1
i1
· · ·xq−1

ir
, then the above complex becomes a complex of F -modules.

We deduce that in KF (Pn
Fq

) we have the following relation:

n+1∑
r=0

(−1)r
∑

0≤i1<...<ir≤n

[O(−r), xq−1
i1
· · ·xq−1

ir
] = 0,

which completes the proof of the proposition. �

Corollary 5.14. The assertion in Theorem 5.8 holds when X = Pn
Fq

.

Proof. As we have seen, if j : Pn(Fq) ↪→ Pn
Fq

is the inclusion, then j∗ is

injective, and it is enough to show that it is surjective. Proposition 5.13 implies
that dimFq K

F
• (Pn

Fq
) ≤ αn − 1, where

αn := |{(a0, . . . , an) | 0 ≤ ai ≤ q − 1, (q − 1) divides

n∑
i=0

ai}|.

Suppose we have (a0, . . . , an−1) with 0 ≤ a` ≤ q − 1 for 0 ≤ ` ≤ n − 1, and
we want to choose an with 0 ≤ an ≤ q − 1 such that

∑n
`=0 a` is divisible by

(q − 1). If
∑n−1
`=0 a` is divisible by (q − 1), then we may take an = 0 or an = q − 1;

if
∑n−1
`=0 a` is not divisible by (q − 1), then we have precisely one choice for an.

Therefore αn = 2αn−1 + (qn −αn−1) = qn +αn−1. Since α0 = 2, we conclude that
αn = (1 + q + . . .+ qn) + 1.
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Therefore dimFq K
F
• (Pn

Fq
) ≤ |Pn(Fq)| = dimFq K

F
• (Pn(Fq)). Since j∗ is in-

jective, it follows that j∗ is also surjective, completing the proof. �

Proof of Theorem 5.8. Let us fix a closed immersion j : X ↪→ Y = Pn
Fq

.

By Corollary 5.14, it is enough to show that if Theorem 5.8 holds for Y , then it
also holds for X.

Consider the following commutative diagram:

(5.3) X(Fq)
j′ //

ι

��

Y (Fq)

ι′

��
X

j // Y

in which all maps are closed immersions. As we have already mentioned, in order
to prove Theorem 5.8 for X, it is enough to show that ι∗ ◦ ι∗ is the identity on
KF
• (X). Since the theorem holds for Y , we know that ι′∗ ◦ (ι′)∗ is the identity on

KF
• (Y ).

Note that j′∗◦ι∗ = (ι′)∗◦j∗: this is an immediate consequence of the definitions.
Therefore

(5.4) j∗ ◦ ι∗ ◦ ι∗ = (ι′)∗ ◦ j′∗ ◦ ι∗ = ι′∗ ◦ (ι′)∗ ◦ j∗ = j∗.

On the other hand, Lemma 5.11 implies that j∗ ◦ j∗ is the identity on KF
• (X). In

particular, j∗ is injective. We conclude from (5.4) that ι∗ ◦ ι∗ is the identity on
KF
• (X), and this completes the proof of the theorem. �

5.3. Supersingular Calabi-Yau hypersurfaces

As an application of Theorem 5.1, we discuss a characterization of supersingular
Calabi-Yau hypersurfaces. More generally, we prove the following

Proposition 5.15. Let f ∈ Fq[x0, . . . , xn] be a homogeneous polynomial of
degree n + 1, with n ≥ 2, defining the hypersurface Z ⊂ Pn. The following are
equivalent:

i) The action induced by the Frobenius morphism on Hn−1(Z,OZ) is bijec-
tive (equivalently, it is nonzero).

ii) |Z(Fq)| 6≡ 1 (mod p).
iii) The coefficient of (x0 · · ·xn)q−1 in fq−1 is nonzero.
iv) The coefficient of (x0 · · ·xn)p−1 in fp−1 is nonzero.

If Z as above is a smooth hypersurface, then it is ordinary if it satisfies the
above equivalent conditions. Otherwise, it is supersingular.

Proof. Since Z is a hypersurface of degree (n + 1) in Pn, we have an exact
sequence

(5.5) 0→ OPn(−n− 1)
·f→ OPn → OZ → 0.

This gives Hi(Z,OZ) = 0 for 1 ≤ i ≤ n− 2, and H0(Z,OZ) ' Fq ' Hn−1(Z,OZ).
Frobenius acts on H0(Z,OZ) as the identity, and if it acts as multiplication by
λ ∈ Fq on Hn−1(Z,OZ), then Theorem 5.1 gives

|Z(Fq)|mod p = 1 + (−1)n−1λ.

Therefore λ = 0 if and only if |Z(Fq)| ≡ 1 (mod p). This proves i)⇔ii).
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In order to prove that iii) and iv) are equivalent, note first that for every r ≥ 1,
we may uniquely write

(5.6) fp
r−1 = cr(x0 · · ·xn)p

r−1 + ur,

where ur ∈ (xp
r

0 , . . . , x
pr

n ). If we raise to the pth-power in (5.6), we get

fp
r+1−p = cpr(x0 · · ·xn)p

r+1−p + upr .

Since upr ∈ (xp
r+1

0 , . . . , xp
r+1

n ) and

(x0 · · ·xn)p
r+1−p · (xp0, . . . , xpn) ⊆ (xp

r+1

0 , . . . , xp
r+1

n ),

we deduce that

fp
r+1

− cprc1(x0 · · ·xn)p
r+1−1 ∈ (xp

r+1

0 , . . . , xp
r+1

n ).

Therefore cr+1 = cprc1, which immediately gives that cr = c1+p+...pr−1

1 for every
r ≥ 1. In particular, if q = pe, we see that c1 6= 0 if and only if ce 6= 0, hence
iii)⇔iv).

In order to prove the equivalence of i) and iii), we consider the explicit descrip-
tion of the Frobenius action F on Hn−1(Z,OZ) via the isomorphism

δ : Hn−1(Z,OZ)→ Hn(Pn,OPn(−n− 1))

induced by (5.5). We compute the cohomology of OPn(−n− 1) and of OZ as Cech
cohomology with respect to the affine cover of Pn by the open subsets (xi 6= 0).
Recall that

Hn(Pn,OPn(−n− 1)) ' (Sx0···xn)−n−1/

n∑
i=0

(Sx0···x̂i···xn)−n−1 = Fq ·
1

x0 · · ·xn
.

Suppose that u ∈ Hn−1(Z,OZ) is represented by the Cech cocyle h = (h0, . . . , hn) ∈
⊕ni=0((S/f)x0···x̂i···xn)0. If hi ∈ (Sx0···x̂i···xn)0 is a lift of hi, then δ(u) is represented
by the unique w ∈ (Sx0...xn)−n−1 such that fw =

∑n
i=0(−1)ihi.

On the other hand, F (u) is represented by (h0
q
, . . . , hn

q
). Since we have

f(fq−1wq) =
∑n
i=0(−1)ihqi , it follows that via the isomorphism δ, we can de-

scribe F as the linear map on (Sx0···xn)−n−1/
∑n
i=0(Sx0···x̂i···xn)−n−1 induced by

w → fq−1wq. This map multiplies the class of 1
x0···xn in this quotient by the co-

efficient of (x0 · · ·xn)q−1 in fq−1. This completes the proof of ii)⇔iii), hence the
proof of the proposition. �

Remark 5.16. In the context of Proposition 5.15, note that if

trace(F | Hn−1(Z,OZ)) = 1 + (−1)n−1a,

then for every r ≥ 1 we have 1+(−1)n−1ar = |Z(Fqr )|mod p. This is a consequence
of Theorem 5.1 (see also Remark 5.3).

Exercise 5.17. Give a direct proof for the implication ii) ⇔ iii) in Proposi-
tion 5.15 by computing

∑
a∈Fn+1

q
f(a)q−1 (see [Knu]).

Exercise 5.18. Show that if X is an elliptic curve (that is, X is a smooth,
geometrically connected, projective curve of genus 1) over Fp, with p 6= 2, 3, then
X is supersingular if and only if |X(Fp)| = p+ 1.
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Exercise 5.19. Let Z ⊂ Pn
Fq

be a complete intersection subscheme of codimen-

sion r, defined by (F1, . . . , Fr). Let di = deg(Fi), and assume that
∑
i di = n + 1.

Show that the following are equivalent:

i) The action induced by the Frobenius morphism on the cohomology group
Hn−r(Z,OZ) is bijective (equivalently, it is nonzero).

ii) |Z(Fq)| 6≡ 1 (mod p).
iii) The polynomial F1 · · ·Fr satisfies the equivalent conditions in Proposi-

tion 5.15.





CHAPTER 6

The Lang-Weil estimate and the zeta function of
an arithmetic scheme

Our main goal in this chapter is to introduce the zeta function of an arithmetic
scheme. In order to compute the abscissa of convergence of this function, we will
use the Lang-Weil estimate. The proof of this estimate will make use of the Chow
variety, which we review in the first section.

6.1. The Chow variety

We review in this section some basic facts concerning the Chow variety. For
proofs and further properties, see [Kol, Chapter I].

Suppose first thatK is an algebraically closed field, and V ⊆ P = Pn
K is a closed

subvariety of dimension r and degree d. Let P∗ ' Pn
K denote the dual projective

space parametrizing the hyperplanes in P. Consider the following incidence variety:

Λ := {x,H1, . . . ,Hr+1) ∈ V × (P∗)r+1 | x ∈ Hi for all i}.

Let f : Λ→ V and g : Λ→ (P∗)r+1 denote the morphisms induced by projections.
It is clear that every f−1(x) is isomorphic to (Pn−1

K )r+1. Therefore Λ is irreducible,
of dimension r+(n−1)(r+1). On the other hand, since we can find (H1, . . . ,Hr+1) ∈
(P∗)r+1 such that V ∩H1 . . . ∩Hr+1 is a nonempty finite set, it follows that g is
generically finite onto its image W . Therefore W is an irreducible subvariety of
(P∗)r+1 of codimension equal to (r + 1)n − (r + (r + 1)(n − 1)) = 1, hence a
divisor. One can show that O(W ) = O(d, d, . . . , d). The Caylay form of V is
an equation defining W . This is given by a polynomial RV in (r + 1) sets of
(n+ 1) variables (unique up to a nonzero scalar), homogeneous of degree d in each
set of variables. Note that W determines V : x ∈ P lies in V if and only if W
contains all (H1, . . . ,Hr+1) ∈ (P∗)r+1 such that x ∈ Hi for all i. We thus have
an injective map from the set of irreducible subvarieties of P of dimension r and
degree d to |O(1, . . . , 1)|. The image Chow◦K(n, d, r) is a quasiprojective variety,
whose closure is the Chow variety ChowK(n, d, r). In particular, the complement
ChowK(n, d, r) r Chow◦K(n, d, r) is a closed subset of |O(1, . . . , 1)|.

In fact, ChowK(n, d, r) parametrizes effective r-cycles of degree d in Pn, as fol-
lows. Consider an effective r-cycle Z =

∑
imiVi of degree d (that is,

∑
imideg(Vi) =

d). Note that RZ :=
∏
iR

mi
Vi

defines a divisor in |O(d, . . . , d)|. One can show that
this gives a bijection between the set of cycles as above and ChowK(n, d, r).

If k is an arbitrary field, let K be an algebraic closure of k. Every subscheme
Y ↪→ Pn

k of pure dimension r and degree d determines an r-cycle [Y ×k K] of
degree d, hence a point Φ(Y ) ∈ ChowK(n, d, r). Note that Φ(Y ) ∈ Chow◦K(n, d, r)
if and only if Y is generically reduced and geometrically irreducible (recall that Y
is geometrically irreducible if Y ×k K is irreducible).

51



526. THE LANG-WEIL ESTIMATE AND THE ZETA FUNCTION OF AN ARITHMETIC SCHEME

We will need two facts about Chow varieties. The first is that if X ⊆ Pn
K

is an irreducible variety and H ⊂ Pn
K is a hyperplane that does not contain X,

then R[X∩H](u1, . . . , ur) = RX(u1, . . . , ur, h), where h is an equation of H (in the
special case when X ∩H is integral, this is an immediate consequence of the above
definitions).

The second fact that we need is that one can do the above construction over
Spec Z. More precisely, we have schemes Chow◦Z(n, d, r) ⊂ ChowZ(n, d, r) such
that for every algebraically closed field K, after taking the product with SpecK
we obtain Chow◦K(n, d, r) ⊂ ChowK(n, d, r). The upshot is that we can find e such
that the subvariety

ChowK(n, d, r) r Chow◦K(n, d, r) ⊂ P(Γ((Pn
K)∗ × . . .× (Pn

K)∗,O(d, . . . , d))∗)

is defined (set-theoretically) by finitely many equations of degree e with coefficients
in the prime field of K (the key point is that e is independent of the field K).

6.2. The Lang-Weil estimate

In this section we work with a geometrically irreducible variety X defined over
a finite field k. We show that if we assume that X is embedded in a projective space
of fixed dimension, then we have universal estimates for |X(k′)|, where k′/k is finite,
in terms of dim(X), deg(X), and |k′|. More precisely, we show the following

Theorem 6.1. ([LaWe]) Given nonnegative integers n, d, and r, with d > 0,
there is a positive constant A(n, d, r) such that for every finite field k = Fq, and
every geometrically irreducible subvariety X ⊆ Pn

k of dimension r and degree d, we
have

(6.1) |#X(k)− qr| ≤ (d− 1)(d− 2)qr−
1
2 +A(n, d, r)qr−1.

The proof we give follows [LaWe], arguing by induction on r. The case of
curves is a consequence of the Riemann hypothesis part of the Weil conjectures,
that we have proved in Chapter 3. For the induction argument, we will need two
lemmas. The first one gives a weaker bound than the assertion in the theorem.

Lemma 6.2. Given n, d, and r as in Theorem 6.1, there is a positive constant
A1(n, d, r) such that for every finite field k = Fq, and every irreducible subvariety
X ⊆ Pn

k of dimension r and degree ≤ d, we have

(6.2) #X(k) ≤ A1(n, d, r)qr.

Proof. We argue by induction on n. If n = 0, then X = Spec k, hence r = 0
and d = 1, and we may take A1(0, 1, 0) = 1.

Suppose now that we have A1(n′, d, r) for n′ ≤ n that satisfy the condition in
the lemma. Let X ⊆ Pn+1

k be an irreducible subvariety of dimension r and degree

d. For every λ ∈ k, let Hλ ⊂ Pn+1
k be the hyperplane defined by (x1 − λx0 = 0),

and let H∞ be the hyerplane (x0 = 0). If X is degenerate, then it lies in some
Pn
k , and we get (6.2) if A1(n + 1, d, r) ≥ A1(n, d, r). On the other hand, if X

is nondegenerate, then each Xλ := (X ∩ Hλ)red is a subvariety of Pn
k of degree

≤ d, and of pure dimension (r− 1). In particular, if its irreducible components are
X1
λ, . . . , X

mλ
λ , then mλ ≤ d. Therefore

|X(k)| ≤
∑

λ∈k∪{∞}

|Xλ(k)| ≤ dA1(n, d, r)(q + 1)qr ≤ 2dA1(n, d, r)qr+1.
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Therefore it is enough to take A1(n+ 1, d, r) = 2dA1(n, d, r). �

Remark 6.3. Suppose that X is as in Lemma 6.2, but instead of being irre-
ducible, we only assume that it has pure dimension r. In this case the number of
irreducible components of X is bounded above by d. Therefore we deduce from the
lemma that #X(k) ≤ dA1(n, d, r)qr.

If X is allowed to have components of smaller dimension, then the number of
such components is not controlled by the degree. However, we still get

Corollary 6.4. If X is an r-dimensional variety over Fq, then there is cX > 0
such that #X(Fqe) ≤ cXqre for every e ≥ 1.

Proof. Arguing by induction on r, we see that it is enough to show that if
U ⊆ X is a dense affine open subset, then we have a similar bound for #U(Fqe)
(this follows since dim(X r U) < r). It is of course enough to give such a bound
for the closure U of U in some projective space. This in turn follows by applying
Lemma 6.2 to each irreducible component of U . �

Recall that we denote by (Pn
k )∗ the dual projective space of Pn

k . Note that
a k-rational point of (Pn

k )∗ corresponds to a k-hyperplane in Pn
k , that is, to a

hyperplane given by an equation
∑n
i=0 aixi = 0, with all ai ∈ k.

Lemma 6.5. Given n, d, and r as in Theorem 6.1, with r ≥ 2, there is a posi-
tive constant A2(n, d, r) such that for every nondegenerate geometrically irreducible
subvariety X ⊆ Pn

k of dimension r and degree d, the number of k-hyperplanes H
in Pn

k such that H ∩ X is either not geometrically irreducible, or not generically
reduced, is ≤ A2(n, d, r)qn−1.

Proof. We make use of the definitions and notation introduced in §1. Let
K = k, and consider V = ChowK(n − 1, d, r − 1) r Chow◦K(n − 1, d, r − 1). As
we have mentioned, V = W ×k K for a closed subvariety W ↪→ PN

k that is the
set-theoretic intersection of finitely many hypersurfaces Zj of degree e (where N
and e only depend on n, d, and r).

By construction, if X ∩ H is not geometrically irreducible or not generically
reduced, then Φ(X ∩H) ∈ V . Consider the morphism (Pn

K)∗ → PN
K defined over

k that takes H to RX(·, . . . , ·, h), where h is an equation of H. Note that there
is j such that Zj ×k K does not contain the image of (Pn

K)∗: indeed, since X is
geometrically irreducible and r ≥ 2, we know by Bertini’s theorem that there is a
hyperplane in Pn

K whose intersection with X×kK is integral. The pull-back of this
hypersurface Zj ×kK to (Pn

K)∗ is a hypersurface of degree e′ defined over k, where
e′ only depends on n, d, and r. It follows from Lemma 6.2 (see also Remark 6.3)
that if we take A2(n, d, r) = e′A1(n, e′, n− 1), this satisfies the requirement in the
lemma. �

We can now give the proof of the main result of this section.

Proof of Theorem 6.1. For every variety X, we denote by XK the variety
X ×Spec k SpecK, where K is a fixed algebraic closure of k, and for a morphism
π : Y → X, we denote by πK the corresponding morphism YK → XK . It will be
convenient to think of X(k) as the points of XK fixed under the suitable Frobenius

morphism. We will use the fact that γn := |Pn(Fq)| = qn+1−1
q−1 (see Corollary 2.23).
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The proof is by induction on r. The case r = 0 is trivial, since in this case
|X(k)| = 1 = qr. Suppose that r = 1, and let π : Y → X be the normalization
of X. The curve Y is nonsingular, projective, and geometrically connected (for
the last assertion, note that we have a dense open subset U of Y such that UK
is irreducible). Therefore we may apply to Y the results in Chapter 3, and in
particular the estimate for the number of rational points on Y given by the analogue
of the Riemann hypothesis (see Lemma 3.8 and Theorem 3.6). We deduce that if
g is the genus of Y , then

(6.3) |#Y (Fq)− (q + 1)| ≤ 2gq1/2.

Note that

(6.4) |#X(Fq)− q| ≤ |#Y (Fq)− (q + 1)|+ 1 +
∑

x∈(XK)sing

deg(π−1
K (x)).

In order to estimate the sum in (6.4), as well as the genus of Y , let us consider a
general projection of XK to P2

K , which gives a birational morphism φ : XK → C,
where C is an ireducible plane curve of degree d. Let ψ = φ◦πK . Note that if x ∈ C
is a smooth point, then ψ is an isomorphism around x, hence φ−1(x) is contained
in the smooth locus of XK . Therefore

(6.5)
∑

x∈(XK)sing

deg(π−1
K (x)) ≤

∑
x∈Csing

deg(ψ−1(x)).

For every x ∈ Csing we have deg(ψ−1(x)) ≤ d: if L is a hyperplane in P2
K

passing through x and not containing C, then deg(ψ−1(x)) ≤ deg(ψ−1(C∩H)) = d.

The arithmetic genus of C is h1(C,OC) = (d−1)(d−2)
2 . We have a short exact

sequence of sheaves

0→ OC → ψ∗(OYK )→ ⊕x∈CsingÕC,x/OC,x → 0,

where ÕC,x is the integral closure of OC,x. If δx = length(ÕC,x/OC,x), then we get
from the long exact sequence in cohomology that g = pa(C) −

∑
x∈Csing

δx. This

gives g ≤ pa(C) = (d−1)(d−2)
2 . We also obtain

∑
x∈Csing

δx ≤ (d−1)(d−2)
2 . Since

δx ≥ 1 for every singular point x ∈ C, we deduce that #Csing ≤ (d−1)(d−2)
2 . We

deduce using (6.3), (6.4) and (6.5) that

|#X(Fq)− q| ≤ (d− 1)(d− 2)q1/2 +
d(d− 1)(d− 2)

2
+ 1,

hence we are done in the case r = 1 by taking A(n, d, 1) = d(d−1)(d−2)
2 + 1.

Suppose now that we can find A(n, d, r) as in the theorem for r ≥ 1, and let us
find A(n, d, r+1). Arguing also by induction on n, we may assume that we can find
A(n−1, d, r+1) as required (note that the cases n = 0 and n = 1 are clear). Let X
be a geometrically irreducible subvariety of Pn

k , of degree d and dimension (r+ 1).

If X is degenerate, then X lies in some Pn−1
k , in which case we get the bound in

the theorem if we take A(n, d, r + 1) ≥ A(n− 1, d, r + 1). Assume henceforth that
X is nondegenerate.

In order to avoid messy computations, we introduce the following notation:
given two real numbers a and b, we write a ≤ b + o(qr) if there is an inequality
a ≤ b+ C · qr, where C is a positive constant that is only allowed to depend on n,
d, and r. Note that we have a ≤ b+o(qr) if and only if γn−1a ≤ γn−1b+o(qr+n−1).
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Let W ⊆ X × (Pn
k )∗ be the subvariety consisting of the pairs (x,H) such

that x ∈ H. The projections onto the two components give the maps W → X
and W → (Pn

k )∗. The key idea is to compute in two ways #W (Fq), using these
two morphisms. Note that for every x ∈ X(Fq), the number of Fq-hyperplanes
containing x is #Pn−1(Fq) = γn−1. Therefore

(6.6) |W (Fq)| = γn−1 · |X(Fq)|.

On the other hand, using the morphism W → (Pn
k )∗, we see that

(6.7) |W (Fq)| =
∑

H∈(Pn)∗(k)

|(X ∩H)(Fq)|.

We break the sum in (6.7) into two sums, in the first one S1 collecting all H such
that H ∩X is either not geometrically irreducible, or not generically reduced, and
in the second one S2, collecting the remaining terms. Note that for every H that
contributes to S1, the subvariety (H∩X)red ⊆ H ' Pn−1

k has degree ≤ d, and pure
dimension r. In particular, the number of irreducible components of (H ∩X)red is
≤ d, and each has degree≤ d. It follows from Lemma 6.2 that |(X∩H)(Fq)| ≤ o(qr).
On the other hand, we can use Lemma 6.5 to bound the number of such hyperplanes
by A2(n, d, r + 1)qn−1, hence S1 ≤ o(qr+n−1), and therefore

(6.8)
1

γn−1
S1 ≤ o(qr).

Note, in particular, that this sum can be absorbed in the error term.
On the other hand, if H∩X is geometrically irreducible and generically reduced,

then (H ∩X)red is a variety of dimension r and degree d, and we can estimate the
number of points in (X ∩H)(Fq) by induction: we have

(6.9) |#(X ∩H)(Fq)− qr| ≤ (d− 1)(d− 2)qr−
1
2 + o(qr−1).

Let δ be the number of hyperplanes that contribute to S2. Note that

(6.10)

∣∣∣∣ 1

γn−1
S2 − qr+1

∣∣∣∣ ≤ ∣∣∣∣ 1

γn−1
(S2 − δqr)

∣∣∣∣+

∣∣∣∣ δqrγn−1
− qr+1

∣∣∣∣.
By Lemma 6.5 we have |δ − γn| ≤ o(qn−1). This implies δ

γn−1
≤ o(q) and∣∣∣∣ δqrγn−1

− qr+1

∣∣∣∣ ≤ |δ − γn| · qrγn−1
+

∣∣∣∣ γnqrγn−1
− qr+1

∣∣∣∣ ≤ o(qr).
On the other hand, it follows from (6.9) that

(6.11)

∣∣∣∣ 1

γn−1
(S2 − δqr)|

∣∣∣∣ ≤ (d− 1)(d− 2)qr+
1
2 + o(qr),

hence ∣∣∣∣ 1

γn−1
S2 − qr+1

∣∣∣∣ ≤ (d− 1)(d− 2)qr+
1
2 + o(qr).

By combining this with (6.8), we get the existence of A(n, d, r+1), which completes
the proof of the theorem. �
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6.3. Estimating the number of points on arbitrary varieties

We explain in this section how to estimate the number of k-rational points on
X when X is not assumed to be geometrically irreducible. In this section, however,
the constant in the estimate will be allowed to depend on X.

Let us first introduce some notation. Suppose that k = Fq is a finite field,
and X ↪→ Pn

k is an irreducible closed subvariety of degree d and dimension r. We

denote by Γ = {W1, . . . ,Wm} the set of irreducible components of Xk = X ×k k.

It follows from Proposition ?? that G = G(k/k) acts transitively on Γ. Let G′ ⊆ G
be the stabilizer of any of the elements of Γ with respect to this action. Note that
G′ = G(k/Fq`), where Fq` is the smallest extension of Fq over which one (hence
all) of the Wi is defined (see Proposition A.16 and its proof). Since G/G′ has `
elements, it follows that ` = m.

Proposition 6.6. Let n, d, r be nonnegative integers, with d > 0. Given any
k = Fq and X as above, there are positive constants cX and c′X such that if m is
as above, then for every e ≥ 1 we have

|#X(Fqe)−mqer| ≤
(d−m)(d− 2m)

m
qe(r−

1
2 ) + cXq

e(r−1) if m|e, and

#X(Fqe) ≤ c′Xqe(r−1), if m 6 |e.
Furthermore, if X is smooth over Fq, then we may take c′X = 0 and cX only to
depend on n, d, and r (but not on X or on k).

Proof. For every e ≥ 1, let Xe := X ×Fq Fqe . If m|e, then Xe has m
irreducible components V1, . . . , Vm, and each of them is geometrically irreducible.
Furthermore, we have dim(Vi) = r and deg(Vi) = d

m for every i. Note that each
Vi ∩ Vj is the extension to Fqe of the corresponding intersection of irreducible
components defined over Fqm , and has dimension < r when i 6= j. Moreover, if X
is smooth, then Vi ∩ Vj = ∅ for i 6= j. Since

|#X(Fqe)−mqer| ≤
m∑
i=1

|#Vi(Fqe)− qer|+
∑
i<j

#(Vi ∩ Vj)(Fqe),

we deduce the first estimate in the proposition from Theorem 6.1 and Corollary 6.4.
Moreover, when X is smooth, it is enough to take cX = d · max1≤d′≤dA(n, d′, r),
where we use the notation in Theorem 6.1.

Suppose now that m does not divide e. Recall that if F = FrobX,q × Id, then
X(Fqe) can be identified with the fixed points of F e on Xk. By assumption, none of

W1, . . . ,Wm is fixed by G(k/Fqe) ⊆ G. Note also that an irreducible subset Z ⊂ Xk

is fixed by G(k/Fqe) if and only if F e(Z) ⊆ Z (see the proof of Proposition A.16).
It follows that if u ∈ Wi is fixed by F e, then u ∈

⋂
j F

ej(Wi), which is a proper

closed subvariety of Wi, defined over Fqe (empty when X is smooth). Since its
dimension is ≤ r − 1, we conclude by Remark 6.3 that we can find c′X as required
(note that the varieties

⋂
j F

ej(Wi) only depend on the congruence class of e mod

`, hence we only get finitely many such varieties). This completes the proof of the
proposition. �

It is now straightforward to estimate the number of Fqe -rational points on an
arbitrary variety X over Fq. Let X1, . . . , X` be the irreducible components of X
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of maximal dimension r, and let mi be the number of irreducible components of
Xi ×k k.

Proposition 6.7. For every X as above, there are positive constants αX , α′X
such that for every e ≥ 1, if we put ae =

∑
mi|emi, then

|#X(Fqe)− aeqer| ≤ αXqe(r−
1
2 ) if ae > 0, and

#X(Fqe) ≤ α′Xqe(r−1), otherwise.

Proof. Let Ui ⊆ Xi be affine open subsets that do not intersect the other

irreducible components of X, and let U =
⋃`
i=1 Ui. Since dim(XrU) < r, it follows

from Corollary 6.4 that it is enough to prove the assertion in the proposition for

U . If Ui is the closure of Ui in some projective space, and U =
⊔`
i=1 Ui, it follows

as before that it is enough to prove the estimate for U . This follows by applying
Proposition 6.6 to each of the Ui. �

6.4. Review of Dirichlet series

In this section we collect some basic facts about Dirichlet series. In the first
part we follow [Se1, Chapter VI, §2]. A Dirichlet series is a series of functions of
the form

(6.12)
∑
n≥1

an
ns
,

where an ∈ C, and s varies over C. The following proposition is the basic result
that controls the convergence of Dirichlet series.

