CHAPTER 7. THE GRASSMANN VARIETY AND OTHER EXAMPLES

1. The Grassmann Variety

Let $V = k^n$ and let r be an integer with $0 \leq r \leq n$. In this section we describe the structure of algebraic variety on the set $G(r, n)$ parametrizing the r-dimensional linear subspaces of V. These are the Grassmann varieties. Given an r-dimensional linear subspace W of V, we denote by $[W]$ the corresponding point of $G(r, n)$.

This is trivial for $r = 0$ or $r = n$: in this case $G(r, n)$ is just a point. The first non-trivial case that we have already encountered is for $r = 1$: in this case $G(r, n) = P^{n-1}$. A similar description holds for $r = n - 1$: hyperplanes in k^n are in bijection with lines in $(k^n)^* \simeq k^n$, hence these are again parametrized by P^{n-1} (cf. Exercise 2.18 in Chapter 4).

We now proceed with the description in the general case. Given an r-dimensional linear subspace W of k^n, choose a basis u_1, \ldots, u_r of W. By writing $u_i = (a_{i,1}, \ldots, a_{i,n})$ for $1 \leq i \leq r$, we obtain a matrix $A = (a_{i,j}) \in M_{r,n}(k)$. Note that we have an action of $GL_r(k)$ on $M_{r,n}(k)$ given by left multiplication. Choosing a different basis of W corresponds to multiplying the matrix on the left by an element of $GL_r(k)$. Moreover a matrix in $M_{r,n}(k)$ corresponds to some r-dimensional linear subspace in k^n if and only if it has maximal rank r. We can thus identify $G(r, n)$ with the quotient set $U/GL_r(k)$, where U is the open subset of $M_{r,n}(k)$ consisting of matrices of rank r.

For every subset $I \subseteq \{1, \ldots, n\}$ with r elements, let U_I be the open subset of U given by the non-vanishing of the r-minor on the columns indexed by the elements of I. Note that this subset is preserved by the $GL_r(k)$-action and let V_I be the corresponding subset of $G(r, n)$. We now construct a bijection

$$\varphi_I: V_I \to M_{r,n-r}(k) = A^{r(n-r)}.$$

In order to simplify the notation, say $I = \{1, \ldots, r\}$. Given any matrix $A \in U_I$, let us write it as $A = (A', A'')$ for matrices $A' \in M_{r,r}(k)$ and $A'' \in M_{r,n-r}(k)$. Note that by assumption $\det(A') \neq 0$. In this case there is a unique matrix $B \in GL_r(k)$ such that $B \cdot A = (I_r, C)$, for some matrix $C \in M_{r,n-r}(k)$ (namely $B = (A')^{-1}$, in which case $C = (A')^{-1} \cdot A''$).

Therefore every matrix class in V_I is the class of a unique matrix of the form (I_r, C), with $C \in M_{r,n-r}(k)$. This gives the desired bijection between $V_{\{1, \ldots, r\}} \to A^{r(n-r)}$, and a similar argument works for every V_I.

We put on each V_I the topology and the sheaf of functions that make the above bijection an isomorphism in \mathcal{T}_{op_k}. We need to show that these glue to give on $G(r, n)$ a structure of a prevariety: we need to show that for every subsets I and J as above, the subset $\varphi_I(V_I \cap V_J)$ is an open subset of $A^{r(n-r)}$ and the map

$$\varphi_J \circ \varphi_I^{-1}: \varphi_I(V_I \cap V_J) \to \varphi_J(V_I \cap V_J)$$

(1)
is a morphism of algebraic varieties (in which case, by symmetry, it is an isomorphism).
In order to simplify the notation, suppose that \(I = \{1, \ldots, r\} \). It is then easy to see that if \(\#(I \cap J) = \ell \), then \(\varphi_I(V_I \cap V_J) \subseteq \mathbb{A}^{r(n-r)} \) is the principal affine open subset defined by
the non-vanishing of the \((r-\ell)\)-minor on the rows indexed by those \(i \in I \setminus J \) and on the columns indexed by those \(j \in J \setminus I \). Moreover, the map (1) is given by associating to a matrix \(C \) the \(r \times n \) matrix \(M = (I_r, C) \), multiplying it on the left with the inverse of the \(r \times r\)-submatrix of \(M \) on the columns in \(J \) to get \(M' \), and then keeping the \(r \times (n-r) \) submatrix of \(M' \) on the columns in \(\{1, \ldots, n\} \setminus J \). It is clear that this is a morphism.