Proposition 6.8. If the series
∑
n≥1

an
ns converges for s = s0, then it converges

uniformly in every domain of the form: Re(s − s0) ≥ 0, Arg(s − s0) ≤ α, where
0 < α < π/2.

Proof. Let us write s− s0 = z = x+ yi, with x, y ∈ R. It is enough to show
that the sequence of functions

(∑m
n=1

an
ns

)
m

is uniformly Cauchy in any domain

with x ≥ 0, and |z| ≤Mx. Suppose that ε > 0 is given. By hypothesis, we can find

m such that |Ap| ≤ ε for every p, where Ap =
∑m+p
n=m+1

an
ns0 .

We may of course assume that x > 0, and we write
(6.13)

m+p∑
n=m+1

an
ns

=

m+p∑
n=m+1

an
ns0
· 1

nz
=

Ap
(m+ p)z

+

p−1∑
`=1

A`

(
1

(m+ `)z
− 1

(m+ `+ 1)z

)
We now bound∣∣∣∣ 1

(m+ `)z
− 1

(m+ `+ 1)z

∣∣∣∣ =

∣∣∣∣z · ∫ log(m+`+1)

log(m+`)

e−tzdt

∣∣∣∣ ≤ |z| · ∫ log(m+`+1)

log(m+`)

e−txdt

=
|z|
x

(
1

(m+ `)x
− 1

(m+ `+ 1)x

)
.

Using this bound and the condition on |A`|, we conclude that that∣∣∣∣ m+p∑
n=m+1

an
ns

∣∣∣∣ ≤ ε

(m+ p)x
+ ε
|z|
x
·
p−1∑
`=1

(
1

(m+ `)x
− 1

(m+ `+ 1)x

)
≤ ε(1 +M).

This completes the proof of the proposition. �
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The abscissa of convergence of the series
∑
n≥1

an
ns is

ρ = inf{Re(s) |
∑
n≥1

an
ns

is convergent at s}.

It follows from Proposition 6.8 that
∑
n≥1

an
ns converges uniformly on every compact

subset contained in {s | Re(s) > ρ} (this is called the half-plane of convergence of
the series). In particular, it defines a holomorphic function on this half-plane. It
follows from definition that the series is divergent at every s with Re(s) < ρ. Note
that ρ = ∞ if and only if the series diverges everywhere, and ρ = −∞ if and only
if the series is everywhere convergent.

Example 6.9. Suppose that α ∈ R is such that the sequence |an|/nα is
bounded above. In this case the abscissa of convergence ρ of

∑
n≥1

an
ns satisfies

ρ ≤ 1 + α. Furthermore, suppose that an ∈ R≥0 and lim infn→∞
an
nα > 0; in this

case ρ = α + 1. Both assertions follow from the fact that for p ∈ R, the series∑
n≥1

1
np is convergent if and only if p > 1.

Example 6.10. If we consider the Dirichlet series
∑
n≥1

1
ns defining the Rie-

mann zeta function ζ(s), then the abscissa of convergence is ρ = 1.

Proposition 6.11. Suppose that f(s) =
∑
n≥1

an
ns and g(s) =

∑
n≥1

bn
ns are

both convergent for every s with Re(s) > α. If f(s) = g(s) for every such s, then
an = bn for every n ≥ 1.

Proof. By considering h =
∑
n≥1

an−bn
ns , we see that it is enough to prove the

assertion when all bn are zero. In this case, we prove by induction on n that an = 0.
Suppose that a1 = . . . = an−1 = 0, and that f(s) = 0 for all s with Re(s) > α. It

follows from Proposition 6.8 that the series of functions
∑
m≥n

amn
s

ms is uniformly

convergent (to 0, by our assumption) for s ∈ R, with s > ρ. For every m > n we

have lims→∞
amn

s

ms = 0, hence an = lims→∞
∑
m≥n

amn
s

ms = 0. This completes the
induction step.

�

As we have seen in Example 6.9, if |am| ≤ Cmα for all m, then the abscissa of
convergence of the Dirichlet series

∑
n≥1

an
ns is ≤ 1 + α. The following proposition

improves this upper bound when α ≥ 0 and when we have the similar bound for
all sums a1 + . . .+ am.

Proposition 6.12. If α ∈ R≥0 is such that |
∑m
n=1 an| ≤ Cmα for all m, then

the Dirichlet series
∑
n≥1

an
ns is convergent in the half-plane {s | Re(s) > α}.

Proof. We follow a similar argument to that used in the proof of Proposi-

tion 6.8. Note that we have |
∑m+`
n=m+1 an| ≤ C((m+ `)α +mα) ≤ 2C(m+ `)α for

all m and `. Consider s ∈ C with Re(s) > α, and let us write s = x + yi, with

x, y ∈ R. If we put Ap =
∑m+p
n=m+1 an for all p, then we have∣∣∣∣ m+p∑

n=m+1

an
ns

∣∣∣∣ =

∣∣∣∣ Ap
(m+ p)s

+

p−1∑
`=1

A`

(
1

(m+ `)s
− 1

(m+ `+ 1)s

) ∣∣∣∣
≤ |Ap|

(m+ p)x
+

p−1∑
`=1

|A`s| ·
∣∣∣∣ ∫ log(m+`+1)

log(m+`)

e−tsdt

∣∣∣∣
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≤ 2C

(m+ p)x−α
+

p−1∑
`=1

|s|
∫ log(m+`+1)

log(m+`)

|A`|e−txdt.

Since |A`| ≤ 2C(m+ `)α, it follows that |A`| ≤ 2Ceαt for t ≥ log(m+ `). Therefore

p−1∑
`=1

∫ log(m+`+1)

log(m+`)

|A`|e−txdt ≤ 2C·
p−1∑
`=1

∫ log(m+`+1)

log(m+`)

et(α−x)dt = 2C·
∫ log(m+p)

log(m+1)

et(α−x)dt

=
2C

x− α

(
1

(m+ 1)x−α
− 1

(m+ p)x−α

)
.

We thus conclude that∣∣∣∣ m+p∑
n=m+1

an
ns

∣∣∣∣ ≤ 2C

(m+ p)x−α
+

2C|s|
x− α

(
1

(m+ 1)x−α
− 1

(m+ p)x−α

)
,

and for fixed s this can be made arbitrarily small by taking m large enough. This
shows that

∑
n≥1

an
ns is convergent. �

Proposition 6.13. The Riemann zeta function has a meromorphic continua-
tion to the half-space {s | Re(s) > 0}, with a unique pole at s = 1, which is simple,
and with residue 1.

Proof. The trick is to consider the following auxiliary Dirichlet series

ζr(s) =
∑
n≥1

an,r
ns

=
∑
r 6 |m

1

ms
−
∑
r|m

r − 1

ms
,

for every r ≥ 2. It is clear that
∑m
n=1 an,r ∈ {0, 1, . . . , r−1}, hence Proposition 6.12

applies to give that ζr(s) is a holomorphic function on {s | Re(s) > 0}. It is clear
that for Re(s) > 1 we have ζr(s) + r1−sζ(s) = ζ(s), hence

ζ(s) =
ζr(s)

1− r1−s .

This shows that ζ has a meromorphic continuation to the half-plane {s | Re(s) > 0}.
Furthermore, every pole in this region is simple, and it is of the form 1 + 2mπi

log(r) , for

some m ∈ Z. By considering r = 2 and r = 3, we see that in fact, the only possible
pole of ζ in this region is at s = 1.

Note that the residue at 1 is ζ2(1)
log(2) . Recall that we have log(1+x) =

∑
n≥1(−1)n−1 xn

n

for |x| < 1. The series is convergent at x = 1, hence by Abel’s theorem the sum for

x = 1 is equal to limx∈R,x→1 log(x) = log(2). Therefore log(2) =
∑
n≥1

(−1)n−1

n =

ζ2(1), and we see that the residue of ζ at s = 1 is 1. �

In fact, ζ can be meromorphically extended to C, and the only pole is s = 1.
Furthermore, after multiplication by a suitable factor involving the Γ-function, ζ
satisfies a functional equation. We refer to [Lang, Chapter XIII] for the statement
of the functional equation, for proofs and generalizations.

In the case of Dirichlet series with nonnegative coefficients, the sum has a
singularity at the real point on the boundary of the half-plane of convergence.
More precisely, we have the following.
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Proposition 6.14. Consider a Dirichlet series
∑
n≥1

an
ns , with an ∈ R≥0 for

all n. If the abscissa of convergence ρ is finite, then the sum f(s) of this series
can not be analytically extended to a holomorphic function in the neighborhood of
s = ρ.

Proof. Let us denote f(s) =
∑
n≥1

an
ns for Re(s) > ρ, and suppose that f has

an analytic continuation to a neighborhood of ρ. In this case there is ε > 0 such
that f is holomorphic inside the disc {s | |s− (ρ+ 1)| < 1 + 2ε}. Therefore in the
interior of this disc we have the Taylor expansion

(6.14) f(s) =
∑
i≥0

f (i)(ρ+ 1)

i!
(s− ρ− 1)i.

On the other hand, since the series converges uniformly in the half-space {s |
Re(s) > ρ}, we can differentiate term-by-term in this region to get

(6.15) f (i)(s) =
∑
n≥1

an
ns

(−log n)i.

By taking s = ρ+ 1, we get

(6.16) f (i)(ρ+ 1) =
∑
n≥1

an
nρ+1

(−log n)i.

Computing f(ρ− ε) via (6.14), and using also (6.16), we deduce that

f(ρ− ε) =
∑
i≥0

f (i)(ρ+ 1)

i!
(−1− ε)i =

∑
i≥0

∑
n≥1

an
nρ+1

((1 + ε) log n)i

i!
.

Since this is a convergent double series with nonnegative terms, we may change the
order of summation, and deduce that∑

n≥1

an
nρ+1

∑
i≥0

((1 + ε)log n)i

i!
=
∑
n≥1

an
nρ−ε

is convergent. Hence our Dirichlet series is convergent for s = ρ−ε, a contradiction.
�

Suppose now that
∑
n≥1

an
ns is an arbitrary Dirichlet series. The abscissa of

absolute convergence ρ+ of this series is the abscissa of convergence of
∑
n≥1

|an|
ns .

It is clear that if ρ is the abscissa of convergence of the given Dirichlet series, then
ρ ≤ ρ+. One can show that ρ+ ≤ ρ + 1, hence in particular ρ < ∞ if and only if
ρ+ < ∞. We will not use this result, so we simply refer to [MoVa, Theorem 1.4]
for a proof.

We now want to show that in the half-plane of absolute convergence, under
suitable multiplicative properties, we can decompose the sum of the Dirichlet series
as an Euler product. Before doing this, let us recall a basic lemma concerning
infinite products. Recall that if (an)n≥1 is a sequence of complex numbers, then
the product

∏
n≥1(1+an) is absolutely convergent if the series

∑
n≥1 an is absolutely

convergent.

Lemma 6.15. If the product
∏
n≥1(1 + an) is absolutely convergent, then it is

convergent. Furthermore, the product is independent of the order of the factors,
and it is zero if and only if one of the factors is zero.
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It is clear that if (ai)i∈I is any set of complex numbers indexed by a countable
set, then it makes sense to say that the product

∏
i∈I(1 + ai) is absolutely conver-

gent. The lemma implies that in this case the product
∏
i∈I(1 + ai) is well-defined.

Proof. The hypothesis implies in particular that limn→∞ an = 0. Therefore
there is n0 such that |an| < 1 for all n ≥ n0. For all statements in the lemma we
may ignore finitely many of the factors, hence we may assume that n0 = 1. Since

log

(
n∏
i=1

(1 + ai)

)
=

n∑
i=1

log(1 + ai),

the first two assertions in the lemma follow if we show that the series
∑
i≥1 |log(1+

ai)| is convergent. For every u with |u| < 1, we have

|log(1 + u)| =
∣∣∣∣∑
n≥1

(−1)n−1u
n

n

∣∣∣∣ ≤∑
n≥1

|u|n

n
= −log(1− |u|) = log(1 + w) ≤ w,

where 1+w = (1−|u|)−1. Note that w = |u|
1−|u| ≤

1
2 |u| if |u| ≤

1
2 , hence |log(1+u)| ≤

1
2 |u| when |u| ≤ 1

2 . Since |ai| ≤ 1
2 for i � 0, the hypothesis that

∑
i≥1 |ai| is

convergent implies that
∑
i≥1 |log(1 + ai)| is convergent.

For the last assertion in the lemma, note that if
∑
n≥1 log(1 + an) = u, then

the product
∏
n≥1(1 + an) is equal to exp(u), hence it is nonzero. �

Remark 6.16. Note that the infinite product
∏
n≥1(1 + |an|) is convergent if

and only if it is absolutely convergent. Indeed, the “if” part follows from the above
lemma, while the “only if” part is a consequence of the fact that for every n

n∑
i=1

|ai| ≤
n∏
i=1

(1 + |ai|) ≤
∞∏
i=1

(1 + |ai|).

This implies that the infinite product
∏
n≥1(1 + an) is absolutely convergent if and

only if the product
∏
n≥1(1 + |an|) is convergent, which is the case if and only if

the series with nonnegative terms
∑
n≥0 log(1 + |an|) is convergent.

Exercise 6.17. Consider (am,n)m,n≥1, with am,n ∈ C. Show that if each
infinite product

∏
n≥1 am,n is absolutely convergent and bm =

∏
n≥1 am,n, then the

following are equivalent

i) The product
∏
m≥1 bm is absolutely convergent.

ii) The product
∏
m,n≥1 am,n is absolutely convergent.

Furthermore, show that in this case
∏
m,n≥1 am,n =

∏
m≥1 bm.

We say that a sequence (an)n≥1 is multiplicative if amn = aman whenever m
and n are relatively prime. In this case we have a1 · am = am for every m. In
particular, we either have am = 0 for all m, or a1 = 1. In order to avoid trivial
cases, we always assume that a1 = 1.

Proposition 6.18. Let (an)n≥1 be a multiplicative sequence, and consider the
Dirichlet series f =

∑
n≥1

an
ns . If the abscissa of absolute convergence ρ+ is not

+∞, then for every s with Re(s) > ρ+ the following product over all positive prime
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integers

(6.17)
∏
p

∑
m≥0

apm

pms


is absolutely convergent, and it is equal to f(s). Furthermore, if we assume that all
an ≥ 0 and we know that the product (6.17) is convergent for every s0 ∈ R with
s0 > α, then ρ = ρ+ ≤ α.

Proof. Let s ∈ C be such that Re(s) > ρ+. By assumption, the series∑
n≥1

an
ns is absolutely convergent. In particular, we see that

∑
p

∑
m≥1

|apm |
pms is

absolutely convergent, hence the product (6.17) is absolutely convergent.
Let fp(s) be the factor in (6.17) corresponding to the prime p. If p1, . . . , pr are

the first r prime integers, then the series

Sr :=
∑

n=p
j1
1 ···p

jr
r

an
ns

is absolutely convergent, where n varies over the positive integers whose prime
factors are among p1, . . . , pr. The sum of this series is equal to

∏r
i=1 fpi(s). By

assumption, Sr converges to f(s), hence we get the assertion in the proposition.

Suppose now that all am ≥ 0, and that
∏
p

(∑
m≥0

apm

pms0

)
is convergent when-

ever s0 ∈ R with s0 > α. Let us fix such s0. With the above notation, we see that

Sr is finite, and Sr ≤
∏
p

(∑
m≥0

apm

pms0

)
. Therefore the sequence (Sr)r≥1 is conver-

gent, and its limit is clearly equal to
∑
n≥1

an
ns0 . This implies that ρ = ρ+ ≤ α. �

Corollary 6.19. Under the assumptions in the above proposition, suppose
that the sequence (an)n≥1 is strongly multiplicative, in the sense that amn = aman
for all positive integers m and n, and a0 = 1. In this case we have the decomposition∑

n≥1

an
ns

=
∏
p

1

1− app−s

for every s ∈ C with Re(s) > ρ+.

Proof. The assertion follows from the formula in Proposition 6.18, noting
that for every prime p we have∑

m≥0

apm

pms
=
∑
m≥0

amp
pms

=
1

1− app−s
.

�

Example 6.20. In the case of the Riemann zeta function we have ρ+ = ρ = 1,
and we get the product decomposition

ζ(s) =
∏
p

1

1− p−s

for every s ∈ C with Re(s) > 1. Note also that since the product is absolutely
convergent, it follows from Lemma 6.15 that ζ(s) 6= 0 for every s with Re(s) > 0.
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Let us recall the notion of product of Dirichlet series. Given ` Dirichlet series
fi =

∑
n≥1

an,i
ns for 1 ≤ i ≤ `, let us consider the product of the fi defined by

g =
∑
n≥1

bn
ns , where bn =

∑
d1···d`=n ad1,1 · · · ad`,`, the sum being over all tuples of

positive integers (d1, . . . , d`) such that d1 · · · d` = n.

Proposition 6.21. With the above notation, the following hold:

i) We have the following relation between the abscissas of absolute conver-
gence

ρ+(g) ≤ max
i
ρ+(fi),

and for every s ∈ C with Re(s) > maxi ρ
+(fi), we have g(s) =

∏`
i=1 fi(s).

ii) If each sequence (an,i)n≥1 is multiplicative, and if we consider the Euler

product decompositions fi =
∏
p f

(p)
i , then the sequence (bn)n≥1is multi-

plicative, and the Euler product decomposition of g is given by g =
∏
p g

(p),

where g(p) =
∏`
i=1 f

(p)
i .

iii) If h =
∑
n≥1

cn
ns is a Dirichlet series such that h(s) =

∏`
i=1 fi(s) for

Re(s) � 0, then bn = cn for every n. In particular, we have ρ+(h) ≤
maxi ρ

+(fi).

Proof. All the assertions are straightforward to prove, so we leave them as an
exercise. We only note that iii) is a consequence of i) and of Proposition 6.11. �

In what follows we make some considerations that will be useful in the next
section, when dealing with zeta functions of arithmetic schemes. Suppose that f is
a formal power series f =

∑
m≥0 amt

m ∈ C[[t]]. Given a prime p, we may associate

to f the Dirichlet series f̃ =
∑
m≥0

am
pms . If r(f) is the radius of convergence of f ,

then f̃(s) is absolutely convergent for Re(s) > − log(r(f))
log p , and it is divergent for

Re(s) < − log(r(f))
log p . Therefore ρ(f̃) = ρ+(f̃) = − log(r(f))

log p .

If f(0) = 0, then we may consider g = exp(f). It is clear that r(g) ≥ r(f), and

it follows from the above formulas that ρ(g̃) ≤ ρ(f̃).
Suppose now that for every prime p we have a formal power series fp =∑

m≥1 a
(p)
m tm with am ∈ R≥0 for all m, and consider as above the corresponding

Dirichlet series f̃p = fp(1/p
s) =

∑
m≥0

a(p)m
pms . Let gp = exp(fp), and g̃p = gp(1/p

s).

Proposition 6.22. With the above notation, suppose that the C > 0 and
α ∈ R, and p0 ∈ Z>0 are such that

a(p)
m ≤

{
Cpmα, if p ≥ p0,m ≥ 1;

Cpm(α+1), if p < p0,m ≥ 1.

In this case
∏
p g̃p(s) is the Euler product decomposition of a Dirichlet series with

nonnegative coefficients, which is absolutely convergent in the half-plane {s | Re(s) >
α+ 1}.

Proof. Let us write gp =
∑
m≥0 b

(p)
m tm, so that g̃p(s) =

∑
m≥0

b(p)m
pms . Note

that b
(p)
0 = 1, and since a

(p)
m ≥ 0 for all m and p, we have b

(p)
m ≥ 0 for all m and p.

For a positive integer n having the prime decomposition n = pm1
1 · · · pmrr , we put

bn = b
(p1)
m1 · · · b

(pr)
mr . Let us consider the Dirichlet series g(s) =

∑
n≥1

bn
ns .
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It is enough to show that the product
∏
p g̃p(s) is convergent for every s ∈ R

with s > α+ 1. Indeed, we can then apply Proposition 6.18 to deduce that this is
the Euler product decomposition of g(s), whose abscissa of convergence is ≤ α+ 1.

Let us fix s ∈ R with s > α + 1. Using the definition of the g̃p, we see that

it is enough to show that
∑
p f̃p(s) is convergent. Note that this is a series with

nonnegative terms, and by assumption we have∑
p<p0

∑
m≥1

a
(p)
m

pms
≤ C ·

∑
p<p0

∑
m≥1

pm(α−s+1) = C ·
∑
p<p0

1

ps−α−1 − 1
<∞, and

∑
p≥p0

∑
m≥1

a
(p)
m

pms
≤ C ·

∑
p≥p0

∑
m≥1

pm(α−s) = C ·
∑
p≥p0

1

ps−α − 1
≤ 2C ·

∑
p≥p0

1

ps−α
<∞.

Since the above series are convergent, this completes the proof. �

6.5. The zeta function of an arithmetic scheme

In this section we consider arithmetic schemes, that is, schemes of finite type
over Z. For every such scheme X, we denote by Xp the fiber of X over the point pZ
in Spec Z. This is a scheme of finite type over Fp. The following lemma describes
the set Xcl of closed points of an arithmetic scheme X.

Lemma 6.23. If X is a scheme of finite type over Z, and x ∈ X is a point,
then x is a closed point if and only if its residue field k(x) is a finite field. In this
case, the image of x in Spec Z is a closed point.

Proof. Let π : X → Spec Z denote the canonical morphism. If k(x) is a finite
field, then k(π(x)) is finite too, being a subfield of k(x), hence π(x) is a closed point
pZ. In this case we know that x is a closed point in the fiber Xp, hence it is closed
in X.

Conversely, suppose that x is closed in X. If U = SpecA is an affine open
neighborhood of x, then x is closed in U , hence it corresponds to a maximal ideal
m ⊂ A. If π(x) is a closed point, then we are done: since x is a closed point
on a scheme of finite type over Fp, the residue field k(x) is finite. Suppose that
π(x) is the generic point of Spec Z. The field K = A/m is a finitely generated
Z-algebra. In particular, it is a finitely generated Q-algebra, hence it is finite over
Q by Nullstellensatz. If B is the integral closure of Z in K, then B is a Dedekind
domain with field of fractions K. Since K is a finitely generated Z-algebra, it is
also finitely generated over B, hence it is equal to B[1/b] for some nonzero b ∈ B.
However, b is only contained in finitely many prime ideals, while B has infinitely
many such ideals. Therefore B[1/b] can not be a field. This contradiction shows
that π(x) is a closed point. �

Let X be an arithmetic scheme. For every closed point x ∈ X, we put N(x) =
|k(x)|. Note that given any M , there are only finitely many closed points x ∈ X
with N(x) ≤ M . Indeed, this condition bounds the characteristic of k(x), and we
have seen in Proposition 2.1 that on every Xp there are only finitely many closed
points with deg(k(x)/Fp) bounded.

A 0-cycle on X is an element of the free abelian group on the set of closed points

of X. We say that a 0-cycle α =
∑`
i=1mixi is effective if all mi are non-negative.
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In this case, we put N(α) :=
∏
iN(xi)

mi . Note that if α is an effective cycle on

Xp, then N(α) = pdeg(α).
The zeta function LX of X is defined by LX(s) =

∑
n≥1

an
ns , where an is the

number of effective 0-cycles α on X with N(α) = n (with the convention a1 = 1).
Note that the sequence (an)n≥1 is multiplicative: this is an easy consequence of the
fact that for every closed point x ∈ X, N(x) is a prime power, hence N(x) divides
a product mn, with m and n relatively prime if and only if it divides precisely
one of m and n. Therefore we have an Euler product decomposition of LX as
LX(s) =

∏
p LX,p(s), where

LX,p(s) =
∑
n≥0

b
(p)
n

pns
,

where b
(p)
n is the number of effective 0-cycles on Xp of degree n. It follows from Re-

mark 2.9 that LX,p(s) = Z(Xp, p
−s) = LXp(s) (for a possibly non-reduced scheme

W of finite type over Fp, we put Z(W, t) = Z(Wred, t)).
Up to this point, the above Euler product only holds at a formal level, since

we have not proved yet that the above Dirichlet series converges in a nonempty
half-plane. Our main goal in this section is to prove this fact, to compute the
abscissa of convergence, and to show that the zeta function has a meromorphic
continuation to a half-space containing the half-plane of convergence. Note that
the above Dirichlet series has nonnegative coefficients, so in this case the abscissa
of absolute convergence is equal to the abscissa of convergence.

As a warm-up, we start with the case of a scheme that lies over a closed point
in Spec Z. Suppose that Y is a scheme of finite type over Fp. Recall that in this
case we have LY (s) = Z(Y, p−s). The following is the main result in this setting.

Theorem 6.24. If Y is a scheme of finite type over Fp, then the Dirichlet
series with nonnegative coefficients LY (s) is convergent for Re(s) > r := dim(Y ),
and it has no zeros in this half-plane. Furthermore, if the r-dimensional irreducible
components of Y are Y1, . . . , Y`, and each Yj×FpFp has mj irreducible components,
then

LY (s) = L̃(s) ·
∏̀
j=1

1

1− pmj(r−s)
,

where L̃ is the sum of a Dirichlet series with abscissa of absolute convergence ≤
r − 1

2 . In particular, the abscissa of convergence of LY is r, and LY admits a

meromorphic continuation to the half-plane {s | Re(s) > r − 1
2}, such that the set

of poles is given by {
r +

2πim

mj log(p)
| m ∈ Z, 1 ≤ j ≤ `

}
.

Proof. Let f =
∑
e≥1

Ne
e t

e, where Ne = |Y (Fpe)|, and g = exp(f), so that

LY (s) = g(p−s). We thus are in the setting discussed at the end of §4. It follows
from Corollary 6.4 that there is a constant αY > 0 such that Ne ≤ αY per for every

e ≥ 1. This implies N
1/e
e ≤ α

1/e
Y pr, so that the radius of convergence R of f is

≥ p−r, and we thus obtain

ρ(LY ) = ρ+(LY ) = − log(R)

log p
≤ r.
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Note also that if Re(s) > r, then LY (s) = exp(f(p−s)), hence it is nonzero. This
proves the first assertion in the theorem.

The second assertion is the deeper one, and for this we will make use the

Lang-Weil estimate. Let f1 =
∑`
i=1

∑
mi|e

mip
er

e te and f2 = f − f1. Note that

f1 =
∑̀
i=1

∑
j≥1

pjmirtjmi

j
= −

∑̀
i=1

log(1− pmirtmi),

hence exp(f1) =
∏`
i=1

1
1−prmi tmi . On the other hand, if we write f2 =

∑
m≥1

bm
m tm,

it follows from Proposition 6.7 that there is a constant C > 0 such that |bm| ≤
Cp(r− 1

2 )m for all m. Arguing as above, we see that the radius of convergence of

f2 is ≥ p−r+
1
2 . Therefore the abscissa of convergence of L̃(s) = exp(f2)(p−s) is

≤ r − 1
2 , and we have

LY (s) = exp(f1)(p−s) · exp(f2)(p−s) = L̃(s) ·
∏̀
i=1

1

1− pmi(r−s)
.

Note also that if Re(s) > r − 1
2 , then L̃(s) = exp(f2(p−s)) 6= 0. The last assertions

in the theorem are now easy consequences. �

Exercise 6.25. Let (mi)i∈I be positive integers, where I is a countable set,
such that for every M there are only finitely many i with mi ≤ M . Show that if
the power series f(t) =

∏
i∈I(1− tmi)−1 ∈ Z[[t]] has radius of convergence R, then

for every u ∈ C with |u| < min{1, R} the product
∏
i∈I(1 − umi)−1 is absolutely

convergent and f(u) =
∏
i∈I(1− umi)−1.

Exercise 6.26. Show that if Y is a scheme of finite type over Fp, then for

every s ∈ C with Re(s) > dim(Y ) the product
∏
x∈Ycl

(1−N(x)−s)
−1

is absolutely

convergent, and LY (s) =
∏
x∈Xcl

(1−N(x)−s)
−1

.

The case of an arithmetic scheme X whose irreducible components dominate
Spec Z is more involved. We begin by giving an upper-bound for the abscissa of
convergence of an arbitrary arithmetic scheme. This will be a consequence of the
following complement to Corollary 6.4.

Proposition 6.27. For every arithmetic scheme X of dimension r, there is a
constant cX > 0 and p0 such that for every prime p ≥ p0 and every e ≥ 1, we have

#X(Fpm) ≤

{
cXp

m(r−1), if p ≥ p0,m ≥ 1;

cXp
mr, if p < p0,m ≥ 1.