We thus conclude that \(G(r, n) \) is an object in \(\text{Top}_k \). In fact, it is a prevariety, since it is covered by open subsets isomorphic to affine varieties. In fact, since each \(V_I \) is isomorphic to an affine space, it is smooth and irreducible, and since we have seen that any two \(V_I \) intersect, we conclude that \(G(r, n) \) is irreducible by Exercise 3.17 in Chapter 1. Furthermore, since each \(V_I \) has dimension \(r(n-r) \), we conclude that \(\dim(G(r, n)) = r(n-r) \). We collect these facts in the following proposition.

Proposition 1.1. The Grassmann variety \(G(r, n) \) is a smooth, irreducible prevariety of dimension \(r(n-r) \), that has a cover by open subsets isomorphic to \(\mathbb{A}^{r(n-r)} \).

Example 1.2. If \(r = 1 \), the algebraic variety \(G(1, n) \) is just \(\mathbb{P}^{n-1} \), described via the charts \(U_i = (x_i \neq 0) \cong \mathbb{A}^{n-1} \).

Example 1.3. If \(r = n-1 \), the algebraic variety \(G(n-1, n) \) has an open cover
\[
G(n-1, n) = U_1 \cup \ldots \cup U_n.
\]
For every \(i \), we have an isomorphism \(\mathbb{A}^{n-1} \cong U_i \) such that \((\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n)\) is mapped to the hyperplane generated by \(\{e_j + \lambda_j e_i \mid j \neq i\} \). This is the hyperplane defined by the equation
\[
eq 0.
\]
We thus see that the variety structure on \(G(n-1, n) \) is the same as on \((\mathbb{P}^{n-1})^* \), which is isomorphic to \(\mathbb{P}^{n-1} \) (cf. Exercise 2.18 in Chapter 4).

Our next goal is to show that, in fact, \(G(r, n) \) is a projective variety. Note that if \(W \) is an \(r \)-dimensional linear subspace of \(V = k^n \), then \(\wedge^r W \) is a 1-dimensional linear subspace of \(\wedge^r V \cong k^d \), where \(d = \binom{n}{r} \). If \(e_1, \ldots, e_n \) is the standard basis of \(k^n \), then we have a basis of \(\wedge^r V \) given by the \(e_I = e_{i_1} \wedge \ldots \wedge e_{i_r} \), where \(I = \{i_1, \ldots, i_r\} \) is a subset of \(\{1, \ldots, n\} \) with \(r \)-elements (and where, in order to write \(e_I \), we order the elements \(i_1 < \ldots < i_r \)). We correspondingly denote the coordinates on the projective space of lines in \(\wedge^r V \) by \(x_I \).

Proposition 1.4. The map \(f: G(r, n) \to \mathbb{P}^{d-1} \) that maps \([W]\) to \([\wedge^r W]\) is a closed immersion. In particular, \(G(r, n) \) is a projective variety.

The embedding in the above proposition is the *Plücker embedding* of the Grassmann variety.

Proof of Proposition 1.4. If \(W \subseteq V \) is an \(r \)-dimensional linear subspace described by the matrix \(A \), then \(f([W]) \in \mathbb{P}^{d-1} \) is given in the above homogeneous coordinates by the \(r \)-minors of \(A \). In particular, we see that the inverse image of the affine chart \(W_I = (x_I \neq 0) \) is the affine open subset \(V_I \subseteq G(r, n) \).
In order to complete the proof, it is enough to show that for every I, the induced map $V_I \to W_I$ is a morphism and the corresponding ring homomorphism

\[\mathcal{O}(W_I) \to \mathcal{O}(V_I) \]

is surjective. The argument is the same for all I, but in order to simplify the notation, we assume $I = \{1, \ldots, r\}$. Note that the map $V_I \to W_I$ gets identified to $M_{r,n-r}(k) \to A^{r\cdot n-1}$, then maps a matrix B to all r-minors of (I, B), with the exception of the one on the first r columns. In particular, we see that this map is a morphism. By choosing $r-1$ columns of the first r ones and an additional column of the last $(n-r)$ ones, we obtain every entry of B as an r-minor as above. This implies that the homomorphism (2) is surjective. \[\square \]

Remark 1.5. The algebraic group $GL_n(k)$ acts on k^n and thus acts on $G(r, n)$ by $g \cdot [W] = [g \cdot W]$. Note that if W is described by the matrix $A \in M_{r,n}(k)$, then $g \cdot W$ is described by $A \cdot g^t$. It is straightforward to see that this is an algebraic action. Since any two linear subspaces can by mapped one to the other by a linear automorphism of k^n, we see that the $GL_n(k)$-action on $G(r, n)$ is transitive.