Proof. It is enough to show that there is cX and p0 such that #X(Fpm) ≤
cXp

m(r−1) for all p ≥ p0 and m ≥ 1. Indeed, applying Proposition 6.7 to each Xp

with p < p0, we see that after possibly enlarging cX we have #X(Fpm) ≤ pmr for
all p < p0 and m ≥ 1.

We first prove this assertion in the case when X is irreducible, and it is smooth
and projective over Spec Z[1/N ] for some positive integer N . Consider an embed-
ding X ↪→ Pn

Z[1/N ], and let d denote the degree of the fibers. In particular, for

every prime p that does not divide N , Xp ↪→ Pn
Fp

is a smooth closed subvariety

of dimension r − 1 and degree d. In particular, Xp ×Fp Fp has ≤ d irreducible
components. Applying Proposition 6.6 to each connected component of X, we see
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that there is a positive constant cX such that #X(Fpe) ≤ cXp
(r−1)e for every p

that does not divide N , and every e ≥ 1.
We now consider the general case, that we prove by induction on r. If r = 0,

then Xp is empty for p � 0, and the assertion to prove is trivial. Suppose that
r ≥ 1. Note first that we may assume that X is irreducible: if X1, . . . , X` are the
irreducible components of X, and if we can find cXi for every i, then it is enough

to take cX =
∑`
i=1 cXi .

Suppose from now on that X is irreducible, and after replacing X by Xred we
may also assume that X is reduced. If X does not dominate Spec Z, then Xp is
empty for p� 0, hence the assertion to prove is trivial. We henceforth assume that
X dominates Spec Z.

Note that if X is birational to Y , for an integral scheme Y of finite type over
Spec Z, and if we can find cY as required, then we can also find cX . Indeed, if V
is an open subset of X isomorphic to an open subset of Y , then we can find cXrV
by induction, and it is enough to take cX = max{cY , cXrV }.

In particular, we may assume that X is projective over Spec Z. We apply
Hironaka’s theorem on resolution of singularities to find a projective birational

morphism φQ : X̃Q → X×ZQ, with X̃Q nonsingular, hence smooth over Q. We can
find a positive integer N such that φQ is obtained by base-change from a projective

birational morphism φ : X̃ → X ×Z Z[1/N ], such that X̃ is smooth and projective
over Spec Z[1/N ]. We have already seen that the assertion in the proposition holds

for X̃, and since X is birational to X̃, it follows that we can find cX as required.
This completes the proof of the proposition. �

Corollary 6.28. If X is an arithmetic scheme of dimension r, then the
Dirichlet series with nonnegative coefficients LX is convergent in {s | Re(s) > r},
and it has no zeros in this region.

Proof. Let fp =
∑
e≥1

Ne(p)
e te, where Ne(p) = #X(Fpe). It follows from

Proposition 6.27 that there is a constant cX > 0 and p0 such that the series fp
satisfy the conditions in Proposition 6.22, with α = r − 1. Since

∏
p exp(fp(p

−s))

is the Euler product corresponding to LX , we deduce that LX(s) is (absolutely)
convergent for Re(s) > r. Furthermore, each of the factors of the Euler product is
nonzero, hence LX(s) is nonzero in this half-plane. �

Remark 6.29. It follows from Corollary 6.28 and Proposition 6.18 that if X is
an arithmetic scheme of dimension r, then LX(s) =

∏
p LXp(s) whenever Re(s) > r.

Furthermore, it follows from Exercise 6.26 that for every prime p, we have LXp(s) =∏
x∈(Xp)cl

(1−N(x)−s)
−1

, and the product is absolutely convergent. We conclude

using Exercise B.22 that

LX(s) =
∏
x∈Xcl

(
1−N(x)−s

)−1
,

and the product is absolutely convergent.

Example 6.30. Let K be a number field and OK the ring of integers of K
(that is, the ring of elements of K that are integral over Z). The zeta function of
K (also called the Dedekind zeta function of K) is ζK := LSpecOK . Corollary 6.28
implies that ζK is (absolutely) convergent in the half-plane {s | Re(s) > 1}. We
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deduce from the previous remark that we have a product description in this region

ζK(s) =
∏

P∈Spec(OK)

(
1− 1

N(P )s

)−1

.

The description of ζK as a Dirichlet series can also be written as

ζK(s) =
∑

a⊂OK

1

N(a)s
,

where the sum is over all proper nonzero ideals a of OK , and where N(a) = |OK/a|
(by the unique factorization of an ideal in OK as a product of prime ideals, we can
identify nonzero ideals in OK with effective cycles on SpecOK , such that the two
definitions of N(a) are compatible). Of course, if K = Q, then ζK is the Riemann
zeta function.

Example 6.31. Recall that by Corollary 2.23 we have

Z(Pn
Fp , t) =

1

(1− t)(1− pt) · · · (1− pnt)
.

Therefore the zeta function of Pn
Z is given by

LPnZ
(s) =

∏
p

Z(Pn
Fp , p

−s) =

n∏
i=0

∏
p

1

(1− pi−s)
=

n∏
i=0

ζ(s− i).

Remark 6.32. If X is an arithmetic scheme, Y is a closed subscheme of X,
and U = X r Y , then LX(s) = LY (s)LU (s) for all s > dim(X). Indeed, this is
a consequence of the Euler product description of the zeta function, and of the
fact that Z(Xp, t) = Z(Yp, t) · Z(Up, t) for all primes p. In particular, we see that
LX is the product of LY and LU in the sense of Proposition 6.21, and therefore
ρ(LX) ≤ max{ρ(LY ), ρ(LU )}.

Our last result in this section describes, in particular, the abscissa of conver-
gence of zeta functions of arithmetic schemes.

Theorem 6.33. If X is an arithmetic scheme of dimension r, then the following
hold:

i) The abscissa of convergence of LX is ρ = r.
ii) LX admits a meromorphic continuation to the half-plane {s | Re(s) >

r − ε}, for some ε > 0, and s = r is a pole.
iii) If X is irreducible and dominates Spec Z, then the only pole of LX in the

half-plane {s | Re(s) > r− ε}, with ε as in ii), is at s = r, and this occurs
with order one.

In fact, as we will explain below, one can show that one can take ε = 1
2 in

the theorem. The key ingredient that we will need, in addition to the Lang-Weil
estimate, is given by the special case of the ring of integers in a number field. This
is the content of the following proposition.

Proposition 6.34. If K is a number field with deg(K/Q) = `, then ζK admits
a meromorphic continuation to the half-plane {s | Re(s) > 1 − 1

` }. In this region
the only pole is s = 1, and this occurs with order one. In particular, the abscissa
of convergence of ζK is ρ = 1.
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Proof. We will use the following result from algebraic number theory: there
is a positive number αK such that if i(m) denotes the number of proper nonzero
ideals I in OK with N(I) ≤ m, then

i(m)− αKm
m1− 1

`

is bounded see [Mar, Theorem 39]. This implies that if we write ζK −αKζ(s) as a
Dirichlet series

∑
m≥1

bm
ms , then there is a positive constant C such that |b1 + . . .+

bm| ≤ Cm1− 1
` for all m. Proposition 6.12 implies that ζK − αKζ is analytic in the

half-plane {s | Re(s) > 1 − 1
` }. On the other hand, by Proposition 6.13 we know

that ζ is meromorphic in the half-plane {s | Re(s) > 0}, with a unique (simple)
pole at s = 1. This gives the assertions in the proposition concerning ζK . �

One can show that, in fact, ζK admits a meromorphic continuation to C, such
that the only pole is at s = 1. However, the proof is quite involved, so we refer to
[Lang, Chapter XIII] for this result.

Proof of Theorem 6.33. Note first that if U is an open subset of X such
that dim(W ) < dim(X), where W = X r U , then the theorem holds for X if
and only if it holds for U . Indeed, LX(s) = LW (s)LU (s) by Remark 6.32. Since
dim(W ) ≤ r−1, the function LW is analytic in {s | Re(s) > r−1} by Corollary 6.28,
and it has no zeros in this half-plane. Therefore the assertions in the theorem hold
for X if and only if they hold for U . This implies, in particular, that if X and Y
are birational integral schemes, then the theorem holds for X if and only if it holds
for Y .

Given any X, let us consider an affine open subset U of X with dim(XrU) < r,
such that U is isomorphic to the disjoint union of some Ui, with each Ui irreducible
of dimension r. Since L(U, s) =

∏
i LUi(s), it is clear that if each Ui satisfies

properties i) and ii), then so does U , and therefore so does X. This shows that
we may assume that X is affine and irreducible, and after replacing X by Xred, we
may assume that X is integral.

If X does not dominate Spec Z, then X = Xp for some p. In this case, Theo-
rem 6.24 shows that properties i) and ii) are satisfied with ε = 1

2 . Hence from now
on we may assume that X dominates Spec Z. Arguing as in the proof of Proposi-
tion 6.27, we find an integral scheme Y that is smooth and projective over some
Spec Z[1/N ], connected, and that is birational to X. As we have seen, it is enough
to show that Y satisfies the assertions in the theorem.

Let π : Y → Spec Z[1/N ] be the structure morphism. After possibly replacing
N by a multiple, we may assume that π∗(OY ) is free (say, of rank m) and π∗(OYp) '
π∗(OY )⊗Z/pZ for all primes p that do not divide N . Therefore A = Γ(Y,OY ) is an
integral domain, free of rank m over Z[1/N ]. If K = A⊗Z Q, then K is a domain
that is a finite extension of Q, hence it is a number field, equal to the fraction field
of A. If OK is the ring of integers in K, then we have an inclusion A ⊆ OK [1/N ].
After possibly replacing N by a multiple, we may assume that A = OK [1/N ] and
that OK [1/N ] is smooth over Z[1/N ].

Suppose that p is a prime that does not divide N , and let us consider its prime
decomposition in OK :

pOK = P1 · . . . · P`,
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and let mi = [OK/Pi : Fp]. Note that the fiber Yp is a smooth, (r− 1)-dimensional

projective variety, with ` irreducible components Y
(1)
p , . . . , Y

(`)
p , with Y

(i)
p ×SpecFp

Spec Fp having mi irreducible components.

For every prime p that does not divide N , let fp =
∑
e≥1

|X(Fpe )|
e te and

f (1)
p =

∑
e≥1

|SpecOK(Fpe)|
e

te =
∑̀
i=1

∑
mi|e

mi

e
te.

If we write f
(2)
p (t) = fp(t) − f

(1)
p (pr−1t) =

∑
e≥1

b(p)e
e te, then we apply Proposi-

tion 6.6 to every connected component of Yp to deduce that we have a positive

constant C such that |b(p)e | ≤ Cp(r− 1
2 )e for all e and all primes p that do not di-

vide N . We deduce from Proposition 6.22 that
∏
p 6 |N exp(f

(2)
p )(p−s) is the Euler

product of a Dirichlet series L̃Y that is absolutely convergent in the half-plane
{s | Re(s) > r − 1

2}, and which has no zeros in this region. On the other hand,

if we put Y ′ = SpecOK [1/N ], then LY (s) = LY ′(s − r + 1)L̃Y (s). Note that

ζK(s) = LY ′(s)
∏
j

(
1− 1

N(Pj)s

)−1

, where the Pj are the (finitely many) prime

ideals of OK that lie over primes in Z dividing N . It follows from Proposition 6.34
that LY ′(s) is a meromorphic function in the half-plane {s | Re(s) > 1− 1

d}, where
d = deg(K/Q), and its only pole in this region is at s = 1, and this has order one.
We deduce that properties i), ii), and iii) are satisfied by LY , where we may take
ε = 1/d. This completes the proof of the theorem. �

Remark 6.35. If one assumes the fact that ζK has a meromorphic continu-
ation to the half-plane {s | Re(s) > 1

2}, we see that the argument in the proof
of Theorem 6.33 shows that for every arithmetic scheme of dimension r, the zeta
function LX can be extended as a meromorphic function to {s | Re(s) > r − 1

2}.

Remark 6.36. If X is any arithmetic scheme of dimension r, then the order of
s = r as a pole of LX is equal to the number of r-dimensional irreducible components
of X. Indeed, if X1, . . . , X` are the r-dimensional irreducible components of X, then
the order of s = r as a pole of LX is the sum of the corresponding orders of s = r
as a pole of each LXj . These orders in turn can be computed using Theorem 6.24
(for those Xj that lie in a fiber over Spec Z) and Theorem 6.33 (for those Xj that
dominate Spec Z).

It is conjectured that for every arithmetic scheme X, the zeta function LX
admits a meromorphic continuation to C. This seems, however, to be completely
out of reach at the moment. One important case is when X×ZQ is an elliptic curve,
in which case the assertion is known to follow from the famous Taniyama-Shimura
conjecture, proved in [Wil], [TW], and [BCDT].



CHAPTER 7

The Grothendieck ring of varieties and Kapranov’s
motivic zeta function

In this chapter we give an introduction to the Grothendieck ring of algebraic
varieties, and discuss Kapranov’s lifting of the Hasse-Weil zeta function to this
Grothendieck ring. One interesting feature is that this makes sense over an arbitrary
field. We will prove the rationality of Kapranov’s zeta function for curves by a
variant of the argument used Chapter 3 for the Hasse-Weil zeta function. We will
end by discussing the results of Larsen and Lunts on Kapranov zeta functions of
algebraic surfaces.

7.1. The Grothendieck ring of algebraic varieties

In this section we recall the definition and the basic properties of the Grothendieck
ring of algebraic varieties. Let k be an arbitrary field. The Grothendieck group
K0(Var/k) of varieties over k is the quotient of the free abelian group on the set
of isomorphism clases of varieties over k, by relations of the form

[X] = [Y ] + [X r Y ],

where Y is a closed subvariety of the variety X (here [X] denotes the image of the
variety X in K0(Var/k)). Note that the above relation implies [∅] = 0.

In fact, K0(Var/k) is a commutative ring, with the product given by

[X] · [Y ] = [(X × Y )red],

where the product on the right is understood to be over Spec k. It is clear that this
induces a bilinear map K0(Var/k)×K0(Var/k)→ K0(Var/k) that is commutative
and associative, and has unit Spec k.

The class of A1
k in K0(Var/k) is denoted by L. Therefore [An

k ] = Ln. The

usual decomposition Pn
k = Pn−1

k t An
k implies by induction on n that [Pn

k ] =
1 + L + . . .+ Ln.

Proposition 7.1. Suppose that X is a variety over k, and we have a decom-
position X = Y1 t . . .t Yr, where all Yi are locally closed subvarieties of X. In this
case [X] = [Y1] + . . .+ [Yr].

Proof. We argue by induction on dim(X) (the case dim(X) = 0 being trivial),
and then by induction on the number of irreducible components of X of maximal
dimension. Let Z be an irreducible component of X of maximal dimension, and
ηZ its generic point. If i is such that ηZ ∈ Yi, then Z ⊆ Yi, and since Yi is open in
Yi, it follows that there is an open subset U of X contained in Yi ∩Z (for example,
we may take to be the complement in Yi ∩ Z of all irreducible components of X
different from Z). By definition, we have

(7.1) [Yi] = [U ] + [Yi r U ] and [X] = [U ] + [X r U ].

71
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On the other hand, either dim(X r U) < dim(X), or dim(X r U) = dim(X)
and X r U has fewer irreducible components of maximal dimension than X does.
Applying the induction hypothesis to the decomposition XrU = (YirU)t

⊔
j 6=i Yj ,

we have

(7.2) [X r U ] = [Yi r U ] +
∑
j 6=i

[Yj ].

By combining (7.1) and (7.2), we get the formula in the proposition. �

Given a variety X over k, we want to define the class in K0(Var/k) of a con-
structible subset of X. This is achieved using the following easy lemma.

Lemma 7.2. Any constructible subset W of a variety X over k can be written
as a finite disjoint union of locally closed subsets.

Proof. We prove this by induction on d = dim(W ), the case d = 0 being
trivial. Let us write W = W1∪ . . .∪Wr, with all Wi locally closed, hence W = W1∪
. . .∪Wr. After replacing each Wi by its irreducible decomposition, we may assume
that all Wi are irreducible. After renumbering, we may assume that W1, . . . ,Ws

are the irreducible components of W . Since each Wi is open in Wi, the set U =⋃s
i=1

(
Wi r

⋃
j 6=iWj

)
is open and dense in W , and it is contained in W . If V =

W r U , then V is constructible, and dim(V ) < dim(W ), hence by induction we
have a decomposition V = V1t . . .tVs, with each Vi locally closed in X. Therefore
we have a decomposition W = U t V1 t . . . t Vs, as required. �

Suppose now that X is a variety over k, and W is a constructible subset of X.
By the above lemma, there is a disjoint decomposition W = W1 t . . . tWr, with
each Wi locally closed in X. We put [W ] :=

∑r
i=1[Wi].

Proposition 7.3. With the above notation, the following hold:

i) The definition of [W ], for W constructible in X, is independent of the
disjoint decomposition.

ii) If W1, . . . ,Ws are disjoint constructible subsets of X, and W =
⋃
iWi,

then [W ] =
∑s
i=1[Wi].

Proof. Suppose that we have two decompositions into locally closed subsets

W = W1 t . . . tWr and W = W ′ t . . . tW ′s.

Let us also consider the decomposition W =
⊔
i,j(Wi ∩W ′j). It follows from Propo-

sition 7.1 that [Wi] =
∑s
j=1[Wi ∩W ′j ] for every i, and [W ′j ] =

∑r
i=1[Wi ∩W ′j ] for

every j. Therefore
r∑
i=1

[Wi] =

r∑
i=1

s∑
j=1

[Wi ∩W ′j ] =

s∑
j=1

r∑
i=1

[Wi ∩W ′j ] =

s∑
j=1

[W ′j ].

This proves i). The assertion in ii) follows from i): if we consider disjoint unions
Wi = Wi,1 t . . . t Wi,mi for every i, with each Wi,j locally closed in X, then
W =

⊔
i,jWi,j , and

[W ] =
∑
i,j

[Wi,j ] =
∑
i

[Wi].

�
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A morphism f : X → Y is piecewise trivial, with fiber F , if there is a decompo-
sition Y = Y1 t . . .tYr, with all Yi locally closed in Y , such that f−1(Yi) ' Yi×F
for all i.

Proposition 7.4. If f : X → Y is piecewise trivial with fiber F , then [X] =
[Y ] · [F ] in K0(Var/k).

Proof. By assumption, there is a decomposition Y = Y1t . . .tYr into locally
closed subsets such that [f−1(Yi)] = [F ] · [Yi]. By Proposition 7.1 we have [X] =∑
i[f
−1(Yi)] and [Y ] =

∑
i[Yi], hence we get the assertion in the proposition. �

Example 7.5. It is clear that if E is a vector bundle on Y of rank n, then
E → Y is piecewise trivial with fiber An

k and P(E) → Y is piecewise trivial with

fiber Pn−1
k . Therefore [E] = [Y ] · Ln and [P(E)] = [Y ](1 + L + . . .+ Ln−1).

The following lemma is an immediate consequence of the definitions.

Lemma 7.6. If k′/k is a field extension, then we have a ring homomorphism
K0(Var/k)→ K0(Var/k′), that takes [X] to [(X×k k′)red] for every variety X over
k.

An Euler-Poincaré characteristic for varieties over k is a map χ that asso-
ciates to a variety X over k an element χ(X) in a group A, such that if Y is a
closed subvariety of X, we have χ(X) = χ(Y ) + χ(X r Y ). Note that the map
taking X to [X] ∈ K0(Var/k) is the universal Euler-Poincaré characteristic: every
Euler-Poincaré characteristic as above is induced by a unique group homomorphism
χ : K0(Var/k) → A. If A is a ring, then the Euler-Poincaré characteristic is called
multiplicative if χ is a ring homomorphism.

Example 7.7. If k is a finite field, then for every finite extension K/k we
have a multiplicative Euler-Poicaré characteristic with values in Z, that takes X to
|X(K)|. One can put all these together in a group homomorphism

K0(Var/k)→ (1 + tZ[[t]], ·), [X]→ Z(X, t).

Example 7.8. If k = C, then we have a multiplicative Euler-Poincaré char-
acteristic that associates to X the usual Euler-Poincaré characteristic for singu-
lar cohomology χtop(X) =

∑
i≥0(−1)i dimQH

i(Xan,Q) (compare with the more

refined invariant in Example 7.13 below). The fact that χtop(X) gives an Euler-
Poincaré characteristic is a consequence of the fact that χtop(X) is also equal to
the Euler-Poincaré characteristic for compactly supported cohomology χctop(X) :=∑
i≥0(−1)i dimQH

i
c(X

an,Q) (see [Ful2, p. 141-142]). Indeed, if Y is a closed
subvariety of the complex variety X, and U = X r Y , then there is a long exact
sequence for cohomology with compact supports

. . .→ Hi
c(U

an,Q)→ Hi
c(X

an,Q)→ Hi
c(Y

an,Q)→ Hi+1
c (Uan,Q)→ . . . ,

which implies χctop(X) = χctop(U) + χctop(Y ).

The most convenient way of constructing Euler-Poincaré characteristics when
the ground field is algebraically closed of characteristic zero involves a presentation
of K0(Var/k) due to Bittner [Bit]. The following lemma is elementary (and we
have seen some of its avatars before).
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Lemma 7.9. If char(k) = 0, then K0(Var/k) is generated by classes of nonsin-
gular, connected, projective varieties over k. More precisely, given any irreducible
variety X of dimension n, there is a nonsingular, irreducible, projective variety

Y that is birational to X such that [X] − [Y ] =
∑N
i=1mi[Wi], for some smooth,

projective, irreducible varieties Wi of dimension < n, and some mi ∈ Z.

Proof. Note first that the second assertion implies the first. Indeed, it is
enough to show by induction on n that for every n-dimensional variety W over k,
we have [W ] ∈ K ′0, where K ′0 is the subgroup of K0(Var/k) generated by classes
of nonsingular, connected, projective varieties. The assertion is clear if n = 0. For
the induction step, given W with irreducible components W1, . . . ,Wr, let Ui =
Wi r

⋃
j 6=iWj , and U =

⋃r
i=1 Ui. Since dim(W r U) < n, it follows by induction

that [W rU ] ∈ K ′0, and since [U ] =
∑r
i=1[Ui] we see that it is enough to show that

every [Ui] lies in K ′0. This is a consequence of the second assertion in the lemma.
We now prove the second assertion in the lemma by induction on n = dim(X).

Let X ′ be an irreducible projective variety that is birational to X. By Hironaka’s
theorem on resolution of singularities, there is a birational morphism f : Y → X ′,
with Y nonsingular, connected, and projective. Since X and Y are birational, we
can find isomorphic open subsets U ⊆ X and V ⊆ Y , so that we have

(7.3) [X]− [Y ] = [X r U ]− [Y r V ],

and dim(X r V ), dim(Y r U) < n. Arguing as above, we see that the induction
hypothesis implies that both [X r U ] and [Y r V ] can be written as linear combi-
nations of classes of nonsingular, irreducible, projective varieties of dimension < n,
with integer coefficients. Using (7.3), we obtain the assertion in the lemma about
X. �

Bittner’s theorem shows that with respect to the system of generators described
in the lemma, the relations are generated by the ones coming from blow-ups with
smooth centers.

Theorem 7.10. ([Bit]) Let k be an algebraically closed field of characteristic
zero. The kernel of the natural morphism from the free abelian group on isomor-
phism classes of smooth, connected, projective varieties over k to K0(Var/k) is
generated by the following elements:

i) [∅]
ii) ([BlYX]− [E])− ([X]− [Y ]),

with X and Y are smooth, connected, projective varieties, with Y a subvariety of
X, and where BlYX is the blow-up of X along Y , with exceptional divisor E.

We do not give the proof here, but only mention that the main ingredient
is the following Weak Factorization Theorem of Abramovich, Karu, Matsuki, and
W lodarczyk.

Theorem 7.11. ([AKMW]) If k is an algebraically closed field of character-
istic zero, then every birational map between two smooth projective varieties over k
can be realized as a composition of blow-ups and blow-downs of smooth irreducible
centers on smooth projective varieties.

Example 7.12. Let us show that if k is algebraically closed, of characteristic
zero, then there is a (unique) Euler-Poincaré characteristic Q with values in Z[t]
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such that for every smooth projective variety X, we have

Q(X, t) =

dim(X)∑
i=0

(−1)ihi(X,OX)ti.

By Theorem 7.10, it is enough to show that if X and Y are smooth, connected,
projective varieties, with Y a closed subvariety of X, and if W is the blow-up of X
along Y , with exceptional divisor E, then Q(W, t) − Q(E, t) = Q(X, t) − Q(Y, t).
If p : W → X and q : E → Y are the natural projections, then Rip∗(OW ) = 0, and
Riq∗(OE) = 0 for all i > 0, while p∗(OW ) = OX and q∗(OE) = OY . We thus have
isomorphisms

Hj(X,OX) ' Hj(W,OW ), Hj(Y,OY ) ' Hj(E,OE)

for all j ≥ 0, which imply Q(W, t) = Q(X, t) and Q(E, t) = Q(Y, t).

Example 7.13. A more refined example of an Euler-Poincaré characteristic is
given by the Hodge-Deligne polynomial of algebraic varieties. This is an Euler-
Poincaré characteristic of varieties over an algebraically closed field k of character-
istic zero that takes values in Z[u, v], such that for a smooth projective variety X,
E(X,u, v) is the Hodge polynomial

dim(X)∑
p,q=0

(−1)p+qhp,q(X)upvq,

where hp,q(X) = hq(X,ΩpX). Note that with the notation in the previous exam-
ple, we have Q(X, t) = E(X, 0, t). The original definition of the Hodge-Deligne
polynomial (over C) uses the mixed Hodge structure on the singular cohomology
with compact supports of complex algebraic varieties. It would be nice to give an
elementary argument using Theorem 7.10, as in the previous example.

The polynomial Pvir(X, t) := E(X, t, t) is the virtual Poincaré polynomial of
X. Note that if k = C, then this polynomial is characterized by the fact that
it induces a group homomorphism K0(Var/C) → Z[t], and if X is a smooth pro-
jective variety, then Pvir(X, t) is the usual Poincaré polynomial of X, given by∑
i≥0(−1)i dimQH

i(X,Q)ti (this is a consequence of the Hodge decomposition for

smooth projective varieties). In particular, we see that PX(1) = χtop(X).

Exercise 7.14. Use the Künneth formula to show that the Hodge-Deligne
polynomial is a multiplicative Euler-Poincaré characteristic.

Example 7.15. If X = P1, then h0,0(X) = h1,1(X) = 1 and h1,0(X) =
h0,1(X) = 0, hence E(P1, u, v) = 1 + uv, and therefore

E(A1, u, v) = E(P1, u, v)− E(Spec k, u, v) = uv.

It follows from the previous exercise that E(An, u, v) = (uv)n.

Remark 7.16. Recall that if X is a smooth projective complex variety, then
we have the following symmetry of the Hodge numbers: hp,q(X) = hq,p(X). This
implies that E(Y, u, v) = E(Y, v, u) for every variety over an algebraically closed
field of characteristic zero.

Exercise 7.17. Let k be an algebraically closed field of characteristic zero.
Show that if X is a variety iver k, then E(X,u, v) is a polynomial of degree
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2 dim(X), and the term of maximal degree is m(uv)dim(X), where m is the number
of irreducible components of X of maximal dimension.

Exercise 7.18. Show that if X and Y are varieties over a field k such that
[X] = [Y ] in K0(Var/k), then dim(X) = dim(Y ). Hint: in characteristic zero, one
can use the previous exercise; in positive characteristic, reduce to the case k = Fp,
and then use the Lang-Weil estimates (in fact, the characteristic zero case can also
be reduced to positive characteristic).

As an application of Bittner’s result, we give a proof of a result of Larsen and
Lunts [LL2] (see also [Sa]), relating the Grothendieck group of varieties with stable
birational geometry.

We keep the assumption that k is an algebraically closed field of characteristic
zero. Recall that two irreducible varieties X and Y are stably birational if X ×Pm

and Y ×Pn are birational for some m,n ≥ 0.
Let SB/k denote the set of stably birational equivalence classes of irreducible

algebraic varieties over k. We denote the class of X in SB/k by 〈X〉. Note that SB/k
is a commutative semigroup, with multiplication induced by 〈X〉 · 〈Y 〉 = 〈X × Y 〉.
Of course, the identity element is Spec k.

Let us consider the semigroup algebra Z[SB/k] associated to the semigroup
SB/k.

Proposition 7.19. There is a unique ring homomorphism Φ: K0(Var/k) →
Z[SB/k] such that Φ([X]) = 〈X〉 for every smooth, connected, projective variety X
over k.

Proof. Uniqueness is a consequence of Lemma 7.9. In order to prove the ex-
istence of a group homomorphism Φ as in the proposition, we apply Theorem 7.10.
This shows that it is enough to check that whenever X and Y are smooth, con-
nected, projective varieties, with Y a closed subvariety of X, we have

〈BlY (X)〉 − 〈E〉 = 〈X〉 − 〈Y 〉,
where BlYX is the blow-up of X along Y , and E is the exceptional divisor. In fact,
we have 〈X〉 = 〈BlY (X)〉 since X and BlY (X) are birational, and 〈Y 〉 = 〈E〉, since
E is birational to Y ×Pr−1

k , where r = codimX(Y ).
In order to check that Φ is a ring homomorphism, it is enough to show that

Φ(uv) = Φ(u)Φ(v), where u and v vary over a system of group generators of
K0(Var/k). By Lemma 7.9, we may take this system to consist of classes of smooth,
connected, projective varieties, in which case the assertion is clear. �

Since 〈P1
k〉 = 〈Spec k〉, it follows that Φ(L) = 0, hence Φ induces a ring homo-

morphism
Φ: K0(Var/k)/(L)→ Z[SB].

Theorem 7.20. ([LL2]) The above ring homomorphism Φ is an isomorphism.

Proof. The key point is to show that we can define a map

SB/k → K0(Var/k)/(L)

such that whenever X is a smooth, connected, projective variety, 〈X〉 is mapped to
[X] mod (L). Note first that by Hironaka’s theorem on resolution of singularities,
for every irreducible variety Y over k, there is a nonsingular, irreducible, projective
variety X that is isomorphic to Y . In particular 〈X〉 = 〈Y 〉. We claim that if
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X1 and X2 are stably birational nonsingular, irreducible, projective varieties, then
[X]− [Y ] ∈ (L).

Suppose that X1×Pm and X2×Pn are birational. It follows from Theorem 7.11
that X1 ×Pm and X2 ×Pn are connected by a chain of blow-ups and blow-downs
with smooth centers. Note that

[X1]− [X1 ×Pm] = −[X1] · L(1 + L + . . .+ Lm−1) ∈ (L).

Similarly, we have [X2]− [X2 ×Pn] ∈ (L). Therefore in order to prove our claim,
it is enough to show the following: if Z and W are smooth, connected, projective
varieties, with Z a closed subvariety of W , then [BlZW ]−[W ] ∈ (L), where BlZ(W )
is the blow-up of W along Z. Let r = codimW (Z), and let E be the exceptional
divisor, so E ' P(N), where N is the normal bundle of Z in W . Our assertion
now follows from

[BlZ(W )]− [W ] = [E]− [Z] = [E ·Pr−1]− [E] = [E] · L(1 + L + . . .+ Lr−2).

We thus get a group homomorphism Ψ: Z[SB/k] → K0(Var/k)/(L) such that
Ψ(〈X〉) = [X] mod (L) for every smooth, connected, projective variety X. It is
clear that Φ and Ψ are inverse maps, which proves the theorem. �

We end this section by mentioning the following result of Poonen [Po]:

Theorem 7.21. If k is a field of characteristic zero, then K0(Var/k) is not a
domain.

Sketch of proof. Let k denote an algebraic closure of k. We denote by
AV/k the semigroup of isomorphism classes of abelian varieties over k (with the
product given again by Cartezian product). Note that we have a morphism of
semigroups SB/k → AB/k, that takes 〈X〉 to Alb(X) for every smooth, connected,
projective variety X over k, where Alb(X) is the Albanese variety of X. Indeed,
arguing as in the proof of Theorem 7.20, we see that it is enough to show that
Alb(X) = Alb(X × Pn) and Alb(X ′) = Alb(X) if X ′ → X is the blow-up of the
smooth, connected, projective variety X along a smooth closed subvariety. Both
assertions follow from the fact that any rational map Pm 99K A, where A is an
abelian variety, is constant. Therefore we have ring homomorphisms

K0(Var/k)→ K0(Var/k)→ Z[SB/k]→ Z[AV/k].

The technical result in [Po] says that there are abelian varieties A and B over
k such that A×A ' B×B, but Ak 6' Bk. In this case ([A]− [B])([A] + [B]) = 0 in
K0(Var/k). However, both [A]− [B] and [A] + [B] are nonzero in K0(Var/k), since
their images in Z[AV/k] are nonzero. Hence K0(Var/k) is not a domain. �

Remark 7.22. Note that the zero-divisors constructed in the proof of the
above theorem are nonzero in K0(Var/k)/(L). This suggests that the localized
Grothendieck ring K0(Var/k)[L−1] might still be a domain, but this is an open
question.

7.2. Symmetric product and Kapranov’s motivic zeta function

We begin by recalling the definition of the symmetric products of an algebraic
variety. For simplicity we work over a perfect field k. Let X be a quasiprojective
variety over k. For every n ≥ 1, we have a natural action of the symmetric group
Sn on the product Xn. Since Xn is again quasiprojective, by the results in A.1,
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we may construct the quotient by the action of Sn. This is the symmetric product
Symn(X). We make the convention that Sym0(X) is Spec k. Note that since k is
perfect, Xn is reduced, hence Symn(X) is reduced too.

Example 7.23. For every n ≥ 1, there is an isomorphism Symn(A1
k) ' An

k .
Indeed, the ring of symmetric polynomials k[x1, . . . , xn]Sn ⊆ k[x1, . . . , xn] is gen-
erated as a k-algebra by the elementary symmetric functions e1, . . . , en. Note that
since dim(k[x1, . . . , xn]Sn) = n, the polynomials e1, . . . , en are algebraically inde-
pendent over k, hence Symn(A1

k) ' An
k .

Remark 7.24. Note that by Remark 1.5, for every field extension K/k (say,
with K perfect), we have Symn(X) ×k K ' Symn(X ×k K). In particular, if K
is algebraically closed, then Symn(X)(K) is in bijection with the set of effective
zero-cycles on X ×k K of degree n.

In order to define Kapranov’s motivic zeta function [Kap], we need some prepa-

rations. We will work with the quotient K̃0(Var/k) of K0(Var/k) by the subgroup
generated by the relations [X]− [Y ], where we have a radicial surjective morphism
X → Y of varieties over k. See A.3 for a review of radicial morphisms. Note that

in fact K̃0(Var/k) is a quotient ring of K0(Var/k): this follows from the fact that
if f : X → Y is surjective and radicial, then for every variety Z, the morphism
f × IdZ : X×Z → Y ×Z is surjective and radicial (since f × IdZ is the base-change
of f with respect to the projection Y × Z → Y ).

Proposition 7.25. If char(k) = 0, then the canonical morphism K0(Var/k)→
K̃0(Var/k) is an isomorphism.

Proof. This is a consequence of the fact that if char(k) = 0 and f : X → Y is
radicial and surjective, then f is a piecewise isomorphism (see Proposition A.24),
hence [X] = [Y ] in K0(Var/k). �

Proposition 7.26. If k = Fq is a finite field, then the ring homomorphism

K0(Var/k)→ Z given by [X]→ |X(Fqe)| factors through K̃0(Var/k).

Proof. We need to show that if f : X → Y is a radicial, surjective morphism
of varieties over Fq, then |X(Fqe)| = |Y (Fqe)|. This is a consequence of the fact
that f gives a bijection between the closed points of X and Y , such that for every
x ∈ Xcl we have k(f(x)) = k(x) (for this it is enough to note that k(f(x)) is
a finite field, hence perfect, and therefore it has no nontrivial purely inseparable
extensions). �

The next proposition shows that the Grothendieck group of varieties over k
can be described in terms of quasiprojective varieties. Let Kqpr

0 (Var/k) be the quo-
tient of the free abelian group on the set of isomorphism classes of quasiprojective
varieties over k, modulo the relations

[X] = [Y ] + [X r Y ],

where X is a quasiprojective variety and Y is a closed subvariety of X. It is clear
that we have a group homomorphism Φ: Kqpr

0 (Var/k) → K0(Var/k), such that

Φ([X]) = [X]. We similarly define K̃qpr(Var/k) as the quotient of Kqpr
0 (Var/k) by

the relations [X]− [Y ], where we have a surjective, radicial morphism of quasipro-
jective varieties f : X → Y . We have a corresponding group homomorphism

Φ̃: K̃qpr
0 (Var/k)→ K̃0(Var/k).
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Proposition 7.27. Both Φ and Φ̃ are isomorphisms.

Proof. Let us define an inverse homomorphism Ψ: K0(Var/k)→ Kqpr
0 (Var/k).

Given a variety X over k, we consider a disjoint decomposition X = V1 t . . . t Vr,
where each Vi is quasiprojective and locally closed in X (for example, we may even
take the Vi to be affine). In this case, we define Ψ([X]) =

∑r
i=1[Vi] ∈ Kqpr

0 (Var/k).
We need to show that the definition is independent of the decomposition we

choose. Suppose that X = W1 t . . . tWs is another such decomposition. We get a
corresponding decomposition X =

⊔
i,j(Vi tWj). We have an obvious analogue of

Proposition 7.1 for Kqpr
0 (Var/k), hence

[Vi] =

s∑
j=1

[Vi ∩Wj ] and [Wj ] =

r∑
i=1

[Vi ∩Wj ] in Kqpr
0 (Var/k).

This gives the following equalities in Kqpr
0 (Var/k):

r∑
i=1

[Vi] =

r∑
i=1

s∑
j=1

[Vi ∩Wj ] =

s∑
j=1

r∑
i=1

[Vi ∩Wj ] =

s∑
j=1

[Wj ].

Therefore Ψ([X]) is well-defined.
Suppose now that Y is a closed subvariety of X, and consider a decomposition

X = V1t. . .tVr for X as above. If U = XrY , we get corresponding decompositions

Y =

r⊔
i=1

(Vi ∩ Y ), U =

r⊔
i=1

(Vi ∩ U),

from which we get that Ψ([X]) = Ψ([Y ]) + Ψ([U ]). Therefore Ψ gives a group
homomorphism K0(Var/k)→ Kqpr

0 (Var/k), and it is clear that Φ and Ψ are inverse
to each other.

In order to show that Ψ induces an inverse to Φ̃, it is enough to show that if
f : X → Y is a surjective, radicial morphism, then there is a disjoint decomposition
Y = V1 t . . . t Vr such that all Vi and f−1(Vi) are quasiprojective (note that each
f−1(Vi) → Vi is automatically radicial and surjective). Arguing by Noetherian
induction, it is enough to show that there is an affine open subset V ⊆ Y such
that f−1(V ) is affine. If Y1, . . . , Ym are the irreducible components of Y , we may
replace Y by Y1 r

⋃
i≥2 Yi, and therefore assume that Y is irreducible. Since

f is bijective, there is only one irreducible component of X that dominates Y ,
hence after restricting to a suitable open subset of Y , we may assume that both
X and Y are irreducible. In this case there is an open subset V of Y such that
f−1(V )red → Vred is a finite morphism (see [Har, Exercise II.3.7]). We may assume
that V is affine, in which case f−1(V )red is affine, hence f−1(V ) is affine by [Har,
Exercise III.3.1]. This completes the proof of the proposition. �

For every quasiprojective variety over X, the Kapranov zeta function of X is

Zmot(X, t) =
∑
n≥0

[Symn(X)]tn ∈ 1 + t · K̃0(Var/k)[t].

Proposition 7.28. The map [X]→ Zmot(X, t), for X quasiprojective, defines
a group homomorphism

K0(Var/k)→ (1 + tK̃0(Var/k)[[t]], ·),

which factors through K̃0(Var/k).
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The key ingredient is provided by the following lemma.

Lemma 7.29. If X is a quasiprojective variety, and Y ↪→ X is a closed subva-
riety with complement U , then

[Symn(X)] =
∑
i+j=n

[Symi(Y )] · [Symj(U)] in K̃0(Var/k).

Proof. For nonnegative i and j with i+ j = n, we denote by W i,j the locally
closed subset of Xn given by

⋃
g∈Sn(Y i × U j)g. The W i,j give a disjoint decom-

position of Xn by locally closed subvarieties preserved by the Sn-action (in order
to show that these sets are disjoint and cover Xn, it is enough to consider the
k-rational points, where k is an algebraic closure of k). If π : Xn → Symn(X) is
the quotient morphism, it follows that the locally closed subvarieties π(W i,j) give
a disjoint decomposition of Symn(X) in locally closed subsets, hence

(7.4) [Symn(X)] =
∑
i+j=n

[π(W i,j)] in K0(Var/k).

For every pair (i, j) as above, consider the open subset Y i × U j of W i,j . For
every g, h ∈ Sn, the subsets (Y i × U j)g and (Y i × U j)h of W i,j are either equal,
or disjoint. Note also that the subgroup H consisting of all g ∈ G such that (Y i ×
U j)g = Y i×U j is equal to Si×Sj ⊆ Sn. We may therefore apply Propositions A.8
and A.7 to conclude that we have an isomorphism

W i,j/Sn ' Symi(Y )× Symj(U).

On the other hand, Proposition A.25 implies that the induced morphismW i,j/Sn →
π(W i,j) is radicial and surjective, hence

[π(W i,j)] = [(W i,j/Sn)] = [Symi(Y )] · [Symj(U)] in K̃0(Var/k).

Using this and (7.4), we obtain the statement in the lemma. �

Proof of Proposition 7.28. It follows from the lemma that ifX is a quasipro-
jective variety, Y is a closed subvariety of X, and U = X r Y , then

Zmot(X, t) =
∑
n≥0

[Symn(X)]tn =
∑
n≥0

∑
i+j=n

[Symi(Y )] · [Symj(U)]ti+j

= Zmot(Y, t) · Zmot(U, t).

In light of Proposition 7.27, this proves the first assertion in the proposition. For
the second assertion, it is enough to show that if f : X → Y is a surjective, radicial
morphism of varieties over k, then the induced morphism Symn(f) : Symn(X) →
Symn(Y ) is radicial and surjective for every n ≥ 1. It is easy to see that the
surjectivity of f implies that Xn → Y n is surjective, and since Y n → Symn(Y ) is
surjective, we deduce that Symn(f) is surjective. In order to show that Symn(f) is
radicial, it is enough to prove the injectivity of

(7.5) Hom(SpecK, Symn(X))→ Hom(SpecK,Symn(Y ))

for every algebraically closed extension K of k. Using Remark 7.24, we may identify
Hom(SpecK,Symn(X)) with the quotient of X(K)n by the action of Sn. A similar
description holds for Hom(SpecK,Symn(Y )), and the injectivity of X(K)→ Y (K)
implies the injectivity of (7.5). This completes the proof of the proposition. �
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Remark 7.30. If X is not necessarily perfect, then we may still define the
motivic zeta function of a quasiprojective variety X by considering the reduced
scheme corresponding to Xn/Sn. All results in this section carry through in that
setting. We preferred to make the assumption that k is perfect in order to simplify
the exposition, since we are mostly interested in the case when k is either a finite
field, or it has characteristic zero.

As a consequence of Proposition 7.28, we can define Zmot(X, t) for a variety
over k that is not necessarily quasiprojective. Indeed, we just apply the morphism

in that proposition to [X] ∈ K̃0(Var/k).
As we have seen in Proposition 7.26, when k = Fq is a finite field, we have a

specialization map K̃0(Var/k) → Z given by counting the number of Fq-rational
points. The following proposition shows that if we apply this specialization to
Kapranov’s motivic zeta function, we recover the Hasse-Weil zeta function.

Proposition 7.31. If k is a finite field, and X is a variety over k, then the
image of Zmot(X, t) in 1 + tZ[[t]] is equal to Z(X, t).

Proof. We may clearly assume that X is quasiprojective. By Remark 2.9, it is
enough to show that for every n ≥ 1, the number of effective 0-cycles on X of degree
n is equal to |Symn(X)(k)|. We have Symn(X)k ' Symn(Xk)by Remark 7.24. Note

that if g ∈ G = G(k/k) acts on Xk by σ, then g acts on Symn(X)k by Symn(σ).

We can identify Symn(X)(k) with the points of Symn(X)(k) = X(k)n/Sn that are
fixed by all g ∈ G. An element of X(k)n/Sn corresponds to an effective 0-cycle of
degree n on Xk̃, and this is fixed by every g ∈ G if and only if it corresponds to an
effective cycle of degree n on X (see Proposition A.15). This completes the proof
of the proposition. �

Proposition 7.32. If X is a variety over k, then Zmot(X×An
k , t) = Zmot(X,L

nt),
where L = [A1

k].

Proof. We only sketch the argument, which is due to Totaro [Göt1, Lemma
4.4]. It is enough to prove the assertion when X is quasiprojective. Arguing by
induction on n, it follows that it is enough to prove the case n = 1. We need to show

that for every n ≥ 1, we have [Symn(X ×A1
k)] = [Symn(X)] · Ln in K̃0(Var/k).

We start by describing a general decomposition into locally closed subsets of
Symn(X). For every r ≥ 1, we denote by (Xr)◦ the complement in Xr of the
union of the (big) diagonals (when r = 1, this is simply X). Given positive
integers d1, . . . , dr with d1 ≤ . . . ≤ dr and

∑r
i=1 di = n, consider the locally

closed embedding (Xr)◦ ↪→ Xn given by ∆d1 × . . . × ∆dr , where ∆i : X → Xi

is the diagonal embedding. We denote the image of (Xr)◦ by Xd1,...,dr . It is
clear that for every σ, τ ∈ Sn, the subsets Xd1,...,drσ and Xd1,...,drτ are either dis-
joint, or equal. We may thus apply Propositions A.8 and A.25 to deduce that if
H = {g ∈ G | Xd1,...,drg = Xd1,...,dr}, then Xd1,...,dr/H has a radicial morphism

onto its image in Symn(X), that we denote by X̃d1,...,dr . It is clear that when we

consider all tuples (d1, . . . , dr) as above, the X̃d1,...,dr give a partition of Symn(X)

into locally closed subsets (consider, for example, the k-valued points, where k is
an algebraic closure of k).

Suppose that m1 < m2 < . . . < ms are such that the first `1 of the di are equal
to m1, the next `2 of the di are equal to m2, and so on. In this case H = H1 oH2,
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where H1 =
∏r
i=1 Sdi and H2 =

∏s
j=1 S`j . Each Sdi acts by permuting the entries

of Xn in the slots d1 + . . .+di−1 +1, . . . , d1 + . . .+di, while S`j permutes the `j sets
of mj entries of Xn. Note that H1 acts trivially on Xd1,...,dr , hence Xd1,...,dr/H =
Xd1,...,dr/H2.

We now consider the inverse image Wd1,...,dr = Xd1,...,dr ×An
k of Xd1,...,dr in

(X × A1
k)n, as well as its image W̃d1,...,dr in Symn(X × A1

k). As above, we have

a surjective, radicial morphism Wd1,...,dr/H → W̃d1,...,dr . In order to complete the
proof of the proposition, it is enough to show that [Wd1,...,dr/H] = [(Xd1,...,dr/H)×
An
k ] in K̃0(Var/k).

It follows from Proposition A.10 that Wd1,...,dr/H ' (Wd1,...,dr/H1)/H2. On
the other hand, Proposition A.7 and Example 7.23 give an isomorphismWd1,...,dr/H1 '
Xd1,...,dr ×

∏r
i=1 Adi

k = Xd1,...,dr ×
∏s
j=1(A

mj
k )`j = Xd1,...,dr ×An

k . One can show
that since H2 acts without fixed points on Xd1,...,dr , the projection π : Xd1,...,dr →
Xd1,...,dr/H2 is étale, and we have a Cartezian diagram

Xd1,...,dr ×An
k

//

��

(Wd1,...,dr/H1)/H2

φ

��
Xd1,...,dr

// Xd1,...,dr/H2.

One can show using this that φ has a structure of rank n vector bundle locally trivial
in the étale topology, and by Hilbert’s Theorem 90 [Se2, p. 1.24], this is locally
trivial also in the Zariski topology. This gives [Wd1,...,dr/H] = [Xd1,...,dr/H2] · Ln
in K0(Var/k). �

7.3. Rationality of the Kapranov zeta function for curves

Our goal in this section is to prove a result of Kapranov [Kap], extending the
rationality of the Hasse-Weil zeta function for smooth, geometrically connected,
projective curves defined over finite fields to motivic zeta functions.

Since the Kapranov zeta function does not have coefficients in a field, there
are (at least) two possible notions of rationality that can be considered. If R is a
commutative ring and f ∈ R[[t]], we say that f is rational if there are polynomials

u, v ∈ R[t], with v invertible in R[[t]] such that f(t) = u(t)
v(t) . We say that f is

pointwise rational if for every morphism R→ K, where K is a field, the image of f
in K[[t]] is rational. It is clear that a rational formal power series is also pointwise
rational. The formal power series we will consider satisfy f(0) = 1, hence the image
in every K[[t]] as above is nonzero. Of course, when R is a field, then the two notions
of rationality coincide.

Theorem 7.33. Let k be a perfect field. If X is a smooth, geometrically
connected, projective curve of genus g over k which has a k-rational point, then
Zmot(X, t) is a rational function. Moreover, we have

Zmot(X, t) =
f(t)

(1− t)(1− Lt)
,

for a polynomial f of degree ≤ 2g with coefficients in K̃0(Var/k).

Proof. The existence of a k-rational point onX implies that the Picard variety
of X represents the Picard functor, suitably rigidified. More precisely, if x0 ∈ X(k),
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then Picd(X) represents the contravariant functor that associates to a scheme S
over k the set of line bundles L ∈ Pic(S×X) which have degree d on the fibers over
S and such that L|S×{x0} is trivial. This representability implies that the usual
properties of the Picard variety, familiar over an algebraically closed field, extend
to our setting.

In particular, recall that for every d ≥ 0 we have a morphism Symd(X) →
Picd(X). This can be defined using the universal property of Picd(X), but let us
describe it at the level of k-valued points, where k is an algebraic closure of k. A
k-valued point of Symd(X) corresponds to an effective divisor D on Xk of degree

d. On the other hand, a k-valued point of Picd(X) corresponds to a line bundle on
Xk of degree d, and the above map takes D to OX(D). If d ≥ 2g − 1, then the

fiber of Symd(X)k → Picd(X)k over L is naturally isomorphic to the linear system

|L| ' Pd−g
k

. In fact, there is an isomorphism1 Symd(X) ' P(E), where E is a

vector bundle on Picd(X) of rank d− g + 1.
Since we assume that X(k) 6= ∅, it follows that there are line bundles of degree

1 on X. Therefore we have an isomorphism Picd(X) ' Pic0(X) for every d. It
follows from definition and the above discussion that

Zmot(X, t) =
∑
d≥0

[Symd(X)]td =
∑

0≤d≤2g−2

[Symd(X)]td+
∑

d≥min{2g−1,0}

[Pic0(X)]·[Pd−g
k ]td.

We write the rest of the argument for g ≥ 1 and leave it for the reader to treat the
(trivial) case g = 0. It follows from the above formula and an easy computation
that

Zmot(X, t) =
∑

0≤d≤2g−2

[Symd(X)]td + [Pic0(X)] ·
∑

d≥2g−1

Ld−g+1 − 1

L− 1
td

=
∑

0≤d≤2g−2

[Symd(X)]td +
1

(1− t)(1− Lt)
·
(
t2g−1 Lg − 1

L− 1
− t2gLg−1 − L

L− 1

)
,

which implies the statement in the theorem. �

7.4. Kapranov zeta function of complex surfaces

In this section we assume that k is an algebraically closed field, and consider
the rationality of Zmot(X, t) when dim(X) = 2, following [LL1] and [LL2].

Proposition 7.34. If X is a variety over k with dim(X) ≤ 1, then Zmot(X, t)
is rational.

Proof. The assertion is clearly true when X is a point, since

Z(Spec k, t) =
∑
n≥0

tn =
1

1− t
,

and for a smooth, connected, projective curve it follows from Theorem 7.33. It
is easy to deduce the general case in the proposition by taking closures of affine

1The existence of this isomorphism is crucial for the rest of the argument. In a previous

version of these notes, one did not assume that X has a rational point. I am indebted to Daniel
Litt who pointed out that without this assumption, it might not be the case that Symd(X) is a

projective bundle over Picd(X). It is an interesting question whether the rationality assumption

in the theorem also holds when X(k) = ∅.
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curves in suitable projective spaces, and normalizations of irreducible projective
curves. Since we have already given several such arguments, we leave the details as
an exercise for the reader. �

Given a variety X of dimension 2, we consider a decomposition of X = X1t. . .t
Xr, with eachXi irreducible and quasiprojective. Since Zmot(X, t) =

∏r
i=1 Zmot(Xi, t),

we reduce studying the rationality or pointwise rationality of Zmot(X, t) to that of
all Zmot(Xi, t).

Proposition 7.35. If X and Y are birational irreducible varieties over k
of dimension two, then Zmot(X, t) is rational (pointwise rational) if and only if
Zmot(Y, t) has the same property.

Proof. By assumption, there are isomorphic open subsets U ⊆ X and V ⊆ Y .
We thus have

Zmot(X, t) = Zmot(Y, t)
Zmot(X r U, t)

Zmot(Y r V )
,

and both Zmot(XrU, t) and Zmot(Y rV, t) are rational by Proposition 7.34. There-
fore Zmot(X, t) is rational (pointwise rational) if and only if Zmot(Y, t) is. �

If X is an arbitrary irreducible surface, there is a smooth, connected, projective
surface Y such that X is birational to Y . Indeed, resolution of singularities for
surfaces holds over fields of arbitrary characteristic.

Therefore from now on we concentrate on smooth, connected, projective sur-
faces. Let X be such a surface. We start by recalling a fundamental result from
classification of surfaces. We refer to [Beau] for the case of complex surfaces, and
to [Bad] for the general case. Recall that the Kodaira dimension of X is said to be
negative if H0(X,O(mKX)) = 0 for al m ≥ 1. This is a birational property of X.
Given any X, there is a morphism π : X → Y that is a composition of blow-ups of
points on smooth surfaces such that Y is minimal, that is, it admits no birational
morphism Y → Z, where Z is a smooth surface. By Castelnuovo’s criterion for
contractibility, this is the case if and only if Y contains no smooth curve C ' P1

with (C2) = −1. A fundamental result in the classification of surfaces says that if
X (hence also Y ) has negative Kodaira dimension, then Y is birational to C ×P1,
for some smooth curve C.

Proposition 7.36. If X is a smooth, connected, projective surface of negative
Kodaira dimension, then Zmot(X, t) is a rational power series.

Proof. It follows from the above discussion that X is birational to C×P1 for a
smooth curve C, hence by Proposition 7.35 it is enough to show that Zmot(C×A1, t)
is rational. This follows from Proposition 7.34, since Zmot(C×A1, t) = Zmot(C,Lt)
by Proposition 7.32. �

The following theorem, the main result of [LL1], gives the converse in the case
of complex surfaces.

Theorem 7.37. If X is a smooth, connected, projective complex surface such
that Zmot(X, t) is pointwise rational, then X has negative Kodaira dimension.

We will not discuss the proof of this result, but in what follows we will sketch the
proof of the following earlier, more special result of Larsen and Lunts [LL2]. Recall
that if X is a smooth projective variety, its geometric genus is pg(X) = h0(X,ωX).
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Proposition 7.38. If X is a smooth, connected, projective surface with pg(X) ≥
2, then Zmot(X, t) is not pointwise rational.

We start by describing the group homomorphism K0(Var/C) → K that is
used in the proof of Proposition 7.38. Let S denote the multiplicative semigroup of
polynomials h ∈ Z[t] with h(0) = 1. Since the only invertible element in S is 1, and
Z[t] is a factorial ring, every element in S can be written uniquely as hn1

1 · · ·hnrr ,
where the hi are elements in S that generate prime ideals in Z[t]. It follows that
the semigroup algebra Z[S] is a polynomial ring in infinitely many variables. In
particular, it is a domain, and we take K to be the fraction field of Z[S]. In order
to avoid confusion, we denote by φ(h) the element in Z[S] corresponding to h ∈ S,
hence φ(g)φ(h) = φ(gh).

We now define a group homomorphism SB/C → S by taking 〈X〉, for X

smooth, connected, and projective, toR(X, t) := E(X, t, 0) =
∑dim(X)
i=0 (−1)ih0(X,ΩiX)ti ∈

S. It is an easy consequence of the Künneth theorem (see Exercise 7.14) that
R(X ×Y, t) = R(X, t) ·R(Y, t). Note that R(Pn, t) = 1 for all n ≥ 0. Indeed, using
the Hodge symmetry we have h0(Pn,ΩiPn) = hi(Pn,OPn) = 0 (exercise: give a
direct proof using the description of ΩPn provided by the Euler exact sequence).
We deduce that R(X × Pn, t) = R(X, t). Furthermore, if X and Y are smooth,
projective birational varieties, then h0(X,ΩiX) = h0(Y,ΩiY ) for all i (see [Har, The-
orem II.8.19], whose proof extends to the case i < dim(X)). We conclude that we
have a well-defined semigroup homomorphism SB/C→ S that takes 〈X〉 to R(X, t)
for every X smooth, connected, and projective. This induces a ring homomorphism
Z[SB/C]→ Z[S].

By Theorem 7.20, we have an isomorphism K0(Var/C)/(L) → Z[SB/C]. We
thus have a ring homomorphism K0(Var/C) → Z[S] ↪→ K, that we denote by µ,
which takes [X] to φ(R(X, t)) for every smooth, connected, projective variety X.
Therefore if X1, . . . , Xr are such varieties, then

µ(

r∑
i=1

ni[Xi]) =

r∑
i=1

niφ(E(Xi, t, 0)).

We emphasize that µ is different from the Euler-Poincaré characteristic that
takes X to E(X, t, 0), which takes values in Z[t]. We will see in Lemma 7.39 below
that µ recovers more information than this latter Euler-Poincaré characteristic.

Note that if X is a smooth, connected, n-dimensional projective variety, then
the degree of R(X, t) is ≤ n, and the coefficient of tn is (−1)npg(X). When X is
an arbitrary irreducible variety, we will denote by pg(X) the geometric genus of
every smooth, irreducible, projective variety Y that is birational to X. As we have
mentioned, this is independent of the choice of Y .

Lemma 7.39. Suppose that Y,X1, . . . , Xr are irreducible varieties of the same
dimension, and n1, . . . , nr are integers such that µ(Y ) =

∑r
i=1 niµ(Xi). If pg(Y ) 6=

0, then there is i such that pg(X) = pg(Yi).

Proof. It follows from Lemma 7.9 that we can find a smooth, connected, pro-
jective variety Y ′ that is birational to Y , such that [Y ]−[Y ′] is a linear combination,
with integer coefficients, of classes of smooth, irreducible, projective varieties of di-
mension smaller than n = dim(Y ). Applying this also to the Xi, we conclude that
we may assume that Y and all Xi are smooth, connected, and projective, and that
we have smooth, connected, projective varieties X ′1, . . . , X

′
s of dimension less than
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n, and n′1, . . . , n
′
s ∈ Z such that

µ(Y ) =

r∑
i=1

niµ(Xi) +

s∑
j=1

n′jµ(X ′j).

By assumption, µ(Y ) has degree n, while each µ(X ′j) has degree < n, hence µ(Y ) 6=
µ(X ′j) for every j. This implies that there is i such that µ(Y ) = µ(Xi), and we get,
in particular, pg(Y ) = pg(Xi). �

The key technical ingredient in the proof of Proposition 7.38 is the computation
of the geometric genera for the symmetric powers of a smooth, connected, projective
complex surface X. It is shown in [LL2] that if pg(X) = r, then

(7.6) pg(Symn(X)) =

(
n+ r − 1

r − 1

)
.

Note that Symn(X) has a resolution of singularities given by the Hilbert scheme of
n points on X. This is a projective scheme X [n] that parametrizes 0-dimensional
subschemes of X of length n. It is a result of Fogarty that for a smooth, connected
surface X, the Hilbert scheme X [n] is smooth and connected. Furthermore, there
is a morphism X [n] → Symn(X) that takes a scheme Z supported at the points
x1, . . . , xm to

∑m
i=1 `(OZ,xi)xi. This gives an isomorphism onto the image on the

open subset parametrizing reduced subschemes. Therefore X [n] gives a resolution
of singularities of Symn(X), hence pg(Symn(X)) = pg(X

[n]). The above formula
for pg(Symn(X)) is then deduced from results of Göttsche and Soergel [GS] on the

Hodge structure on the cohomology of X [n].

Proof of Proposition 7.38. Suppose by way of contradiction that h =∑
n≥0 µnt

n ∈ K[[t]] is a rational function, where µn = µ(Symn(X)). Therefore
we may write

h =
a0 + a1t+ . . .+ aet

e

b0 + b1t+ . . .+ bmtm
,

for some ai, bj ∈ K, with not all bj zero. This implies that µdbm+µd+1bm−1 + . . .+
µd+mb0 = 0 for all d ≥ min{0, e−m+ 1}. Since some bj is nonzero, by considering
these relations for d, d+1, . . . , d+m, we conclude that D := det(µd+i+j)0≤i≤m = 0.
By expanding this determinant, we obtain a relation

(7.7) µ

(
m∏
i=0

Symd+2i(X)

)
=

∑
σ∈Sm+1r{1}

−sign(σ)µ

(
m∏
i=0

Symd+σ(i)+i(X)

)
,

where we consider Sm+1 to be the group of permutations of {0, 1, . . . ,m}.
Note that for every σ ∈ Sm+1, the variety

∏m
i=0 Symd+σ(i)+i(X) has dimension

equal to 2(m + 1)(d + m), and geometric genus
∏m
i=0

(
d+σ(i)+i+r−1

r−1

)
(see formula

(7.6)). We deduce from (7.7) and Lemma 7.39 that there is a permutation σ ∈ Sm+1

different from the identity such that

(7.8)

m∏
i=0

(
d+ σ(i) + i+ r − 1

r − 1

)
=

m∏
i=0

(
d+ 2i+ r − 1

r − 1

)
.
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Since r ≥ 2, for every σ ∈ Sm+1 different from the identity, the following
polynomial in d

Pσ(d) =

m∏
i=0

(
d+ σ(i) + i+ r − 1

r − 1

)
−

m∏
i=0

(
d+ 2i+ r − 1

r − 1

)
is not zero, hence it does not vanish for d � 0. Indeed, if i0 is the largest i such
that σ(i) 6= i, then we can write

Pσ(d) =

m∏
i=i0+1

(
d+ 2i+ r − 1

r − 1

)
· (Q1(d)−Q2(d)),

and the linear polynomial d+2i0 +r−1 divides Q2(d), but it does not divide Q1(d).
Since we have only finitely many permutations to consider (note that m is fixed),
we conclude that by taking d� 0, we obtain a contradiction. �

Remark 7.40. The Euler-Poincaré characteristic constructed above, that makes
Zmot(X, t) not pointwise rational, vanishes on L. It would be interesting to find
such an Euler-Poincaré characteristic that is nonzero on L (hence factors through
K0(Var/C)[L−1]).

Remark 7.41. It is interesting to compare Theorem 7.37 on the rationality of
Zmot(X, t) with Mumford’s theorem on the finiteness of the Chow group A2(X)0 of
rational equivalence classes of 0-cycles on X of degree zero. It is shown in [Mum2]
that if X is a smooth, connected, projective complex surface with pg(X) 6= 0, then
A2(X)0 is infinitely dimensional in a suitable sense (in particular, it can not be
parametrized by the points of an algebraic variety). This can also be interpreted as
a statement about the growth of the symmetric products Symn(X), when n goes
to infinity. On the other hand, it was conjectured by Bloch that the converse is
also true, namely that if pg(X) = 0, then A2(X)0 is finite-dimensional. While this
is still a conjecture, it is known to hold for surfaces of Kodaira dimension ≤ 1.
In particular, we see that for any surface X of Kodaira dimension 0 or 1 with
pg(X) = 0, we have A0(X)0 finite dimensional, but Zmot(X, t) is not rational.





CHAPTER 8

Dwork’s proof of rationality of zeta functions

In this chapter we present Dwork’s proof [Dwo] for the first of the Weil con-
jectures, asserting the rationality of the Hasse-Weil zeta function for a variety over
a finite field. We follow, with small modifications, the presentation in [Kob]. We
freely make use of the basic facts about p-adic fields as covered in § B.

8.1. A formula for the number of Fq-points on a hypersurface

Recall that our goal is to prove the rationality of the zeta function of an al-
gebraic variety X over Fq. As we have seen in Chapter 2, in order to prove this
in general, it is enough to prove it in the case when X is a hypersurface in Ad

Fq
,

defined by some f ∈ Fq[x1, . . . , xd]. Furthermore, an easy argument based an in-
duction and on the inclusion-exclusion principle, will allow us to reduce ourselves
to proving the rationality of

Z̃(X, t) := exp

∑
n≥0

N ′n
n
tn

 ,

where

N ′n = |{u = (u1, . . . , ud) ∈ Fdqn | f(u) = 0, ui 6= 0 for all i}|.

Hence from now on we will focus on Z̃(X, t).
The starting point consists in a formula for N ′n in terms of an additive character

of Fqn . By this we mean a group homomorphism χ : Fqn → Qp. We say that such
a character is trivial if χ(u) = 1 for every u ∈ Fq. The main example that we will
need is the following,

Lemma 8.1. If ε ∈ Qp is a primitive root of 1, then χ : Fqn → Qp(ε) given by

χ(u) = ε
TrFqn/Fp (u) is a nontrivial additive character of Fqn .

Proof. It is clear that ψ : Fp → Qp(ε) given by ψ(mmod p) = εm is an
injective homomorphism. Since TrFqn/Fq is additive, we deduce that χ is an additive
character. If χ is trivial, then TrFqn/Fp(u) = 0 for every u ∈ Fq. This contradicts
the fact that the bilinear pairing (u, v) → TrFqn/Fp(u, v) is nondegenerate (recall
that Fqn is separable over Fp). �

Remark 8.2. Since Fqn/Fp is Galois, with Galois group cyclic and gener-
ated by the Frobenius morphism, it follows that for every a ∈ Fqn , we have

TrFqn/Fp(a) = a+ ap + . . .+ ap
ne−1

, where q = pe.

Lemma 8.3. If χ is a nontrivial additive character of Fqn , then
∑
u∈Fqn χ(u) =

0.

89
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Proof. Let v ∈ Fqn be such that χ(v) 6= 1. We have∑
u∈Fqn

χ(u) =
∑
u∈Fqn

χ(u+ v) = χ(v) ·
∑
u∈Fqn

χ(u),

which implies the assertion in the lemma since χ(v) 6= 1. �

Suppose now that f ∈ Fq[x1, . . . , xn] is as above, and ψn is a nontrivial additive
character of Fqn . It follows from Lemma 8.3 that for every a ∈ Fqn , we have∑
v∈Fqn ψn(va) = 0, unless a = 0, in which case the sum is clearly equal to qn.

Therefore we have ∑
u∈(F∗

qn
)d

∑
v∈Fqn

ψn(vf(u)) = N ′nq
n.

Since the sum of the terms corresponding to v = 0 is (qn − 1)d, we conclude that

(8.1)
∑

u∈(F∗
qn

)d

∑
v∈F∗

qn

ψn(vf(u)) = N ′nq
n − (qn − 1)d.

The main result of this section will be a formula for the left-hand side of (8.1)
by applying a suitable analytic function to the Teichmüller lifts of u1, . . . , un, v.
Furthermore, the analytic functions corresponding to the various n will turn out to
be related in a convenient way. Let us fix a primitive root ε of 1 of order p in Qp.

For every a ∈ Fpm , we denote by ã ∈ Z
(m)
p the Teichmüller lift of a (see § B.2).

The key ingredient is provided by a formal power series Θ ∈ Qp(ε)[[t]], that satisfies
the following two properties:

P1) The radius of convergence of Θ is > 1.
P2) For every n ≥ 1 and every a ∈ Fqn , we have

(8.2) ε
TrFqn/Fp (a)

= Θ(ã)Θ(ãq) · · ·Θ(ãq
n−1

).

Note that by Lemma 8.1, the left-hand side of (8.2) is a nontrivial character of Fqn .

Furthermore, note that if a ∈ Fqn , then |ã|p = 1, hence Θ(ãq
i

) is well-defined by
P1).

Let us assume for the moment the existence of such Θ, and let us see how
we can rewrite the left-hand side of (8.1). Suppose that f =

∑
m∈Zd≥0

cmx
m ∈

Fq[x1, . . . , xd], where for m = (m1, . . . ,md) we put xm = xm1
1 · · ·xmdd . Note that

only finitely many of the cm are nonzero. It is clear that for u = (u1, . . . , ud) ∈
(F∗qn)d and v ∈ F∗qn , we have

(8.3) ψn(vf(u)) =
∏

m∈Zd≥0

ψn(cm vu
m1
1 · · ·umdd ).

We take ψn(a) = ε
TrFqn/Fp (a)

, and let

(8.4) G(y, x) =
∏

m∈Zd≥0

Θ(c̃m yx
m) ∈ Qp[[x1, . . . , xd, y]].

hence (8.2) and (8.3) imply

(8.5)
∑

u∈(F∗
qn

)d

∑
v∈F∗

qn

ψn(vf(u)) =
∑

v,u1,...,ud∈F∗qn

(
n−1∏
i=0

G(ṽq
i

, ũ1
qi
, . . . , ũd

qi
)

)
.
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We will use this formula in §3 to prove that Z̃(X, t) can be written as the quotient
of two formal power series in Cp[[t]], both having infinite radius of convergence.

8.2. The construction of Θ

We now explain how to construct the formal power series Θ whose existence was
assumed in the previous section. Note first that it is enough to do the construction
when q = p: indeed, if Θ1 ∈ Qp(ε)[[t]] satisfies P1) and P2) for q = p, and for

q = pe we take Θ(t) = Θ1(t)Θ1(tp) · · ·Θ1(tp
e−1

), then Θ satisfies P1) and P2) for q.
Indeed, if R > 1 is the radius of convergence of Θ1, then the radius of convergence

of Θ is at least R1/pe−1

> 1. Furthermore,

ε
TrFpne/Fp (a) =

ne−1∏
i=0

Θ1(ãp
i

) =

e−1∏
j=0

Θ(ãq
j

).

Therefore, in the rest of this section we assume q = p.
We begin by considering the formal power series in two variables given by the

following infinite product

F (x, y) = (1 + y)x(1 + yp)
xp−x
p · · · (1 + yp

n

)
xp
n
−xp

n−1

pn · · · ∈ Q[[x, y]].

Note that if 1 + hi is the ith factor in the above product, then hi ∈ (yp
i−1

), hence
the above product gives, indeed, a formal power series1.

Proposition 8.4. We have F (x, y) ∈ Zp[[x, y]]2.

The following lemma gives a general criterion for proving an assertion as in the
proposition.

Lemma 8.5. If f ∈ Qp[[x, y]] is such that f(0, 0) = 1, then f ∈ Zp[[x, y]] if and
only if

(8.6)
f(xp, yp)

f(x, y)p
∈ 1 + p(x, y)Zp[[x, y]].

Proof. Suppose first that f ∈ Zp[[x, y]]. Since f(0, 0) = 1, it follows that f is

invertible and 1
f ∈ 1 + (x, y)Zp[[x, y]]. We deduce that 1

fp , hence also f(xp,yp)
f(x,y)p lies in

1 + (x, y)Zp[[x, y]]. If f ∈ Fp[[x, y]] is the reduction of f mod pZp[[x, y]], we clearly

have f(xp, yp) = f(x, y)p. This implies that f(xp,yp)
f(x,y)p lies in 1 + p(x, y)Zp[[x, y]], as

required.
Conversely, suppose that (8.6) holds, and let us write f =

∑
i,j≥0 ai,jx

iyj , with
ai,j ∈ Qp and a0,0 = 1. By hypothesis, we may write

(8.7)
∑
i,j≥0

ai,jx
piypj =

∑
i,j≥0

ai,jx
iyj

p

·
∑
i,j≥0

bi,jx
iyj ,

where b0,0 = 1, and all other bi,j lie in pZp. Arguing by induction, we see that
it is enough to show the following: if α, β ∈ Z≥0, not both zero, are such that

1The general assertion is that if hi ∈ (x, y)Ni are such that limi→∞Ni =∞, then
∏
i(1+hi)

is a formal power series, as the coefficient of each monomial xmyn comes from only finitely many
factors in the product.

2Of course, since F has coefficients in Q, this is equivalent to saying that F has coefficients
in Z(pZ).
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ak,` ∈ Zp for all (k, `) with k ≤ α and ` ≤ β such that one of the inequalities is
strict, then aα,β ∈ Zp. Let us consider the coefficient cα,β of xαyβ in the power
series in (8.7). By considering the left-hand side of (8.7), we see that cα,β = 0
unless p divides both α and β, in which case it is equal to aα/p,β/p. By considering
the right-hand side of (8.7), we see that cα,β = paα,β +Q1 + . . .+Qr, where each
Qj is a product of the form Nbk,`ak1,`1 · · · aks,`s , for some multinomial coefficient
N ∈ Z, and with all (ki, `i) having the property that ki ≤ α and `i ≤ β, with one
of the inequalities being strict. It follows that every Qj lies in Zp, and if Qj is not
in pZp, then k = ` = 0, and cα,βx

αyβ = (ak,`x
ky`)p for some k and `. This can

happen only when both α and β are divisible by p, and in this case Qj is equal to
apα/p,β/p. Furthermore, since in this case we have apα/p,β/p ≡ aα/p,β/p (mod p), we

deduce that aα,β ∈ Zp, and this completes the proof of the proposition. �

Remark 8.6. It should be clear from the proof of the lemma that a similar
statement holds for formal power series in any number of variables. We restricted
to the case of two variables, which is the one we will need, in order to avoid com-
plicating too much the notation.

Proof of Proposition 8.4. Since we clearly have F (0, 0) = 1, we may apply

Lemma 8.5, so it is enough to show that F (xp,yp)
F (x,y)p lies in 1+p(x, y)Zp. By definition,

we have

F (xp, yp)

F (x, y)p
=

(1 + yp)x
p · (1 + yp

2

)
xp

2
−xp
p · (1 + yp

3

)
xp

3
−xp

2

p2 · · ·

(1 + y)px · (1 + yp)xp−x · (1 + yp2)
xp

2−xp
p · · ·

=
(1 + yp)x

(1 + y)px

=

(
(1 + yp)

(1 + y)p

)x
.

In order to see that this lies in 1+p(x, y)Zp[[x, y]], we apply Lemma 8.5 in the other

direction: since g = 1 + y ∈ Zp[[y]], and g(0) = 1, we deduce that 1+yp

(1+y)p = 1 + pw,

for some w ∈ yZp[[y]]. It follows from definition that

(1 + pw)x = 1 +
∑
m≥1

x(x− 1) . . . (x−m+ 1)

m!
pmwm,

and pm

m! ∈ pZp for every m ≥ 1. Indeed, we have

ordp(m!) =
∑
i≥1

bm/pic < m

p

∑
i≥0

1

pi
=

m

p− 1
≤ m.

We conclude that
(

(1+yp)
(1+y)p

)x
∈ 1 + p(x, y)Zp[[x, y]], which completes the proof. �

Recall that ε ∈ Qp is our fixed primitive root of order p of 1. Let λ = ε−1. The
following estimate for |λ|p is well-known, but we include a proof for completeness.

Lemma 8.7. With the above notation, we have |λ|p =
(

1
p

)1/(p−1)

.

Proof. Since (1 + λ)p = 1, it follows that λ is a root of the polynomial

h(x) = xp−1 +
∑p−1
i=1

(
p
i

)
xp−1−i. Since all coefficients of f but the leading one are

divisible by p, and h(0) is not divisible by p2, it follows from Eisenstein’s criterion
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that h ∈ Qp[x] is an irreducible polynomial. This shows that Qp(ε) = Qp(λ) has
degree (p− 1) over Qp.

Every σ : Qp(ε) → Qp must satisfy σ(ε) = εi for some 1 ≤ i ≤ p − 1, and σ
is uniquely determined by i. This shows that Qp(ε) is a Galois extension of Qp,
and since [Qp(ε) : Qp] = n − 1, we conclude that the Galois conjugates of ε are
precisely the εi, with 1 ≤ i ≤ p − 1. In particular, we have |1 − ε|p = |1 − εi|p for
every 1 ≤ i ≤ p. On the other hand, we have

1 + x+ . . .+ xp−1 =

p−1∏
i=1

(x− εi),

hence
∏p−1
i=1 (1− εi) = p. We thus deduce

|ε− 1|p = |p|1/(p−1)
p =

(
1

p

)1/(p−1)

.

�

We put Θ(t) = F (t, λ). We first show that this is well-defined and has radius
of convergence > 1.

Lemma 8.8. We have Θ ∈ Qp(ε)[[t]], and its radius of convergence is at least

p1/(p−1) > 1.

Proof. Let us write F (x, y) =
∑
m≥0

(∑
n≥0 am,ny

n
)
xm. By Proposition 8.4,

we have am,n ∈ Zp for every m and n. We claim that am,n = 0 whenever m > n.
Indeed, note that in

(1 + y)x =
∑
n≥0

x(x− 1) . . . (x− n+ 1)

n!
yn,

every monomial xiyj that appears with nonzero coefficient, has i ≤ j. The same

then holds for each (1 + yp
i

)
xp
i
−xp

i−1

pi , for i ≥ 1. Since this property holds for each
of the factors in the definition of F (x, y), it also holds for F , as claimed.

Since |am,n|p ≤ 1 for every m and n, each series
∑
n≥0 am,ny

n has radius of

convergence at least 1 > |λ|p, hence F (t, λ) is a well-defined series in Qp(ε)[[t]].
Furthermore, for every m we have

|
∑
n≥0

am,nλ
n|p = |

∑
n≥m

am,nλ
n|p ≤ |λ|mp .

This implies that the radius of convergence of F (t, λ) is at least |λ|−1
p = p1/(p−1) >

1. �

We now show that Θ also satisfies the property P2) from §1 and thus complete
the proof of the existence of Θ with the required properties.

Lemma 8.9. For every n ≥ 1, and every a ∈ Fpn , we have

ε
TrFpn/Fp (a)

= Θ(ã)Θ(ãp) · · ·Θ(ãp
n−1

).
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Proof. Note first that since Θ has radius of convergence larger than 1, and

|ãpi |p is either 1 or 0, we may apply Θ to the ãp
i

. Let us compute, more generally,

n−1∏
i=0

F (ãp
i

, y) =

n−1∏
i=0

(1 + y)ã
pi

·
∏
m≥1

(1 + yp
m

)
∑n−1
i≥0

ãp
m+i

−ãp
m+i−1

pm

= (1 + y)ã+ãp+...+ãp
n−1

·
∏
m≥1

(1 + yp
m

)
ãp
m+n−1−ãp

m−1

pm = (1 + y)ã+ãp+...+ãp
n−1

,

where the last equality follows from the fact that ãp
n

= ã. Since λ = ε−1, in order
to complete the proof of the lemma it is enough to show that

(8.8) εã+ãp+...+ãp
n−1

= ε
TrFpn/Fp (a)

.

Recall that Fpn is a Galois extension of Fp with Galois group isomorphic to Z/nZ,
and generated by σ, where σ(u) = up. By Theorem B.6 we have an isomorphism

G(Q
(n)
p /Qp) ' G(Fpn/Fp), and let σ̃ be the automorphism of Q

(n)
p corresponding

to σ. Since σ̃(ã)p
n

= σ̃(ã), it follows that σ̃(ã) is the Teichmüller lift of its residue

class, which is σ(a) = ap. Therefore σ̃(ã) = ãp. We conclude that
∑n−1
i=0 ã

pi ∈ Zp,

and it clearly lies over
∑n−1
i=0 a

pi = TrFpn/Fp(a). Therefore in order to show (8.8),

we see that it suffices to show that if w ∈ Zp lies over b ∈ Fp, then εw = εb, where
the left-hand side is defined as (1+λ)w. We may write w = pw0 + ` for some ` ∈ Z,
and using Proposition B.25, we obtain

(1 + λ)w = ((1 + λ)p)
w0 · (1 + λ)` = 1 · ε` = εb.

This completes the proof of the lemma. �

8.3. Traces of certain linear maps on rings of formal power series

Our goal in this section is to establish the following intermediary step towards
the proof of the rationality of the zeta function.

Proposition 8.10. With the notation introduced in §1, for every X = V (f),

where f ∈ Fq[x1, . . . , xn], the formal power series Z̃(X, t) can be written as a

quotient g(t)
h(t) , where g, h ∈ Cp[[t]] have infinite radii of convergence.

The proof of the proposition will rely on the formula for the numbers N ′n coming
out of (8.1) and (8.5) in §1, and on a formalism for treating certain linear maps on
a formal power series ring, that we develop in this section.

For N ≥ 1, we consider the formal power series ring R = Cp[[x1, . . . , xN ]], and
we denote by m the maximal ideal in R. We will apply this with N = d+ 1, where
d is as in the previous sections. As usual, for α = (α1, . . . , αN ) ∈ ZN≥0, we put

xα = xα1
1 · · ·x

αN
N and |α| =

∑N
i=1 αi. The order ord(h) of h ∈ R is the largest r ≥ 0

such that h ∈ mr (we make the convention that ord(0) = ∞). On R we consider
the m-adic topology. Recall that this is invariant under translations, and a basis
of open neighborhoods of the origin is given by {mr | r ≥ 0}. Therefore we have
hm → h when m goes to infinity if and only if limm→∞ ord(fm−f) =∞. As in the
case of a DVR, one shows that one can put a metric on R that induces the m-adic
topology.
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We will consider Cp-linear maps A : R → R that are continuous with respect
to the m-adic topology. Such a map is determined by its values on the monomials
in R. More precisely, such a map must satisfy

(8.9) limA(xα) = 0 when |α| → ∞,

and for f =
∑
α cαx

α, we have A(f) =
∑
α cαA(xα). Conversely, given a set of

elements (A(xα))α∈ZN≥0
that satisfies (8.9), we obtain a continuous linear map A

given by the above formula. If we write A(xβ) =
∑
α aαβx

α, with aαβ ∈ Cp,
then we can represent A by the “matrix” (aαβ)α,β∈ZN≥0

. Note that condition (8.9)

translates as follows: for every α, we have aαβ = 0 for |β| � 0.
We say that A has finite support if the corresponding “matrix” (aαβ) has only

finitely many nonzero entries. In this case A can be identified to an endomorphism
of a finite-dimensional subspace of Cp[x1, . . . , xN ] ⊆ Cp[[x1, . . . , xn]], and (aαβ) can
be identified to the corresponding matrix.

The usual rules for dealing with matrices apply in this setting. If A is described
by the “matrix” (aαβ), then

A(
∑
β

cβx
β) =

∑
α

∑
β

aαβcβ

xα

(note that by hypothesis, the sum
∑
β aαβcβ has only finitely many nonzero terms).

If A and B are linear, continuous maps as above, described by the “matrices” (aαβ)
and (bαβ), then the composition A ◦ B is again linear and continuous, and it is
represented by the product (cαβ) of the two “matrices”: cαβ =

∑
γ aαγbγβ .

We now introduce the two main examples of such maps that we will consider.
Given H ∈ R, we define ΨH : R→ R to be given by multiplication by H: ΨH(f) =
fH. This is clearly Cp-linear and continuous. If H =

∑
α hαx

α, then ΨH is
represented by the “matrix” (hα−β)α,β , where we put hα−β = 0 if α − β 6∈ ZN≥0.
Note that ΨH1

◦ΨH2
= ΨH1H2

.
For another example, if q is any positive integer, let Tq : R → R be given by

Tq(
∑
α∈ZN≥0

aαx
α) =

∑
α∈ZN≥0

aqαx
α. It is clear that Tq is Cp-linear and continuous.

If H =
∑
α hαx

α ∈ R, let Ψq,H = Tq ◦ΨH . We have

Ψq,H(xβ) = Tq(
∑
α

hαx
α+β) = Tq(

∑
α

hα−βx
α) =

∑
α

hqα−βx
β .

Therefore Ψq,H is represented by the “matrix” (hqα−β)α,β .

Lemma 8.11. We have ΨH◦Tq = Ψq,Hq , where Hq(x1, . . . , xN ) = H(xq1, . . . , x
q
N ).

Proof. Let H =
∑
α∈Zd≥0

hαx
α, and we put hα = 0 if α 6∈ ZN≥0. We have

(8.10) ΨH ◦ Tq(
∑
β

bβx
β) = H ·

∑
β

bqβx
β =

∑
γ

 ∑
α+β=γ

hαbqβ

xγ .

On the other hand,
(8.11)

Tq ◦Hq

∑
β

bβx
β

 = Tq

∑
γ

 ∑
qα+β=γ

hαbβ

xγ

 =
∑
γ

 ∑
qα+β=qγ

hαbβ

xγ
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In the last sum in (8.11) we see that β has to be divisible by q, and we deduce that
the two expressions in (8.10) and (8.11) are equal. �

We now discuss the trace of a continuous linear map as above. Given such a map
A : R→ R described by the “matrix” (aαβ), we consider the series

∑
α∈ZN≥0

aαα. If

this is convergent in Cp, we denote its sum by Trace(A). Note that if A has finite
support, then Trace(A) is equal to the trace of any corresponding endomorphism
of a finite-dimensional vector space of polynomials.

Let R0 be the set of those H =
∑
α hαx

α ∈ R with the property that there is

M > 0 such that |hα|p ≤
(

1
p

)M |α|
for every α ∈ ZN≥0.

Remark 8.12. If H ∈ R0, then there is ρ > 1 such that H(u1, . . . , uN ) is
convergent whenever ui ∈ Cp are such that |ui| ≤ ρ for all i. Indeed, with M as
above, if ρ = pa, where 0 < a < M , then

|hαuα1
1 . . . uαNN |p ≤ |hα|p · ρ

|α| ≤
(

1

p

)(M−a)|α|

,

which converges to zero when |α| goes to infinity.

Lemma 8.13. R0 is a subring of R. Furthermore, if j1, . . . , jN are positive
integers, and if H ∈ R0, then H(xj11 , . . . , x

jN
N ) ∈ R0.

Proof. The first assertion follows from the fact that if M > 0 works for both
H1 and H2, then it also works for H1−H2 and H1H2. The second assertion follows
from the fact that if M works for H, and if j = max{j1, . . . , jN}, then M/j works

for H(xj11 , . . . , x
jN
N ). �

Proposition 8.14. Let H ∈ R0 and Ψ = Ψq,H for some integer q ≥ 2. For
every s ≥ 1 the trace of Ψs is well-defined, and

(qs − 1)NTrace(Ψs) =
∑
u

H(u)H(uq) . . . H(uq
s−1

),

where the sum is over all u = (u1, . . . , uN ) ∈ CN
p such that uq

s−1
i = 1 for all i.

Proof. Let us first consider the case s = 1. Recall that if H =
∑
α hαx

α, then
Ψ is described by the matrix (hqα−β)α,β . Therefore Trace(Ψ) =

∑
α∈ZN≥0

h(q−1)α.

By assumption, there is M > 0 such that |hα|p ≤
(

1
p

)M |α|
for every α. In particu-

lar, lim|α|→∞ h(q−1)α = 0.
Furthermore, we have seen in Remark 8.12 that H(u1, . . . , uN ) is well-defined

when |ui| ≤ 1 for all i. The subset U = {λ ∈ Cp | λq−1 = 1} is a cyclic subgroup
of Cp. If λ0 ∈ U is a generator, then∑

λ∈U

λi =

q−2∑
j=0

λij0 =

{
q − 1, if (q − 1)|i;

0, otherwise.

Therefore ∑
u∈UN

H(u) =
∑
u∈UN

∑
α∈ZN≥0

hαu
α =

∑
α∈ZN≥0

hα ·
N∏
i=1

(∑
ui∈U

uαii

)
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= (q − 1)N
∑

α∈(q−1)ZN≥0

hα = (q − 1)NTrace(Ψ).

This completes the proof when s = 1. Suppose now that s ≥ 2. Using repeat-
edly Lemma 8.11, we obtain

Ψs = (Tq◦ΨH)s = (T 2
q ◦ΨHq ◦ΨH)◦(Tq◦ΨH)s−2 = (T 2

q ◦ΨHqH)◦(Tq◦ΨH)s−2 = . . .

= T sq ◦ΨHqs−1 ...HqH = Ψqs,Hqs−1 ...HqH .

It follows from Lemma 8.13 that since H lies in R0, we also have Hqs−1 . . . HqH ∈
R0. Therefore we may apply the case s = 1 to deduce that Trace(Ψs) is well-defined,
and that

(qs − 1)NTrace(Ψs) =
∑
u∈UN

H(u)H(uq) . . . H(uq
s−1

).

�

Suppose now that A : R → R is a Cp-linear continuous map, described by the
“matrix” (aαβ)α,β . We define the characteristic power series of A by

(8.12) det(Id− tA) :=
∑
m≥0

(−1)m

(∑
σ

ε(σ)aα1σ(α1) · · · aαmσ(αm)

)
tm,

where the second sum is over all subsets with m elements {α1, . . . , αm} of ZN≥0, and
over all permutations σ of such a set. Of course, the definition makes sense if the
series that appears as the coefficient of tm is convergent in Cp for every m. It is
clear that if A has finite support, then det(Id − tA) is equal to the characteristic
polynomial of a corresponding endomorphism of a finite-dimensional vector space
of polynomials.

Lemma 8.15. If H ∈ R0, then for every integer q ≥ 2 the characteristic power
series of Ψ = Ψq,H is well-defined, and it has infinite radius of convergence.

Proof. Let us write H =
∑
α hαx

α, and let M > 0 be such that |hα|p ≤(
1
p

)M |α|
for every α. We have seen that Ψ is described by the “matrix” (aαβ),

where aαβ = hqα−β . Given {u1, . . . , um} ⊆ ZN≥0, and a permutation σ of this set,
we have

|aα1σ(α1) · · · aαmσ(αm)|p ≤
(

1

p

)M∑m
i=1 |qαi−σ(αi)|

.

Note that |qαi−σ(αi)| = q|αi|−|σ(αi)| if qαi−σ(αi) is in ZN≥0, and |qαi−σ(αi)| = 0,
otherwise. Furthermore, in the latter case we also have aαiσ(αi) = 0. We thus
conclude that

|aα1σ(α1) · · · aαmσ(αm)|p ≤
(

1

p

)M(q−1)(|α1|+...+|αm|)

.

Since the right-hand side tends to zero when max{|αi|} goes to infinity, it follows
that det(Id− tA) is well-defined.

Furthermore, the above computation shows that if we write det(Id − tA) =∑
m≥0 bmt

m, then

|bm|1/mp ≤ max
α1,...,αm

(
1

p

)M(q−1)(|α1|+...+|αm|)
m

,
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where the maximum is over distinct α1, . . . , αm ∈ ZN≥0. When m goes to infinity,
we have

min
α1,...,αm

M(q − 1)(|α1|+ . . .+ |αm|)
m

→∞.

The above estimate therefore implies that limm→∞ |bm|1/mp = 0, hence det(Id− tA)
has infinite radius of convergence. �

Proposition 8.16. If A : R → R is a continuous Cp-linear map such that
det(Id− tA) and Trace(As) are well-defined for all s ≥ 1, then

det(Id− tA) = exp

−∑
s≥1

Trace(As)

s
ts

 .

Proof. If A has finite support, then the assertion follows from Lemma 4.12.
Our goal is to use this special case to deduce the general one.

Let us consider a sequence (A(m))m≥1 of maps with finite support, each de-

scribed by the matrix (a
(m)
αβ )α,β∈ZN≥0

, that satisfies the following condition. For

every α and β, we have a
(m)
αβ = aαβ or a

(m)
αβ = 0, and the former condition holds for

all m� 0. It is clear that we can find a sequence (A(m))m≥1 with this property.
It is convenient to consider on Cp[[t]] (identified to a countable product of

copies of Cp) the product topology, where each Cp has the usual p-adic topology.
Explicitly, a sequence of formal power series (fm)m≥1, with fm =

∑
i≥0 bm,it

i,

converges to f =
∑
i≥0 bit

i if and only if limm→∞ bm,i = bi for every i. Note that if

this is the case, and all fm(0) are zero, then exp(fm) converges to exp(f) when m
goes to infinity (this is the case if we replace exp by any other element of Cp[[t]]).

Since each A(m) satisfies the conclusion of the proposition, in order to complete the
proof it is enough to show that

i) limm→∞ det(Id− tA(m)) = det(Id− tA).
ii) limm→∞ Trace((A(m))s) = Trace(As) for every s ≥ 1.

Let us first check i). We consider the coefficients b
(m)
` and b` of t` in det(Id−

tA(m)) and det(Id− tA), respectively. By definition, we have

(8.13) b
(m)
` = (−1)`

∑
σ

ε(σ)a
(m)
α1σ(α1) · · · a

(m)
α`σ(α`)

.

By our choice of A(m), every product in the sum above is either zero, or it shows
up in the corresponding expression for b`. Furthermore, given any {α1, . . . , α`}
and any permutation σ of this set, the product ε(σ)aα1σ(α1) · · · aα`σ(α`) appears in
(8.13) for m� 0. Since we know that det(Id−tA) exists, the assertion in i) follows.

The proof of ii) is similar. By definition, we have

(8.14) Trace((A(m))s) =
∑

α1,...,αs

a(m)
α1α2

· · · a(m)
αs−1αsa

(m)
αsα1

.

By hypothesis, each product a
(m)
α1α2 · · · a

(m)
αsα1 is either equal to aα1α2 · · · aαsαs , or i

is zero. Moreover, by hypothesis every product aα1α2
· · · aαsαs+1

appears in (8.14)
if m � 0. Since Trace(As) exists, we deduce the assertion in ii). This completes
the proof of the proposition. �
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By Lemmas 8.14 and 8.15, we may apply the above proposition, to get the
following

Corollary 8.17. If H ∈ R0 and Ψ = Ψq,H for an integer q ≥ 2, then

det(Id− tΨ) = exp

−∑
s≥1

Trace(Ψs)

s
ts

 .

We now apply the above framework to give a proof of Proposition 8.10. Given
f ∈ Fq[x1, . . . , xd], we let N = d+ 1. We begin with the following lemma.

Lemma 8.18. For every n ≥ 1, the formal power series G ∈ R = Cp[[y, x1, . . . , xd]]
defined in (8.4) lies in R0.

Proof. Since G is a product of factors of the form Θ(c̃yxm1
1 · · ·xmdd ), it follows

from Lemma 8.13 that it is enough to see that Θ(ayxm1
1 · · · ymdd ) lies in R0 whenever

|a|p = 1 and m1, . . . ,md ∈ Z≥0. Furthermore, if q = pe, then we have taken

Θ(t) =
∏e−1
i=0 Θ0(tp

i

), where Θ0 is constructed for q = p. A second application of
Lemma 8.13 allows us to reduce to the case when q = p.

Recall that we have seen in the proof of Lemma 8.8 that if Θ =
∑
i≥0 bit

i, then

|bi|p ≤ |λ|ip =
(

1
p

)i/(p−1)

. If a and m1, . . . ,md are as above, then

Θ(ayxm1
1 · · ·xmdd ) =

∑
i

bia
iyixim1

1 · ximdd .

Note that

|biai|p = |bi|p ≤
(

1

p

)i/(p−1)

=

(
1

p

)M |(i,im1,...,imd)|

,

where M = 1
(p−1)(1+m1+...+md) . Therefore Θ(ayxm1

1 · · ·xmdd ) lies in R0. �

We can now prove the result stated at the beginning of this section.

Proof of Proposition 8.10. Since G ∈ R0, we may apply Proposition 8.14
in order to compute Trace(Ψq,G). Note that {w ∈ Cp | wq

n−1 = 1} = {ũ | u ∈
F∗qn}. We deduce using (8.1) and (8.5) that
(8.15)

N ′nq
n−(qn−1)d =

∑
v,u1,...,ud∈F∗qn

(
n−1∏
i=0

G(ṽq
i

, ũ1
qi
, . . . , ũd

qi
)

)
= (qn−1)d+1Trace(Ψn

q,G).

Let us compute
(8.16)

exp

∑
n≥1

N ′nq
n − (qn − 1)d

n
tn

 = Z̃(X, qt) · exp

(
−

d∑
i=0

(−1)d−i
(
d

i

)
qni

n
tn

)

= Z̃(X, qt) ·
d∏
i=0

exp

(
(−1)d−i

(
d

i

)
log(1− qit)

)
= Z̃(X, qt) ·

d∏
i=0

(1− qit)(−1)d−i(di).
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On the other hand, using Corollary 8.17 and Lemma 8.18 we get
(8.17)

exp

∑
n≥1

(qn − 1)d+1Trace(Ψn
q,G)

tn

n

 = exp

(
d+1∑
i=0

(−1)d+1−i
(
d+ 1

i

)
Trace(Ψn

q,G)
qnitn

n

)

=

d+1∏
i=0

det(Id− qitΨq,G)(−1)d−i(d+1
i ).

It follows from Lemma 8.15 that each det(Id− qitΨq,G) has infinite radius of con-
vergence. Since the expressions in (8.16) and (8.17) are equal, we conclude that

Z̃(X, qt) is the quotient of two formal power series in Cp[[t]] with infinite radius of

convergence, hence Z̃(X, t) has the same property. �

8.4. The rationality of the zeta function

The last ingredient in Dwork’s proof for the rationality of the zeta function is
the following proposition. In order to avoid confusion, we denote by |m|∞ the usual
(Archimedean) absolute value of an integer m.

Proposition 8.19. Let Z(t) =
∑
n≥0 ant

n be a formal power series in Z[[t]],
that satisfies the following two properties:

1) There are C, s > 0 such that |an|∞ ≤ Csn for all n ≥ 0.

2) The image of Z in Cp[[t]] can be written as a quotient g(t)
h(t) , where g, h ∈

Cp[[t]] have infinite radii of convergence.

Then Z(t) lies in Q(t).

We first need a lemma that gives a sharper version of the rationality criterion
in Proposition 4.13. We will consider a formal power series f =

∑
n≥0 ant

n with
coefficients in a field K. For every i,N ≥ 0, we consider the matrix Ai,N =
(ai+α+β)0≤α,β≤N .

Lemma 8.20. With the above notation, the power series f is rational if and
only if there is N such that det(Ai,N ) = 0 for all i� 0.

Proof. We have f ∈ K(t) if and only if there is a nonzero polynomial Q(t)
such that Qf is a polynomial. If we write Q = b0 + b1t + . . . + bN t

N , then the
condition we need is that

(8.18) bNai + bN−1ai+1 + . . .+ b0aN = 0

for all i� 0. The existence of b0, . . . , bN , not all zero, that satisfy these conditions
clearly implies that det(Ai,N ) = 0 for i� 0.

Conversely, suppose that we have N such that det(Ai,N ) = 0 for i � 0 (say,
for i ≥ i0), and that N is minimal with this property. For every i, we put

Li = (ai, . . . , ai+N ) ∈ KN+1 and L′i = (ai, . . . , ai+N−1) ∈ KN .

Claim. We have det(Ai,N−1) 6= 0 for every i ≥ i0. If this is the case, since

det(Ai,N ) = 0, it follows that for every i ≥ i0 + N , we have Li ∈
∑N
j=1 Li−j , so

that
∑
i≥i0 K · Li is spanned by Li0 , . . . , Li0+N−1. In this case, it is clear that we

can find b0, . . . , bN not all zero such that (8.18) holds for all i ≥ i0. Therefore, in
order to complete the proof it is enough to show the claim.
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By the minimality assumption in the definition of N , it is enough to show that
if i ≥ i0 and det(Ai,N−1) = 0, then det(Ai+1,N−1) = 0. Since det(Ai,N−1) = 0,
we have L′i, . . . , L

′
i+N−1 linearly dependent. We have two cases to consider. If

L′i+1, . . . , L
′
i+N−1 are linearly dependent, then it is clear that det(Ai+1,N−1) = 0.

On the other hand, if this is not the case, then we can write L′i =
∑N−1
j=1 cjL

′
i+j .

Let us replace in the first row of Ai,N each ai+` by ai+` −
∑N−1
j=1 cjai+`+j . We

thus obtain 0 = det(Ai,N ) = det(Ai+1,N−1) · δ, where δ = ai+N −
∑N−1
j=1 c`ai+N+j .

If δ 6= 0, we clearly get det(Ai+1,N−1) = 0. On the other hand, if δ = 0, then
it follows that Li lies in the linear span of Li+1, . . . , Li+N−1. Hence the top-right
N -minor of Ai,N vanishes, but this is precisely det(Ai+1,N−1). This completes the
proof of the claim, hence that of the proposition. �

Proof of Proposition 8.19. We begin by choosing α > 0 such that α >
log(s)
logp . We then apply Proposition B.21 to h and R > pα, to write h = Pu, where

P ∈ Cp[t] and u ∈ Cp[[t]] is invertible, and u and u−1 have radius of convergence

> pα. We may clearly assume that P (0) = 1. We thus can write f = gu−1

P , and

the radius of convergence of gu−1 is > pα. If we write gu−1 =
∑
n≥0 bnt

n, then by

Proposition B.18 we have limsupm|bm|
1/m
p < p−α. Therefore there is m0 such that

(8.19) |bm|p ≤ p−mα for all m ≥ m0.

Let us write f =
∑
n≥0 ant

n. Using the notation in Lemma 8.20, we need to

show that we can choose N such that det(Ai,N ) for all i� 0. The key is to compare
|det(Ai,N )|p and |det(Ai,N )|∞. Using condition 1) is the proposition, we get

|det(Ai,n)|∞ ≤
∑

σ∈Sn+1

|
N∏
α=0

|ai+α+σ(α)|∞ ≤ CN+1(N + 1)! · s2
∑N
j=0(i+j)

= CN+1(N + 1)! · s(N+1)(2i+N).

On the other hand, let us write P = 1 + λ1t + . . . + λrt
r, so that bi = ai +

c1ai−1 + . . .+crai−r for every i ≥ r. Suppose that N+1 = r+`, and let T0, . . . , TN
denote the columns of the matrix Ai,N . Starting with j = N and going down up to
j = r, we may replace Tj by Tj+λ1Tj−1+. . .+λrTj−r, without changing det(Ai,N ).
In this way, we have replaced in the last ` columns each aj by bj . Since all am are
in Z, we have |am|p ≤ 1, and is we assume i ≥ m0, we deduce using (8.19) that

|det(Ai,N )|p ≤ p−2α
∑`−1
j=0(i+r+j) = p−α`(2i+2r+`−1).

It follows from definition that if m is any nonzero integer, then |m|∞ ≥ |m|−1
p .

We conclude from the above that if det(Ai,N ) is nonzero, then

pα`(2i+2r+`−1) ≤ |det(Ai,N )|−1
p ≤ |det(Ai,N )|∞ ≤ CN+1(N + 1)!s(N+1)(2i+N).

By taking log, we get

α`(2i+ 2r + `− 1)log(p) ≤ (r + `)(i+ r + `)log(s) + log(C`+r(`+ r)!).

If ` is fixed and i� 0, this can only happen if α` · log(p) ≤ (r+ `)log(s). However,
by assumption we have α · log(p) > log(s), hence if ` � 0 we have α` · log(p) >
(r + `)log(s), and therefore det(Ai,N ) = 0 for all i � 0. This completes the proof
of the proposition. �

We can now complete Dwork’s proof of the rationality of the zeta function.
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Theorem 8.21. If X is a variety defined over a finite field Fq, then the zeta
function Z(X, t) is rational.

Proof. We have seen in Remark 2.21 that, arguing by induction on dim(X),
it is enough to show that Z(X, t) is a rational function when X is a hypersurface in
Ad

Fq
, defined by some nonzero f ∈ Fq[x1, . . . , xd]. We denote by Hi the hyperplane

(xi = 0), where 1 ≤ i ≤ d. For every I ⊆ {1, . . . , d} (including I = ∅), we put

XI = X ∩

(⋂
i∈I

Hi

)
and X◦I = XI r

⋃
i 6∈I

Hi

 .

We have a disjoint decomposition into locally closed subsets X =
⊔
I X
◦
I , hence

Proposition 2.12 implies

(8.20) Z(X, t) =
∏

I⊆{1,...,d}

Z(X◦I ).

Note that XI is isomorphic to a hypersurface in Ad−#I
Fq

, and using the notation

introduced in §1, we have Z(X◦I , t) = Z̃(XI , t). By Proposition 8.10, we can write
Z(X◦I , t) as the quotient of two formal power series in Cp[[t]], having infinite radii
of convergence. Formula (8.20), implies that Z(X, t) has the same property.

Recall that Z(X, t) has nonnegative integer coefficients. Furthermore, if we
write Z(X, t) =

∑
n≥0 ant

n, then an ≤ qdn for every n. Indeed, we have |X(Fqn)| ≤
qdn for every n ≥ 1. Since the exponential function has non-negative coefficients,
we deduce that an ≤ bn, where∑

n≥0

bnt
n = exp

∑
n≥1

qdntn

n

 = exp(−log(1− qdt)) =
1

1− qdt
=
∑
n≥0

qdntn.

Therefore an ≤ qnd for all n ≥ 0, and we can apply Proposition 8.19 to conclude
that Z(X, t) is a rational function. �

Note the unlike the proof of the rationality of the zeta function described in
Chapter 4 (using `-adic cohomology), the above proof is much more elementary, as
it only uses some basic facts about p-adic fields. At the same time, its meaning
is rather mysterious. A lot of activity has been devoted to giving a cohomological
version; in other words, to constructing a p-adic cohomology theory, and a corre-
sponding trace formula, that would “explain” Dwork’s proof. Such cohomology the-
ories are the Monsky-Washnitzer cohomology (which behaves well for smooth affine
varieties, see [vdP]) and the crystalline cohomology of Berthelot and Grothendieck
(which behaves well for smooth projective varieties, see [Ber]). More recently,
Berthelot introduced the rigid cohomology [LeS] that does not require smoothness,
and which extends the Monsky-Washnitzer and the crystalline cohomolgy theories,
when these are well-behaved.



APPENDIX A

Quotients by finite groups and ground field
extensions

We recall in this appendix some basic facts about quotients of quasiprojective
schemes by finite group actions, following [SGA1]. As an application, we discuss in
the second section some generalities concerning ground field extensions for algebraic
varieties.

A.1. The general construction

Let Y be a scheme of finite type over a field k, and let G be a finite group,
acting (on the right) on Y by algebraic automorphisms over k. We denote by σg
the automorphism corresponding to g ∈ G. A quotient of Y by G is a morphism
π : Y →W with the following two properties:

i) π is G-invariant, that is π ◦ σg = π for every g ∈ G.
ii) π is universal with this property: for every scheme Z over k, and every

G-invariant morphism f : Y → Z, there is a unique morphism h : W → Z
such that h ◦ π = f .

It is clear from this universal property that if a quotient exists, then it is unique,
up to a canonical isomorphism. In this case, we write W = Y/G.

We start by considering the case when Y = SpecA is an affine scheme. Note
that G acts on A on the left. We show that the induced morphism π : SpecA →
W = SpecAG is the quotient of Y by G.

Proposition A.1. With the above notation, the following hold:

i) W is a scheme of finite type over k, and π is a finite, surjective morphism.
ii) The fibers of π are precisely the orbits of the G-action on Y .
iii) The topology on W is the quotient topology.
iv) We have a natural isomorphism OW = π∗(OY )G.

Proof. It is clear that AG ↪→ A is integral: indeed, for every u ∈ A, we have
P (u) = 0, where P =

∏
g∈G(x− gu) ∈ AG[x]. Since A is finitely generated over k,

it follows that there is a finitely generated k-algebra B ⊆ AG such that A is integral
over B, hence finite over B. Since B is Noetherian, it follows that AG is a finite
over B. We conclude that AG is a finitely generated k-algebra, and the morphism
π is finite. Since AG → A is injective, it follows that π is surjective.

It is clear that π is G-invariant, hence each orbit is contained in a fiber. Con-
versely, if P,Q are primes in A such that P ∩ AG = Q ∩ AG, then P ⊆

⋃
g∈G gQ.

Indeed, if u ∈ P , then ∏
g∈G

(gu) ∈ P ∩AG = Q ∩AG,
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hence there is g ∈ G such that gu ∈ Q. The Prime Avoidance Lemma implies that
P ⊆ gQ for some g ∈ G. Similarly, we get Q ⊆ hP for some h ∈ G. Since P ⊆ ghP ,
and gh is an automorphism, we must have P = ghP , hence P = gQ.

This proves ii), and the assertion in iii) is now clear since π is closed, being
finite. It is easy to deduce iv) from the fact that if f ∈ AG, then (Af )G = (AG)f .
This completes the proof of the proposition. �

Remark A.2. Suppose that Y is a scheme with an action of the finite group
G. If π : Y → W is a surjective morphism of schemes that satisfies ii)-iv) in
Proposition A.1, then π gives a quotient of Y by G. This is a consequence of
the definition of morphisms of schemes. In particular, we see that the morphism
π : Y →W in Proposition A.1 is such a quotient.

Corollary A.3. If π : Y → W is as in the proposition, then for every open
subset U of W , the induced morphism π−1(U) → U is the quotient of π−1(U) by
the action of G.

Proof. It is clear that since π is a surjective morphism that satisfies ii)-iv) in
the above proposition, the morphism π−1(U)→ U satisfies the same properties. �

Suppose now that Y is a scheme over k, with an action of G. We assume that
every y ∈ Y has an affine open neighborhood that is preserved by the G-action.
This happens, for example, if Y is quasiprojective. Indeed, in this case for every
y ∈ Y , the finite set {σg(y) | g ∈ G} is contained in some affine open subset U of
Y 1. After replacing U by ∩g∈Gσg(U) (this is again affine, since Y is separated), we
may assume that U is affine, and preserved by the action of G.

By assumption, we can thus cover Y by U1, . . . , Ur, where each Ui is affine,
and preserved by the G-action. By what we have discussed so far, we may con-
struct the quotient morphisms πi : Ui → Wi = Ui/G. Furthermore, it follows from
Corollary A.3 that for every i and j we have canonical isomorphisms πi(Ui ∩Uj) '
πj(Ui ∩ Uj). We can thus glue these morphisms to get a quotient π : Y → Y/G of
Y with respect to the G-action. Note that this is a finite surjective morphism that
satisfies conditions ii)-iv) in Proposition A.1, hence gives a quotient of Y by the
action of G.

Remark A.4. It follows from the above construction that if Y is reduced, then
Y/G is reduced too.

Remark A.5. The above construction is compatible with field extensions in
the following sense. Suppose that Y is a scheme over k with an action of the finite
group G, such that every point on Y has an affine open neighborhood preserved by
the G-action. Suppose that K/k is a field extension, and YK = Y ×Spec k SpecK.
Note that YK has an induced G-action, and every point on YK has an affine open
neighborhood preserved by the G-action. We have an isomorphism of K-varieties
YK/G ' (Y/G) ×Spec k SpecK. Indeed, it is enough to consider the case when
Y = SpecA, and in this case the assertion follows from the lemma below.

1If Y is a locally closed subset of Pnk , and x1, . . . , xn ∈ Y , then there is a hypersurface H in

Pnk that contains Y rY , but does not contain x1, . . . , xn. Indeed, by the graded version of Prime

Avoidance Lemma, there is a homogeneous element of positive degree in the ideal of Y r Y (if

this set is empty, we take this ideal to be the “irrelevant” maximal ideal), but that does not lie in

the ideal of any {xi}. The complement of H in Y is an affine open subset of Y that contains all
the xi.
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Lemma A.6. Let V and W be k-vector spaces, and suppose that a group G acts
on V on the left by k-linear automorphisms. If we consider on V ⊗kW the induced
G-action, then we have a canonical isomorphism (V ⊗k W )G ' V G ⊗k W .

Proof. We clearly have an inclusion V G ⊗k W ↪→ (V ⊗k W )G. Consider
u ∈ V ⊗kW . If (bi)i∈I is a k-basis of W , we can write u =

∑
i ai ⊗ bi for a unique

tuple (ai)i∈I . Since gu =
∑
i(gai)⊗ bi, it follows that gu = u if and only if gai = ai

for every i. Therefore u ∈ (V ⊗k W )G if and only if all ai lie in V G. �

Proposition A.7. Let G and H be finite groups, acting by algebraic automor-
phisms over k on the schemes X and Y , respectively, where X and Y are of finite
type over k. If both X and Y can be covered by affine open subsets preserved by
the action of the corresponding group, then X × Y satisfies the same property with
respect to the product action of G×H, and X × Y/G×H ' X/G× Y/H.

Proof. Let X =
⋃
i Ui and Y =

⋃
j Vj be covers by affine open subsets,

preserved by the respective group actions. It is clear that X × Y =
⋃
i,j Ui × Vj is

a cover by affine open subsets preserved by the G×H-action. Furthermore, using
Lemma A.6 twice, we obtain

(O(Ui)⊗k O(Vj))
G×H ' O(Ui)

G ⊗k O(Vj)
H ,

and these isomorphisms glue together to give the isomorphism in the proposition.
�

Proposition A.8. Let G be a finite group acting by algebraic automorphisms
on a scheme X of finite type over k, such that X has an affine open cover by subsets
preserved by the G-action. Suppose that H is a subgroup of G, and Y is an open
subset of X such that

i) Y is preserved by the action of H on X.
ii) If Hg1, . . . ,Hgr are the right equivalence classes of G mod H, then X =⋃r

i=1 Y gi is a disjoint cover.

In this case the natural morphism Y/H → X/G is an isomorphism.

Proof. Note that by ii), Y is also closed in X. Consider a cover X =
⋃
j Uj by

affine open subsets preserved by the G-action. Each Vj = Y ∩ Uj is an affine open
subset of Y preserved by the H-action (note that Uj ∩Y is nonempty since Uj must
intersect some Y gi). Therefore we have the quotient Y/H, and since the natural
morphism Y → X/G is H-invariant, we obtain a morphism φ : Y/H → X/G.

We claim that each Y ∩Uj ↪→ Uj still satisfies i) and ii). Indeed, it is clear that
Y ∩Uj is preserved by the H-action, and we have Uj =

⊔r
i=1(Y ∩Uj)gi. Therefore

we may assume that X and Y are affine.
It follows from ii) that O(X) =

∏r
i=1O(Y gi), and it is clear that if φ ∈ O(X)G,

then φ = (ψg−1
1 , . . . , ψg−1

r ) for some ψ ∈ O(Y ), and in fact we must have ψ ∈
O(Y )H . This shows that the natural homomorphism O(X)G → O(Y )H is an
isomorphism. �

Remark A.9. Given X as in the above proposition, suppose that Y is an open
subset of X such that for every g, h ∈ G, the sets Y g and Y h are either equal, or
disjoint. In this case i) and ii) are satisfied if we take H = {g ∈ G | Y g = Y } and
if we replace X by

⋃
g∈G Y g.
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Proposition A.10. Let G be a finite group acting by algebraic automorphisms
on a scheme X of finite type over k, such that X has an affine open cover by subsets
preserved by the G×H-action. If H is a normal subgroup of G, then X/H has an
induced G/H-action, and the quotient by this action is isomorphic to X/G.

Proof. Let X =
⋃
i Ui be an affine open cover of X, with each Ui preserved

by the G-action. In particular, each Ui is preserved by the G-action, hence the
quotient X/G exists. The action of G on X induces an action of G/H on X/H
by the universal property of the quotient. Note that the Ui/H give an affine open
cover of X/H by subsets preserved by the G/H-action. Since we clearly have
O(Ui)

G = (O(Ui)
H)G/H , we get isomorphisms of the quotient of Ui/H by the G/H-

action with Ui/G. These isomorphisms glue to give the required isomorphism. �

A.2. Ground field extension for algebraic varieties

Let X be a variety over a field k (recall that this means that X is a reduced
scheme of finite type over k). Let K/k be a finite Galois extension, with group
G, and put XK = X ×Spec k SpecK. Note that this is a variety over K, since
the extension K/k is separable. Since K is flat over k, we see that the canonical
projection |pi : XK → X is flat.

The left action of G on K induces a right action of G on SpecK, hence on XK

(note that the corresponding automorphisms of XK are k-linear, but not K-linear).
If x ∈ XK and V is an affine open neighborhood of π(x), then π−1(U) is an affine
open neighborhood of x, preserved by the G-action. Therefore we may apply to
the G-action on XK the considerations in the previous section. In fact, π is the
quotient of XK by the action of G. Indeed, it is enough to note that if U ' Spec(A)
is an affine open subset of X, then Lemma A.6 gives

(A⊗k K)G = A⊗k KG = A.

By the discussion in the previous section, it follows that π identifies X with the set
of G-orbits of XK , with the quotient topology.

If Y ↪→ X is a closed subvariety, then YK ↪→ XK is a closed subvariety preserved
by the G-action. The following proposition gives a converse.

Proposition A.11. With the above notation, suppose that W is a closed subva-
riety of XK preserved by the G-action. If Y = π(W ), then W is a closed subvariety
of X, and W = YK .

Proof. Since π is finite, it follows that Y is closed in X. We clearly have
an inclusion W ⊆ YK . This is an equality of sets since W is preserved by the
G-action, and π identifies X with the set of G-orbits in XK . Since both W and YK
are reduced, it follows that W = YK . �

The above considerations can be easily extended to the case of infinite Galois
extensions. In what follows, we assume that k is perfect, and consider an algebraic
closure k of k. Note that k is the union of the finite Galois subextensions K of
k, and we have G(k/k) ' lim←−

K

G(K/k). As above, if X is a variety over k, we put

Xk = X ×Spec k Spec k, and let π : Xk → X be the canonical projection. Note that

since k is perfect, all fibers of π are reduced. We have a right action of G(k/k) on
Xk, induced by its left action on k.
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Proposition A.12. If W is a closed subvariety of Xk that is preserved by the
G-action, and if Y = π(W ), then Y is a closed subvariety of X, and W = Yk (in
this case we say that W is defined over k).

Proof. The fact that Y is closed in X follows from the fact that π is an
integral morphism. There is a finite Galois extension K of k such that for some
closed subscheme V of XK , we have Vk = W . After replacing V by Vred, we may
assume that V is reduced, in which case we see that it is the image of W via
the canonical projection Xk → XK . Since W is preserved by the G(k/k)-action,
it follows that V is preserved by the G(K/k)-action (recall that G(K/k) is the
quotient of G(k/k) by G(k/K)). We may thus apply Proposition A.11 to conclude
that V = YK , and therefore W = Yk. �

Proposition A.13. The fibers of the projection π : Xk → X are the orbits of

the G(k/k)-action on Xk.

Proof. It is clear from definition that G(k/k) acts on Xk by automorphisms
over X. Suppose now that x, y ∈ Xk are such that π(x) = π(y). There is a finite

Galois extension K of k such that both {x} and {y} are defined over K, and let
xK and yK denote the images of x and y, respectively, in XK . Since xK and yK
lie in the same fiber of XK → X, we can find σ ∈ G(K/k) such that xKσ = yK .
In this case, for every σ̃ ∈ G(k/k) that extends σ, we have xσ = y. �

Proposition A.14. If X is an irreducible variety over k, then G = G(k/k)
acts transitively on the set of irreducible components of Xk.

Proof. Note first that every automorphism of Xk maps an irreducible com-
ponent to an irreducible component, hence G indeed has an induced action on the
set of irreducible components of Xk. Let V and W be irreducible components of
Xk. Since Xk is flat over X, and X is irreducible, it follows that both V and W
dominate X. Therefore the generic points of V and W lie in the same fiber of π,
and we conclude by applying the previous proposition. �

Proposition A.15. If X is a variety over k and π : Xk → X is the canonical
projection, then taking x ∈ X to the sum of the elements in π−1(x) induces a
bijection between the set of effective 0-cycles on X of degree n and the set of effective
0-cycles on Xk that have degree n and that are fixed by G(k/k).

Proof. By Proposition A.13, an effective cycle α on Xk is invariant by G(k/k)
if and only if for every closed point x ∈ Xk that appears in α, all y ∈ π−1(π(x))
appear in α with the same coefficient. In other words, α can be written as∑r
i=1

∑
y∈π−1(ui)

y for some u1, . . . , ur ∈ X. In order to complete the proof, it

is enough to note that for every u ∈ X, we have deg(k(u)/k) = |π−1(u)| (recall
that π−1(u) is reduced). �

Suppose now that k = Fq is a finite field. Recall that G(k/k) ' Ẑ, and we may
take as a topological generator either the arithmetic Frobenius element x→ xq, or
its inverse, the geometric Frobenius element. Let σ denote the automorphism of Xk

corresponding to the action of the arithmetic Frobenius element. Recall that the
endomorphism FrobX,q on X induces by base extension the k-linear endomorphism
F = FrobXk,q of Xk.
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Proposition A.16. Let X be a variety over k = Fq, and W a closed subvariety
of Xk. There is a closed subvariety Y of XFqr such that W = Yk (in which case Y
is the image of W in XFqr ) if and only if F r(W ) ⊆W .

Proof. After replacing X by XFqr , we may assume that r = 1. We have seen
in Exercise 2.5 that σ ◦ F = F ◦ σ, and this is the absolute q-Frobenius morphism
of Xk (let’s denote it by T ). Since T (W ) = W for every closed subvariety W of
Xk, it is easy to see that σ−1(W ) ⊆ W if and only if F (W ) ⊆ W (in which case
F (W ) = W ).

Applying Proposition A.12, we are done if we show that if σ−1(W ) ⊆W , then
W is preserved by G(k/k). Since the geometric Frobenius element is a topological
generator of G(k/k), this follows from the fact that the action of G(k/k) on Xk

is continuous, where on Xk we consider the discrete topology. Continuity simply
means that the stabilizer of every point in Xk contains a subgroup of the form

G(k/K), for some finite Galois extension K of k. This is clear for Xk, since it is

clear for An
k
: for the point (u1, . . . , un) ∈ k

n
, we may simply take K to be the

Galois closure of k(u1, . . . , un). �

A.3. Radicial morphisms

We will need the notion of radicial morphism in the next section, in order to
discuss quotients of closed subschemes. In this section we recall the definition of
this class of morphisms and prove some basic properties.

Proposition A.17. If f : X → Y is a morphism of schemes, then the following
are equivalent:

i) For every field K (which may be assumed algebraically closed), the induced
map

Hom(SpecK,X)→ Hom(SpecK,Y )

is injective.
ii) For every scheme morphism Y ′ → Y , the morphism induced by base-

change X ×Y Y ′ → Y ′ is injective.
iii) f is injective, and for every x ∈ X, the extension of residue fields k(f(x)) ↪→

k(x) is purely inseparable.

If f satisfies the above equivalent conditions, one says that f is radicial.

Proof. We first prove i)⇒ii). Let Y ′ → Y be a morphism of schemes, and
suppose that x1, x2 ∈ X ×Y Y ′ are two distinct points that map to the same point
y ∈ Y ′. Let K be a field extension of k(y) containing both k(x1) and k(x2) (note
that we may take K to be algebraically closed). The inclusions k(x1), k(x2) ↪→ K
give two distinct morphisms SpecK → X ×Y Y ′ such that the induced morphisms
to Y ′ are equal. In particular, the induced morphisms to Y are equal, hence by i)
the induced morphisms to X are equal. The universal property of the fiber product
shows that we have a contradiction.

We now prove ii)⇒i). Suppose that φ, ψ : SpecK → X induce the same mor-
phism SpecK → Y , and let XK = X ×Y SpecK. By the universal property of the

fiber product, φ and ψ induce morphisms φ̃, ψ̃ : SpecK → XK over Spec K. These
correspond to two points x1, x2 ∈ XK and to isomorphisms K ' k(xi). By ii) we

have x1 = x2, hence φ̃ = ψ̃ and φ = ψ.
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Suppose now that i) holds, and let us deduce iii). The fact that f is injective
follows since we know i)⇒ii), so let us suppose that x ∈ X and y = f(x) are such
that k(y) ↪→ k(x) is not purely inseparable. In this case there is a field K and two
homomorphisms α, β : k(x) → K such that α and β agree on k(y). We thus get
two scheme morphisms SpecK → X taking the unique point to x, such that they
induce the same morphism SpecK → Y . This contradicts i).

In order to complete the proof of the proposition, it is enough to show that
iii)⇒i). Suppose that u, v : SpecK → X are such that f ◦ u = f ◦ v. Since f is
injective, it follows that both u and v take the unique point to the same x ∈ X. We
thus have two homomorphisms k(x) → K whose restrictions to k(f(x)) are equal.
This shows that k(x) is not purely inseparable over k(f(x)), a contradiction. �

Example A.18. It is clear that every closed immersion is radicial. For a more
interesting example, consider a scheme X over Fp, and let f : X → X be the
absolute Frobenius morphism. It is clear that f is a surjective, radicial morphism
(use description iii) in the above proposition).

Remark A.19. It follows from either of the descriptions in Proposition A.17
that the class of radicial morphisms is closed under composition and base-change.
Of course, the same holds for radicial surjective morphisms.

Remark A.20. If f : X → Y is a morphism of schemes, it is a consequence of
the description iii) in Proposition A.17 that f is radicial of and only if fred : Xred →
Yred has this property.

Remark A.21. The notion of radicial morphism is local on the target: f : X →
Y is radicial if and only if there is an open cover Y =

⋃
i Vi such that each f−1(Vi)→

Vi is radicial (one can use for this any of the descriptions in Proposition A.17).

Remark A.22. A morphism f : X → Y of schemes over a field k is radicial
and surjective if and only if for every algebraically closed field K containing k, the
induced map fK : X(K)→ Y (K) is bijective. Indeed, Proposition A.17 shows that
f is radicial if and only if all fK are injective. Assuming that this is true, it is easy
to see that if all fK are surjective, then f is surjective, and the converse follows
from the fact that for every x ∈ X, the extension of residue fields k(f(x)) ↪→ k(x)
is algebraic.

Example A.23. If φ : R → S is a morphism of rings of characteristic p such
that

i) The kernel of φ is contained in the nilradical of R.
ii) For every b ∈ S, there is m such that bp

m ∈ Im(φ),

then the induced morphism SpecS → SpecR is radicial and surjective. Indeed, if p
is a prime ideal of R, then there is a unique prime ideal q of S such that φ−1(q) = p,
namely

q = {b ∈ S | bp
m

= φ(a) for some a ∈ p andm ≥ 1}.
Furthermore, for every u ∈ S/q, there is m ≥ 1 such that up

m

lies in the image of
R/p, hence R/p ↪→ S/q is purely inseparable.

Proposition A.24. If f : X → Y is a morphism of schemes of finite type over
a field k of characteristic zero, then the following are equivalent:

i) f is radicial and surjective.
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ii) X(k)→ Y (k) is bijective, where k is an algebraic closure of k.
iii) f is a piecewise isomorphism, that is, there is a disjoint cover Y =

Y1 t . . . t Ym by locally closed subsets, such that all induced morphisms
f−1(Yi)red → (Yi)red are isomorphisms.

Proof. The implication i)⇒ii) follows from Remark A.22. Suppose now that
f is a piecewise isomorphism and Y =

⊔
i Yi is a disjoint cover as in iii). Given

a morphism φ : Y ′ → Y , let g : X ×Y Y ′ → Y ′ be the morphism obtained by
base-change from f . We get a locally closed disjoint cover Y ′ =

⊔
i Y
′
i , where

Y ′i = φ−1(Yi), such that each g−1(Y ′i )red → (Y ′i )red is an isomorphism. Therefore f
is radicial, and it is clear that f is surjective. Therefore in order to finish the proof
of the proposition it is enough to show that if f satisfies ii), then f is a piecewise
isomorphism.

Arguing by Noetherian induction, we may assume that the property holds for
f−1(Z) → Z, for every proper closed subset Z of Y . Therefore whenever it is
convenient, we may replace f by f−1(U)→ U , where U is a nonempty open subset
of Y . We may put on both X and Y their reduced scheme structures, and therefore
assume that they are reduced. If Y1, . . . , Yr are the irreducible components of Y ,
we may replace Y by Y1 r ∪i6=1Yi, and therefore assume that Y is irreducible.

Since X(k) → Y (k) is injective, we deduce that there is a unique irreducible
component of X that dominates Y . Therefore there is an open subset U in Y
such that f−1(U) does not meet the other irreducible components of X. After
replacing Y by U , we may assume that both X and Y are irreducible. Let d =
deg(K(X)/K(Y )). It is enough to show that d = 1, since in this case f is birational,
hence there is an open subset U of X such that f−1(U)→ U is an isomorphism.

Since we are in characteristic zero, f is generically smooth, that is, there are
open subsets V ⊆ X and W ⊆ Y such that f induces a smooth morphism g : V →
W . It follows from [Har, Exercise II.3.7] that there is an open subset W ′ of W such
that g−1(W ′)→W ′ is finite. After restricting further to an open subset of W ′, we
may assume that W ′ is affine, and O(g−1(W ′)) is free of rank d over O(W ′). Since
all fibers of g−1(W ′)×k k →W ′×k k are reduced, it follows that each such fiber has
d elements, so by assumption d = 1. This completes the proof of the proposition.

�

A.4. Quotients of locally closed subschemes

Proposition A.25. Let X be a scheme of finite type over k, and G a finite
group acting on X by algebraic automorphisms over k. We assume that X is
covered by affine open subsets preserved by the G-action, and let π : X → X/G
be the quotient morphism. If W is a locally closed subscheme of X such that G
induces an action on W , then the canonical morphism W/G → π(W ) is radicial
and surjective.

Proof. We first need to show that W/G exists, and that we have an induced
morphism W/G → X/G. If W is the closure of W (with the image scheme struc-
ture), then W is an open subscheme of W , which is a closed subscheme of X.
Furthermore, G has an induced action on W . It follows that it is enough to con-
sider separately the cases when W is an open or a closed subscheme of X. If W is
an open subscheme, then the assertion is clear: π(W ) is open in X/G, and we have
seen that W = π−1(π(W ))→ π(W ) is the quotient of W by the G-action.
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Suppose now that W is a closed subscheme of X, and consider π(W ) (with
the image scheme structure). Note first that since π(W ) can be covered by affine
open subsets, and π is finite, it follows that W is covered by affine open subsets
that are preserved by the G-action. In particular, W/G exists, and the G-invariant
morphism W → X → X/G induces a morphism φ : W/G → X/G. It is clear that
the image of this morphism is π(W ). In order to show that φ is radicial, we may
assume that X = SpecA is affine (simply consider an affine cover of X by affine
open subsets preserved by the G-action). Let I denote the ideal defining W . If B is
the image of AG → (A/I)G, then it is enough to prove that Spec(A/I)G → SpecB
is radicial. In light of Example A.23, this is a consequence of the more precise
statement in the lemma below. �

Lemma A.26. Let A be a finitely generated k-algebra, and let G be a finite
group acting on A by k-algebra automorphisms. Suppose that I ⊆ A is an ideal
preserved by the G-action. If pn is the largest power of p = char(k) that divides |G|
(we make the convention that pn = 1 if char(k) = 0), then for every b ∈ (A/I)G,
we have bp

n ∈ Im(AG → (A/I)G).

Proof. The argument that follows is inspired from [KM, p.221]. We write it
assuming p > 0, and leave for the reader to do the translation when char(k) = 0.

Let u ∈ A be such that b = u ∈ A/I is G-invariant. Since gu− u ∈ I for every
g ∈ G, we have the following congruence in the polynomial ring A[x]:∏

g∈G
(1 + (gu)x) ≡ (1 + ux)|G|mod IA[x].

The polynomial on the left-hand side has coefficients in AG, hence by considering

the coefficient of xp
n

on the right-hand side, we conclude that
(|G|
pn

)
up

n

is congruent

mod I to an element in AG. Since
(|G|
pn

)
is invertible in k2, it follows that up

n

lies

in the image of RG. �

Remark A.27. It follows from the proof of Proposition A.25 and Lemma A.26
that if char(k) does not divide |G|, then under the assumptions in Proposition A.25,
the morphism W/G→ π(W ) is an isomorphism. In particular, this is the case for
every G if char(k) = 0.

2It is easy to show this by computing the exponent of p in this binomial coefficient. On the
other hand, this is also a consequence of Lucas’ theorem, see [Gra]: if |G| = pnm, with m and p

relatively prime, then
(|G|
pn

)
≡ m (mod p).





APPENDIX B

Basics of p-adic fields

We collect in this appendix some basic facts about p-adic fields that are used
in Chapter 8. In the first section we review the main properties of p-adic fields,
in the second section we describe the unramified extensions of Qp, while in the
third section we construct the field Cp, the smallest complete algebraically closed
extension of Qp. In §4 section we discuss convergent power series over p-adic fields,
and in the last section we give some examples. The presentation in §2-§4 follows
[Kob].

B.1. Finite extensions of Qp

We assume that the reader has some familiarity with I-adic topologies and
completions, for which we refer to [Mat]. Recall that if (R,m) is a DVR with
fraction field K, then there is a unique topology on K that is invariant under
translations, and such that a basis of open neighborhoods of 0 is given by {mi |
i ≥ 1}. This can be described as the topology corresponding to a metric on K, as
follows. Associated to R there is a discrete valuation v on K, such that for every
nonzero u ∈ R, we have v(u) = max{i | u 6∈ mi}. If 0 < α < 1, then by putting
|u| = αv(u) for every nonzero u ∈ K, and |0| = 0, one gets a non-Archimedean
absolute value on K. This means that | · | has the following properties:

i) |u| ≥ 0, with equality if and only if u = 0.
ii) |u+ v| ≤ max{|u|, |v|} for every u, v ∈ K1.
iii) |uv| = |u| · |v| for every u, v ∈ K.

In this case, by taking d(x, y) = |x − y| we get a non-Archimedean2 metric on
K such that the corresponding topology is the unique topology mentioned above.
Note that the topology is independent of the choice of α. It is clear that addition,
multiplication, and taking the inverse of a nonzero element are all continuous.

The completion of R is defined algebraically as R̂ = lim←−
i

R/mi. It is a general

fact that R is local and Noetherian, and the canonical morphism R→ R̂ is injective.

Furthermore, the maximal ideal in R̂ is m · R, and for all i ≥ 1 we have R/mi '
R̂/miR̂. This implies that dim(R̂) = dim(R) = 1. Since the maximal ideal in R̂

is principal (being generated by a generator π of m), it is easy to see that R̂ is a

DVR. Furthermore, we have K̂ := Frac(R̂) = R̂[1/π] = K ⊗R R̂. In particular,

we have a valuation and a non-Archimedean absolute value on K̂ that extend the
corresponding ones on K. In fact, K̂ is the completion of K with respect to the

1A useful observation is that we automatically get that this is an equality if |u| 6= |v|.
2This means that we have the strong triangle inequality d(x, y) ≤ d(x, z) + d(y, z) for all x,

y, and z.

113
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topology defined by | · |, and the absolute value on K̂ is the unique one extending
the absolute value on K.

Suppose now that p is a fixed prime integer. We apply the above discussion to
K = Q, where R = Z(pZ) is the localization of Z at the maximal ideal pZ. The
corresponding topology on Q is the p-adic topology, and the corresponding absolute

value, with α = 1
p is denoted by | · |p. The field K̂ is the field of p-adic rational

numbers Qp, and R̂ is the ring of p-adic integers Zp. The corresponding valuation
and absolute value on Qp are denoted by ordp, and respectively, | · |p.

We now recall Hensel’s Lemma, one of the basic results about complete local
rings. For a proof, see [Mat, Theorem 8.3]. Let (A,m, k) be a complete local ring.
For a polynomial g ∈ A[x], we denote by g its image in k[x].

Proposition B.1. With the above notation, suppose that f ∈ A[x] is a monic
polynomial. If u, v ∈ k[x] are relatively prime monic polynomials such that f = uv,
then there are monic polynomials g, h ∈ A[x] such that

i) f = gh
ii) g = u and h = v.

A consequence of the above proposition is that if (keeping the notation) B is a
finite A-algebra such that B/mB splits as the product of two (nonzero) rings, then
the same holds for B. Indeed, the hypothesis gives the existence of an idempotent
u ∈ B such that u 6= 0, 1. Applying Hensel’s Lemma for the decomposition x2−x =
(x− u)(x− (1− u)) in k[x], we get an idempotent in B different from 0 and 1. In
particular, we see that if B is a domain, then the zero-dimensional ring B/mB is
local, hence B is local, too.

A p-adic field is a finite field extension of Qp. If K is such a field, we denote
by OK the ring of integers in K (that is, the integral closure of Zp in K). It is easy
to see that since every element u ∈ K is algebraic over Qp, there is a ∈ Zp such
that au ∈ OK . Therefore Qp ⊗Zp OK = K and K is the fraction field of OK .

Since Zp is a DVR, it is well-known that OK is a finite Zp-algebra (see [Lang,
Precise]). Therefore the discussion after Proposition B.1 implies that OK is a local
ring (and the inclusion Zp ↪→ OK is local, since OK is finite over Zp). Furthermore,
since dim(OK) = dim(Zp) = 1, and OK is clearly normal, we conclude that OK is
again a DVR.

If vK is the discrete valuation of K corresponding to OK , then eK := vK(p)
is the ramification index of K over Qp. We say that K is unramified over Qp if
eK = 1. It is clear that for every u ∈ Qp, we have vK(u) = eK ·ordp(u). The p-adic

absolute value on K is defined by |u|p =
(

1
p

)vK(u)/eK
. Note that for u ∈ Qp, this

agrees with the definition we gave before. We have OK = {u ∈ K, |u|p ≤ 1}, and
the maximal ideal in OK is mK = {u ∈ K, |u| < 1}.

Since every ideal in Zp is generated by some pm, and OK is clearly torsion-free,
it follows that OK is flat over Zp. We deduce that OK is a free module over Zp,
and its rank is clearly equal to n = [K : Qp]. Let πK denote a generator of the
maximal ideal mK . The quotient OK/pOK is free of rank n over Fp; on the other
hand, it has a filtration

(0) ⊂ meK−1
K /meKK ⊂ . . . ⊂ mK/m

eK
K ⊂ OK/m

eK
K ,

with each successive quotient isomorphic to OK/mK . We deduce that if f =
[OK/mK : Fp], then n = ef .
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Exercise B.2. Let K be a p-adic field.

i) Show that a basis of open neighborhoods of 0 in OK is given by {pmOK |
m ≥ 1}.

ii) Deduce that if we choose an isomorphism of Zp-modules OK ' Znp , the
topology on OK corresponds to the product topology on Znp .

iii) Deduce that OK is complete (and therefore so is K).

Exercise B.3. Let K ↪→ L be two finite extensions of Qp.

ii) Show that if eL/K is defined by πKOL = (π
eL/K
L ), and fL/K = [OL/mL :

OK/mK ], then eL = eK ·eL/K and fL = fK ·fL/K . Deduce that [L : K] =
eL/KfL/K .

i) Show that the two definitions of | · |p on K and L are compatible.

We say that L/K is unramified if eL/K = 1, and that it is totally ramified if
eL/K = [L : K].

Exercise B.4. Let K be a finite Galois extension of Qp. Show that if σ ∈
G(K/Qp), then |σ(u)|p = |u|p for every u ∈ K. Deduce that for every p-adic field

K and every u ∈ K, we have |u|p = NK/Qp
(u)1/n, where n = [K : Qp].

Suppose now that (K, |·|) is an arbitrary field endowed with a non-Archimedean
absolute value, and we consider on K the corresponding metric space structure. The
following exercise gives some special features of the non-Archimedean setting.

Exercise B.5. With K as above, suppose that (an)n≥1 is a sequence of ele-
ments of K.

i) Show that (an) is Cauchy if and only if limn→∞(an − an+1) = 0.
ii) Show that if K is complete, then the series

∑
n≥1 an is convergent if and

only if limn→∞ an = 0.
iii) Show that if the series

∑
n≥1 an is convergent, then for every permutation

σ of Z>0, we have
∑
n≥1 aσ(n) =

∑
n≥1 an.

B.2. Unramified extensions of Qp and Teichmüller lifts

Our main goal in this section is to describe the unramified extensions of Qp,
and the morphisms between them. We will also take this opportunity to discuss
Teichmüller lifts of elements in a finite field. In order to state the results, it is
convenient to fix an algebraic closure Qp of Qp. The following is the main result
of this section.

Theorem B.6. The unramified extensions of Qp in Qp are described as follows.

i) For every n, there is a unique unramified extension of Qp in Qp of degree

n, denoted by Q
(n)
p . This can be obtained by attaching to Qp a primitive

root of 1 of order pn − 1.

ii) If K ⊆ Qp is a finite extension of Qp and f = fK , then Q
(f)
p ⊆ K, and

this extension is totally ramified.

ii) Q
(n)
p is a Galois extension of Qp, and we have an isomorphism of Galois

groups G(Q
(n)
p /Qp) → G(Fpn/Fp), that associates to an automorphism

of Q
(n)
p the induced automorphism of the residue field.
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Proof. We begin by showing that for every n ≥ 1, there is an unramified
extension of Qp of degree n. Let u ∈ F∗pn be a multiplicative generator. Since
Fpn = Fp(u), it follows that the minimal polynomial P ∈ Fp[x] of u over Fp has

degree [Fpn : Fp] = n. Let P̃ ∈ Zp[x] be a monic polynomial lifting P . Since P is

irreducible, it follows that P̃ is irreducible. Let w ∈ Qp be a root of P̃ , and put

L = Qp(w). We have [L : Qp] = deg(P̃ ) = n, and since P̃ is monic, we see that
w ∈ OL. Let mL denote the maximal ideal in OL. The image w ∈ OL/mL of w
satisfies P (w) = 0, hence w is a conjugate of u, so that fL ≥ n. Since eLfL = n,
we conclude that fL = n, and the extension L/Qp is unramified. We thus have
unramified extensions of Qp of arbitrary degree.

Let us consider an arbitrary extension K of Qp of degree d, contained in Qp.
We put e = eK and f = fK . Let α be a multiplicative generator of (OK/mK)∗.

We claim that there is a lifting α̃ ∈ OK of α such that α̃p
f−1 = 1. We can write

xp
f−1 − 1 = (x − α)G(x) for a monic polynomial G ∈ Fpf [x]. Since G(α) 6= 0, it

follows from Proposition B.1 that we can write xp
f−1 − 1 = (x− α̃)G̃(x) for some

G̃ ∈ OK [x], and some lift α̃ ∈ OK of α. This proves our claim. Note that α̃ is
a primitive root of 1 of order pf − 1: if α̃i = 1 for some 0 < i < pf − 1, then
αi = 1, a contradiction. It is clear that fQp(α̃) ≥ [Fp(α) : Fp] = f , and since the
reverse inequality follows from Qp(α̃) ⊆ K, we have fQp(α̃) = f and the extension
K/Qp(α̃) is totally ramified.

Suppose now that K is unramified over Qp, hence e = 1. The above shows
that K = Qp(α). Therefore every unramified degree n extension of Qp is obtained
by adjoining to Qp a primitive root α̃ of 1 of order pn− 1. Since such an extension
is clearly independent of the choice of the primitive root, we get the assertion in
i). We note that from the construction we also get that the image α of α̃ in the
residue field of K is again a primitive root of 1 of order pn − 1.

Returning to the case of an arbitrary K as above, we see that Qp(α̃) = Q
(f)
p ,

hence the assertion in ii).

For every σ ∈ G(Qp/Qp), note that σ(Q
(n)
p ) is an unramified extension of Qp

of degree n, hence by the uniqueness statement in i), it is equal to Q
(n)
p . This shows

that the extension Q
(n)
p /Qp is Galois (it is separable since char(Qp) = 0). It is clear

that an automorphism σ of L = Q
(n)
p induces an automorphism of OL, hence an

automorphism σ of the residue field OL/mL. We thus get a group homomorphism

G := G(Q
(n)
p /Qp)→ G(Fpn/Fp). Since both groups have n elements, it is enough

to show that this is an injective morphism. We have seen that Q
(n)
p = Qp(α̃), where

α̃ ∈ Qp is a primitive root of 1 of order pn− 1, and the image α of α̃ in the residue
field is again a primitive root of 1 of order pn− 1. Every σ in G satisfies σ(α̃) = α̃i

for some i. If σ = id, then α = σ(α) = αi, hence α̃ = α̃i, and we see that σ = id.
This completes the proof of iii), and thus the proof of the theorem. �

Corollary B.7. We have Q
(m)
p ⊆ Q

(n)
p if and only if m divides n.

Proof. If Q
(m)
p ⊆ Q

(n)
p , then m = [Q

(m)
p : Q] divides n = [Q

(n)
p : Q]. Con-

versely, suppose that m|n, so that r = pn−1
pm−1 is an integer. If β ∈ Qp is a primitive

root of 1 of order pn − 1, then βr is a primitive root of 1 of order pm − 1, and

Q
(m)
p = Qp(β

r) ⊆ Qp(β) = Q
(n)
p . �
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We end this section by discussing the Teichmüller lift of an element in a finite

field. For every n ≥ 1, let Z
(n)
p denote the ring of integers of Q

(n)
p .

Proposition B.8. For every u ∈ Fpn , there is a unique ũ ∈ Z
(n)
p that is a lift

of u, and such that ũp
n

= u.

The element ũ in the above proposition is the Teichmüller lift of u. We start
with a lemma.

Lemma B.9. If I is an ideal in a commutative ring A, and if u, v ∈ A are such

that u ≡ v (mod pI), then up
i ≡ vpi (mod pi+1I) for every i ≥ 1.

Proof. Arguing by induction on i, we see that it is enough to prove the case
i = 1. Write u = v + a, where a ∈ pI, hence

up − vp =

p∑
j=1

(
p

j

)
vp−jaj .

Since aj ∈ p2I2 for every j ≥ 2, and pa ∈ p2I, we get the assertion in the lemma. �

Proof of Proposition B.8. For the existence part, it is clear that if u = 0,
then we may take ũ = 0. Suppose now that u is nonzero. We have seen in the

proof of Theorem B.6 that Q
(n)
p = Qp(α̃), where α̃ ∈ Qp is a primitive root of

1 of order pn − 1, and its image α ∈ Fpn is again a primitive root of 1 of order
pn−1. Therefore α is a multiplicative generator of F∗pn , hence there is m such that

u = αm. Since α̃ ∈ Z
(n)
p , if we take ũ = α̃m, this has the required properties.

In order to prove uniqueness, suppose that ũ, ṽ ∈ Z
(n)
p both satisfy the condi-

tions in the proposition. In particular, we have ũ ≡ ṽ (mod pZ
(n)
p ), and the lemma

implies ũp
ni ≡ ṽp

ni

(mod pni+1Z
(n)
p ) for every i ≥ 1. Since ũp

ni

= ũ and ṽp
ni

= ṽ,

we conclude that ũ− ṽ ∈
⋂
i≥1 p

niZ
(e)
p , hence ũ = ṽ. �

Corollary B.10. Every element in Z
(n)
p has a unique expression as the sum

of a series
∑
i≥0 aip

i, where ap
n

i = ai for every i.

Proof. Given u ∈ Z
(n)
p , let a0 be the Teichmüller lift of the image of u in Fpn ,

so that u− a0 = pu1, for some u1 ∈ Z
(n)
p . Repeating this construction for u1 etc.,

we see that we can write u as a sum as in the corollary. For uniqueness, note that
if we have two expressions as in the statement

u =
∑
i≥0

aip
i =

∑
i≥0

bip
i,

then a0 = b0 by Proposition B.8, and then
∑
i≥1 aip

i−1 =
∑
i≥1 bip

i−1, and we
repeat. �

Remark B.11. Note that if m divides n, then Fpm ⊆ Fpn and Q
(m)
p ⊆ Q

(n)
p .

It follows from the uniqueness part in Proposition B.8 that the Teichmüller lift ũ
of an element u ∈ Fpm is equal to the Techmüller lift of u when considered as an
element in Fpn .

Remark B.12. If ũ and ṽ are the Teichmüller lifts of u, v ∈ Fpn , respectively,
then ũṽ is the Teichmüller lift of uv. Indeed, it is clear that ũṽ satisfies both
conditions in the definition of a Teichmüller lift.
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B.3. The field Cp

In this section we follow closely the presentation in [Kob, Chapter III.3]. Let
Qp be an algebraic closure of Qp. We can write Qp =

⋃
K K, where K varies over

the finite extensions of Qp. By Exercise B.3 the absolute values on the various

K are compatible, hence we get a non-Archimedean absolute value | · |p on Qp,
that restricts on each K to the one we have defined. As in §1, this gives a non-
Archimedean metric on Qp, and each finite extension K of Qp is a metric subspace

of Qp. The ring of integers OQp
of Qp is the union

⋃
K OK , hence it is the

set of elements of Qp that are integral over Zp. We may also describe this as

{u ∈ Qp, |u|p ≤ 1}.

Exercise B.13. Show that OQp
is a local ring, with maximal ideal m = {u ∈

Qp, |u|p < 1}. Prove that there is an isomorphism OQp
/m ' Fp.

Proposition B.14. The field Qp, with the metric described above, is not com-
plete.

Proof. We need to construct a Cauchy non-convergent sequence in Qp. We

start by choosing for every i ≥ 0 a primitive root bi ∈ Qp of 1 of order p2i − 1. Let

Ki = Qp(bi). It follows from Theorem B.6 that [Ki : Qp] = 2i. If i < j, then p2i−1

divides p2j − 1. This implies that bi is a power of bj , hence we have Ki ⊆ Kj .
We take ai = b0p

N0 + b1p
N1 + . . . bip

Ni , where N0 < N1 < . . . < Ni < . . . will
be chosen later. Note that since |bi|p = 1 for every i, we have |ai − ai+1|p = 1

pNi
,

hence the sequence (ai)i is Cauchy by Exercise B.5.
Suppose that N0, . . . , Ni have been constructed, and ai is defined as above. It

is clear that we have Qp(ai) ⊆ Ki. We claim that in fact this is an equality. Indeed,

otherwise there is σ : Ki → Qp that fixes Qp(ai), but such that σ(bi) 6= bi. We
have

i∑
j=0

σ(bj)p
Nj = σ(ai) = ai =

i∑
j=0

bjp
Nj ,

and the uniqueness part in Corollary B.10 implies that σ(bi) = bi, a contradiction.
Assuming Ni chosen, we claim that there is Ni+1 > Ni such that ai does not

satisfy any congruence

(B.1) αna
n
i + αn−1a

n−1
i + . . .+ α0 ≡ 0 (mod pNi+1)

for any n < d := [Qp(ai) : Qp] = 2i, with αj ∈ Zp, not all of them divisible
by p. Indeed, for every N ≥ Ni, consider the set AN of all (α0, . . . , αd−1) ∈
Z/pN+1Z with the property that

∑d−1
j=0 αja

j
i = 0 in Z/pN+1Z, and some αj does

not lie in pZ/pN+1Z. Note that the projection Z/pN+2Z → Z/pN+1Z induces a
map AN+1 → AN . If all AN are nonempty, then lim←−

N

AN is nonempty. Indeed,

we may choose an element cNi ∈
⋂
N Im(AN → ANi), then an element cNi+1 ∈⋂

N Im(AN → ANi+1) that lies over cNi , etc. Since an element in lim←−
N

AN determines

a nontrivial equation of degree < d with coefficients in Qp, we get a contradiction.
We choose the Ni inductively, such that the above condition is satisfied, and

we claim that in this case the sequence (ai)i is not convergent to an element of
Qp. Indeed, if the sequence converges to a ∈ Qp, then let us consider a polynomial
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f = αnx
n + . . . + α0 ∈ Zp[x], with not all αi ∈ pZp, such that f(a) = 0. Since

a ≡ a` (mod pNi+1Zp) for ` � 0, and ai ≡ a` (mod pNi+1Zp) for ` ≥ i, it follows
that a ≡ ai (mod pNi+1Zp). We get a contradiction if we take i such that 2i > n.
This completes the proof of the proposition. �

Since Qp is a metric space, it is a general result that there is a completion of

Qp that is denoted by Cp. This means that we can embed Qp as a dense metric
subspace in Cp, which is complete. The field operations extend (uniquely) by

continuity to Cp, so this is a field. Furthermore, the absolute value on Qp extends
uniquely to a non-Archimedean absolute value on Cp, still denoted by | · |p, that
induces the metric, hence the topology of Cp. The miracle is that we do not have
to repeat the process of taking algebraic closure and completion.

Theorem B.15. The field Cp is algebraically closed.

Proof. Let f = a0x
n + a1x

n−1 + . . . + an be a polynomial in Cp[x], with

a0 6= 0. We need to show that f has a root in Cp. Since Qp is dense in Cp, we can

find am,i ∈ Qp with am,0 6= 0 and |am,i − ai|p < εm < 1, where (εm) is a strictly

decreasing sequence, converging to 0. Let fm =
∑n
i=0 am,ix

n−i ∈ Qp[x]. Since Qp

is algebraically closed, we can factor each fm as

fm = am,0(x− αm,1) · · · (x− αm,n),

for suitable αm,i ∈ Qp.
We first show that there is C ≥ 1 such that |αm,i|p ≤ C for all i and m. Indeed,

let us fix m, and suppose after reordering the (αm,j)j that

αm,1 = . . . = αm,r > αm,j for all j > r.

If sr is the rth elementary symmetric function of the αm,j , then

|αm,1|r = |sr|p = |am,r/am,0|p.

We conclude that

αm,i ≤ max
1≤j≤n

|am,j |1/jp

|am,0|1/jp

,

and since each am,j is close to aj , we see that we can find C as desired.
We now show that we can reorder (αm,i)i for all m, such that |αm,1−αm+1,1| ≤

C ′ε
1/n
m for all m, where C ′ is a constant independent of m. Note that this implies

by Exercise B.5 that the sequence (αm,1)m is Cauchy. Let us suppose that we did
this up to m. We have

fm+1(αm,1) = am,0

n∏
j=1

(αm,1 − αm+1,j),

and on the other hand

fm+1(αm,1) = fm+1(αm,1)− fm(αm,1) =

n∑
i=0

(am+1,i − am,i)αn−im,1 .

Therefore we get

|am,0|p ·
n∏
j=1

|αm,1 − αm+1,j |p ≤ εmCn−1,
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and after reordering the αm+1,j we may assume that

|αm,1 − αm+1,1|p ≤ C ′ε1/nm ,

where C ′ is a constant that only depends on C, n, and minm |am,0|p > 0.
Therefore we may assume that (αm,1)m is a Cauchy sequence, hence is conver-

gent to some α ∈ Cp. Since fm(αm,1) = 0 for every m, and limm→∞ am,i = ai for
every i, we have f(α) = 0. This completes the proof. �

Remark B.16. Note that Cp is obtained from Q in a similar way that with
how C is obtained from Q, with the respect to the usual Archimedean absolute
value on Q (however, in the case of Cp we had to complete twice).

Remark B.17. Note that the algebraic closure and the completion are unique
up to a canonical isomorphism. Therefore the field Cp is unique up to a canonical
isomorphism (of fields equipped with an absolute value).

The field Cp therefore is algebraically closed and complete with respect to the
non-Archimedean absolute value | · |p. This provides the right setting for doing
p-adic analysis.

B.4. Convergent power series over complete non-Archimedean fields

In this section we review some basic facts about convergent power series and
analytic functions in the non-Archimedean setting. The principle is that the familiar
results over R or C carry over to this framework, sometimes in a slightly improved
version.

Let (K, | · |) be a field endowed with a nontrivial3 non-Archimedean absolute
value, which is complete with respect to the induced metric space structure. For
applications we will be interested in the case when K = Cp, or K is a p-adic field.
For every point a ∈ K and every r > 0, we put

Dr(a) = {u ∈ K, |u− a| ≤ r}, D◦r(a) = {u ∈ K, |u− a| < r}.

It is clear that D◦r(a) is an open neighborhood of a. A special feature of the non-
Archimedean setting is that Dr(a) is both open and closed4.

Proposition B.18. Given a formal power series f =
∑
n≥0 ant

n ∈ K[[t]] be a

over K, let r(f) := 1/limsupn|an|1/n5, and consider u ∈ K.

i) If |u| < r(f), then
∑
n≥0 anu

n is convergent.

ii) If |u| > r(f), then
∑
n≥0 anu

n is divergent.

iii) If v ∈ K is such that |u| = |v| = r(f), then
∑
n≥0 anu

n is convergent if

and only if
∑
n≥0 anv

n is.

The radius of convergence of f is r(f).

3An absolute value is trivial if it only takes the values 0 and 1.
4This shows that K is totally disconnected, that is, every point has a basis of neighborhoods

that are both open and closed. This is a fact of life in the non-Archimedean setting, and the need

to correct this led to the theory of rigid analytic spaces, see [Con].
5We make the convention that if lim supn |an|1/n is zero or infinite, then r(f) = ∞ or

r(f) = 0, respectively.
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Proof. If |u| < r(f), then infm supn≥m |an|1/n < 1
|u| , hence there is n0 and

ρ < 1 such that |an|1/n < ρ
|u| for all n ≥ n0. Therefore |anun| < ρn for n ≥ n0,

hence limn→∞ anu
n = 0, and we deduce from Exercise B.5 that

∑
n≥0 anu

n is
convergent.

Suppose now that |u| > r(f), hence infm supn≥m |an|1/n > 1
|u| . It follows that

we can find ρ > 1
|u| such that for every m, there is n ≥ m with |anun| > (ρ|u|)n.

Therefore
∑
n≥0 anu

n is divergent. The assertion in iii) follows from the fact that if

|u| = r(f), then
∑
n≥0 anu

n is convergent if and only if limn→∞ |an|r(f)n = 0. �

If U ⊆ K is open, a function φ : U → K is analytic if for every a ∈ U , there
is r > 0 with D◦r(a) ⊆ U , and a formal power series f ∈ K[[t]] with radius of
convergence r(f) ≥ r such that φ(u) = f(u− a) for every u ∈ D◦r(a).

Lemma B.19. If f =
∑
n≥0 ant

n ∈ K[[t]] and |b| < r(f), then there is g ∈ K[[t]]

with r(g) ≥ r(f) such that f(u) = g(u− b) for every u ∈ K with |u| < r(f).

Proof. For every u ∈ K we have |u− b| < r(f) if and only if |u| < r(f), and
in this case

f(u) =
∑
n≥0

an((u− b) + b)n =
∑
n≥0

an

n∑
i=0

(
n

i

)
(u− b)ibn−i

=
∑
i≥0

∑
j≥0

(
i+ j

i

)
ai+jb

j

 (u− b)i.

In particular, βi :=
∑
j≥0

(
i+j
i

)
ai+jb

j is well-defined, the series g =
∑
i≥0 βit

i has

radius of convergence ≥ r(f), and f(u) = g(u− b) whenever |u− b| < r(f). �

Corollary B.20. If f ∈ K[[t]] has radius of convergence r(f) > 0, then the
function

{u ∈ K, |u| < r(f)} 3 u→ f(u) ∈ K
is an analytic function.

Analytic functions on open subsets of K satisfy properties entirely analogous
to the ones of real or complex analytic functions. We list some of these properties,
but leave as an exercise for the reader the task of checking that the familiar proofs
also work in the non-Archimedean setting.
• Every analytic function is continuous. This is a consequence of the fact that for
every f =

∑
n≥0 ant

n ∈ K[[t]], if we put fm =
∑m
n=0 ant

n, then the convergence of

fm(u) to f(u) is uniform on every subset DR(0), with R < r(f). Indeed, we have

|f(u)− fm(u)| ≤ sup
n≥m
|an|Rn → 0 when m→∞.

• The set of analytic functions on an open subset U ⊆ K is a ring. Furthermore, if
φ is analytic and nonzero at every point of U , then 1/φ is analytic.

More precisely, suppose that φ and ψ are analytic on U , and they are given
on D◦r(a) ⊆ U as φ(u) = f(u − a) and ψ(u) = g(u − a), for some f, g ∈ K[[t]]
r(f), r(g) ≥ r. In this case the radii of convergence of f + g and fg are both
≥ r, and φ(u) + ψ(u) = (f + g)(u − a) and φ(u)ψ(u) = fg(u − a) for u ∈ D◦r(a).
Furthermore, if φ(u) 6= 0 for every u ∈ D◦r(a), then in particular f(0) 6= 0, hence f
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is invertible. The radius of convergence of f−1 is ≥ r, and 1/φ(u) = f−1(u− a) for
every u ∈ D◦r(a).
• If φ : U → V and ψ : V → K are analytic functions, then the composition ψ ◦φ is
analytic. More precisely, given a ∈ U , suppose that D◦r(a) ⊆ U and D◦r′(φ(a)) ⊆ V
are such that φ(u) = f(u − a) and ψ(v) = g(v − φ(a)) for suitable f, g ∈ K[[t]],
such that the radii of convergence of f and g are ≥ r, r′, respectively. Note that

f(0) = φ(a), and let f̃ = f − f(0), and h = g ◦ f̃ ∈ K[[t]]. After possibly replacing
r by a smaller value, we may assume that φ(D◦r(a)) ⊆ D◦r′(φ(a)). In this case the
radius of convergence of h is ≥ r, and we have φ(ψ(u)) = h(u− a) for u ∈ D◦r(a).
• If f, g ∈ K[[t]] have radii of convergence ≥ R > 0, and f(u) = g(u) for every u
with 0 < |u| < R, then f = g

One can differentiate analytic functions, and the result is again analytic. One
can also consider, more generally, analytic functions of several variables. However,
while such functions show up in Chapter 8, we do not need to develop any theory
in this setting.

We end this section with the following result that is needed in Chapter 8. For
simplicity, we assume that |K∗| is dense in R 0. For example, this always holds if
K is algebraically closed. Indeed, if u ∈ K is such that |u| > 1, then |u|q ∈ |K∗|
for every q ∈ Q, hence |K∗| is dense in R>0.

Proposition B.21. Suppose that |K∗| is dense in R>0, and let R > 0 and
f ∈ K[[t]] be such that r(f) > R. In this case, there is a polynomial P ∈ K[t] and
an invertible power series g ∈ K[[t]] such that both g and g−1 are convergent on
DR(0), and f = Pg.

Before giving the proof of the proposition, we introduce some notation. Let
AK = {u ∈ R, |u| ≤ 1} and mK = {u ∈ AK , |u| < 1}. It is clear that AK is a
subring of K, mK is an ideal in AK , and the quotient AK/mK is a field, that we
denote by k. If f ∈ A[[t]], we denote by f its image in k[[t]].

Let T denote the set of formal power series in K[[t]] that are convergent on
D1(0). If f =

∑
n≥0 ant

n, then f ∈ T if and only if limn→∞ an = 0. It follows that

if we put ‖ f ‖:= maxn |an|, then this maximum is well-defined, and it is attained
for only finitely many n. Note that if f ∈ R[[t]] ∩ T , then f is a polynomial.

Exercise B.22. Show that if f, g ∈ T , then ‖ f · g ‖=‖ f ‖ · ‖ g ‖.

Proof of Proposition B.21. The assertion holds trivially if f = 0, hence
from now on we assume f 6= 0. Since |K∗| is dense in R>0, after possibly replacingR
by a larger value, we may assume that R ∈ |K∗|. We first note that if α ∈ D◦r(f)(0)

is such that f(α) = 0, then f = (t − α)f1 for some f1 ∈ K[[t]] with r(f1) ≥ r(f).
Indeed, by Lemma B.19 there is g ∈ K[[t]] with r(g) ≥ r(f) such that f(u) = g(u−α)
for |u| < r(f). Since f(α) = 0, it follows that g = tg1 for some g1 ∈ K[[t]], and we
clearly have r(g1) = r(g). Another application of Lemma B.19 gives f1 ∈ K[[t]] with
r(f1) ≥ r(g1) ≥ r(f) such that g1(u) = f1(u+ α) whenever |u| < r(f). Therefore

f(u) = g(u− α) = (u− α)g1(u− α) = (u− α)f1(u)

for all u with |u| < r(f), hence f = (t− α)f1.
We now show that there are α1, . . . , αr ∈ DR(0) (possibly not distinct) such

that

(B.2) f = (t− α1) · · · (t− αr)g
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for some g ∈ K[[t]] with r(g) ≥ r(f), and such that g(α) 6= 0 for every α ∈ DR(0).
If λ ∈ K is such that |λ| = R, then after replacing f by f(λt), we may assume that
R = 1. Let us write f =

∑
n≥0 ant

n. By assumption, we have f ∈ T , and let N

be the largest n with |an| =‖ f ‖. After replacing f by a−1
N f , we may assume that

aN = 1. Therefore f ∈ AK [[t]], and f is a monic polynomial of degree N . By what
we have already proved, it is enough to show that given any expression as in (B.2),
we have r ≤ N . Since ‖ t − αi ‖= 1 for all i, it follows from Exercise B.22 that
‖ g ‖= 1. In particular, we have g ∈ AK [[t]], and if we take the image in k[[t]], we get
f = g ·

∏r
i=1(t− αi). Since f is a polynomial of degree N , we deduce that r ≤ N .

In order to complete the proof of the proposition, it is enough to show that if
we write f as in (B.2), with g not vanishing anywhere on DR(0), then g−1 converges
on DR(0): indeed, we then take P =

∏r
i=1(t − αi). Since |K∗| is dense in R>0,

there is R′ ∈ |K∗| with R < R′ < r(f). Applying what we have already proved for
g and DR′(0), we see that there are only finitely many α ∈ DR′(0) with g(α) = 0.
It follows that after replacing R′ by a smaller one, we may assume that g does not
vanish on DR′(0), and in this case the radius of convergence of g−1 is ≥ R′ > R.
This completes the proof of the proposition. �

B.5. Examples of analytic functions

In this section we discuss the p-adic version of some familiar complex analytic
functions Let us start with the exponential function. In this section we assume that
K = Cp.

Consider f =
∑
n≥0

tn

n! ∈ Cp[[t]], and let us determine the radius of convergence
of f . Note that unlike in the complex case, the large denominators make the radius
of convergence small. For every n we have

ordp(n!) =
∑
i≥1

bn/pic ≤
∑
i≥1

n

pi
=

n

p− 1
,

hence (|1/n!|p)1/n ≤
(

1
p

)−1/(p−1)

. On the other hand, if n = pm, then

ordp(n!) = pm−1 + . . .+ p+ 1 =
pm − 1

p− 1
,

hence ordp(p
m!)/pm converges to 1

p−1 . We thus conclude that limsupn(|1/n!|p)1/n =(
1
p

)−1/(p−1)

, hence by Proposition B.18 the radius of convergence of f is
(

1
p

)1/(p−1)

<

1. This implies that the p-adic exponential function expp given by expp(u) = f(u)
is not defined, for example, on all Zp.

Let us consider also the p-adic logarithm function logp(1 + u) = g(u), where

g(t) =
∑
n≥1(−1)n−1 tn

n . We now are in better shape: if ordp(n) = i, then n ≥ pi,

hence i
n ≤

log(n)
n·log(p) , which converges to zero when n goes to infinity. It then follows

from Proposition B.18 that the radius of convergence of g is 1, hence logp(1 + u) is
defined in D◦1(0), precisely as in the complex case.

We now consider the p-adic binomial series. Let us recall first the formula
for the binomial series in the case of complex functions. If a ∈ C, then we may
consider the analytic function φ(u) = (1 + u)a. More precisely, we have φ(u) =
exp(a · log(1 + u)), which is defined and analytic for |u| < 1. The Taylor expansion
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at 0 is given by

φ(u) =
∑
m≥0

φ(m)(0)

m!
um.

Since we have φ′(u) = a(1 + u)a−1, one sees immediately by induction on m that
φ(m)(0) = a(a− 1) · · · (a−m+ 1).

We will now use the same formal power series in the p-adic setting, by allowing
the exponent to lie in Cp. More precisely, for a ∈ Cp, consider the formal power
series

Ba,p(y) =
∑
m≥0

a(a− 1) · · · (a−m+ 1)

m!
ym ∈ Cp[[y]].

For obvious reasons, we also write (1 + y)a for Ba,p(y), and (1 + u)a for Ba,p(u),
when u ∈ Cp is such that |u| is smaller than the radius of convergence of Ba,p. Let
us first discuss the radius of convergence of Ba,p.

Lemma B.23. Let a ∈ Cp, and denote by R the radius of convergence of Ba,p.

i) If |a|p > 1, then R = 1
|a|p

(
1
p

)1/(p−1)

.

ii) If |a|p ≤ 1, then R ≥
(

1
p

)1/(p−1)

.

iii) If a ∈ Zp, then R ≥ 1.

Proof. Suppose first that |a|p > 1. In this case |a− i|p = |a|p for every i ∈ Z.
Therefore (

|a(a− 1) · · · (a−m+ 1)|p
|m!|p

)1/m

=
|a|p
|m!|1/mp

,

and the computation that we have done for expp shows that in this case the radius

of convergence of Ba,p(x) is 1
|a|p

(
1
p

)1/(p−1)

.

If |a|p ≤ 1, then |a − i|p ≤ 1 for every i ∈ Z, and we deduce from Propo-
sition B.18 and the computation in the case of the exponential function that

R ≥
(

1
p

)1/(p−1)

. For the assertion in iii), it is enough to show that if a ∈ Zp,

then a(a−1)···(a−m+1)
m! ∈ Zp. This is clear when a ∈ Z, and the general case follows

since Z is dense in Zp (recall that Zp consists of those u ∈ Qp with |u|p ≤ 1). �

Remark B.24. It is clear from definition that if m is a nonnegative integer,
then Bm,p(1 + y) is, as expected, the mth power of 1 + y.

The binomial series satisfies the following “expected” properties.

Proposition B.25. If a, b ∈ Cp, then the following hold.

i) (1 + y)a · (1 + y)b = (1 + y)a+b.
ii) ((1 + y)a)b = (1 + y)ab.

Regarding ii), note that (1 + y)a = 1 + v(y) for some v ∈ yCp[[y]], hence
(1 + v(y))b is well-defined in Cp[[y]]. We will prove the assertions in the proposition
by reducing them to the corresponding ones over C. However, it is more convenient
to first introduce a formal series over Q in two variables, by letting a become a
formal variable. More precisely, we consider

(1 + y)x :=
∑
m≥0

x(x− 1) · · · (x−m+ 1)

m!
ym ∈ Q[[x, y]].
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Proposition B.26. We have the following equalities in Q[[x1, x2, y]].

i) (1 + y)x1 · (1 + y)x2 = (1 + y)x1+x2 .
ii) ((1 + y)x1)x2 = (1 + y)x1x2 .

Proof. Let us prove i). Let f and g denote the left-hand side (respectively, the
right-hand side) in i). In order to show that f = g, it is enough to show that they
are equal in C[[x1, x2, y]], hence it is enough to show that if u1, u2, v ∈ C are such
that |v| < 1, then f(u1, u2, v) = g(u1, u2, v) in C (note that under the condition on
v, both sides are well-defined. As we have seen,

(1 + v)u1 · (1 + v)u2 = exp(u1log(1 + v)) · exp(u2log(1 + v))

= exp((u1 + u2)log(1 + v)) = (1 + v)u1+u1 .

This completes the proof of i), and the proof of ii) is entirely similar. �

Proof of Proposition B.25. If g ∈ Cp[[x1, x2, y]] is such that the coefficient
of every ym is in Cp[x1, x2], for every a, b ∈ Cp we may consider g(a, b, y) ∈ Cp[[y]].
By letting x1 = a and x2 = b in Proposition B.26, we get the assertions in Propo-
sition B.25. �

Example B.27. Suppose that m is a positive integer not divisible by p, hence
1
m ∈ Zp. It follows from Proposition B.23 that for every u ∈ Cp with |u|p < 1 (for

example, for every u ∈ pZp) v = (1+u)1/m is well-defined, and by Proposition B.25
we have vm = 1 + u.
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