Remark 1.6. If W is an r-dimensional linear subspace of $V = k^n$, then we have an induced surjection $V^* \to W^*$, whose kernel is an $(n-r)$-dimensional linear subspace of $(k^n)^* \simeq k^n$. In this way we get a bijection $G(r, n) \to G(n-r, n)$ and it is not hard to check that this is, in fact, an isomorphism of algebraic varieties.

Remark 1.7. Given an arbitrary n-dimensional vector space V over k, let $G(r, V)$ be the set of r-dimensional linear subspaces of V. By choosing an isomorphism $V \simeq k^n$, we obtain a bijection $G(r, V) \simeq G(r, n)$ and we put on $G(r, V)$ the structure of an algebraic variety that makes this an isomorphism. Note that this is independent of the choice of isomorphism $V \simeq k^n$: for a different isomorphism, we have to compose the map $G(r, V) \to G(r, n)$ with the action on $G(r, n)$ of a suitable element in $GL_n(k)$.

Remark 1.8. It is sometimes convenient to identify $G(r, n)$ with the set of $(r-1)$-dimensional linear subspaces in P^{n-1}.

Notation 1.9. Given a finite-dimensional k-vector space V, we denote by $P(V)$ the projective space parametrizing hyperplanes in V. Therefore the homogeneous coordinate ring of $P(V)$ is given by the symmetric algebra $Sym^*(V)$. With this notation, the projective space parametrizing the lines in V is given by $P(V^*)$.

We end this section by discussing the incidence correspondence for the Grassmann variety and by giving some applications. More applications will be given in the next sections.

Consider the set of r-dimensional linear subspaces in P^n, parametrized by $G = G(r+1, n+1)$. The incidence correspondence is the subset

\[Z = \{(q, [V]) \in P^n \times G \mid q \in V\} . \]

Note that this is a closed subset of $P^n \times G$. Indeed, if we represent $[W]$ by the matrix $A = (a_{i,j})_{0 \leq i \leq r+1, 0 \leq j \leq n}$, then $([b_0, \ldots, b_n], [W])$ lies in Z if and only if the rank of the
matrix

\[
B = \begin{pmatrix}
b_0 & b_1 & \ldots & b_n \\
a_{0,0} & a_{0,1} & \ldots & a_{0,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r,0} & a_{r,1} & \ldots & a_{r,n}
\end{pmatrix}
\]

is \(\leq r + 1 \). This is the case if and only if all \((r + 2)\)-minors of \(B \) vanish. By expanding along the first row, we can write each such minor as \(\sum_{j \in I} b_j \delta_j \), where \(I \subseteq \{0, \ldots, n\} \) is the subset with \(r + 2 \) elements determining the minor and each \(\delta_j \) is a suitable minor of \(A \). Consider the closed immersion

\[
P^n \times G \overset{i}{\hookrightarrow} P^n \times P^N \overset{j}{\hookrightarrow} P^M,
\]

where \(i \) is given by \(i(u, v) = (u, \varphi(v)) \), with \(\varphi \) being the Plücker embedding, and \(j \) is the Segre embedding. It follows from the above discussion that via this embedding, \(Z \) is the inverse image of a suitable linear subspace of \(P^M \), and therefore it is closed in \(P^n \times G \). Since both \(P^n \) and \(G \) are projective varieties, we conclude that \(Z \) is a projective variety.

The projections onto the two components induce the morphisms \(\pi_1: Z \to P^n \) and \(\pi_2: Z \to G \). It follows from the definition that for every \([W] \in G\), we have \(\pi_2^{-1}([W]) \simeq W \).

Exercise 1.10. Show that the morphism \(\pi_2: Z \to G \) is locally trivial, with fiber\(^1\) \(P^r \).

Since all fibers of \(\pi_2 \) are irreducible, of dimension \(r \), we conclude from Proposition 5.1 in Chapter 5 that \(Z \) is irreducible, of dimension

\[
\dim(Z) = r + \dim(G) = r + (r + 1)(n - r).
\]

(we use here the fact that \(G \) is irreducible and \(Z \) is a projective variety).

Given a point \(q \in P^n \), the fiber \(\pi^{-1}(q) \subseteq G \) consists of all \(r \)-dimensional linear subspaces of \(P^n \) containing \(q \) (equivalently, these are the \((r + 1)\)-dimensional linear subspaces of \(k^{n+1} \) containing a given line). These are in bijection with the Grassmann variety \(G(r, n) \).

Exercise 1.11. Show that the morphism \(\pi_1: Z \to P^n \) is locally trivial, with fiber \(G(r, n) \).

We use the incidence correspondence to prove the following

Proposition 1.12. Let \(X \subseteq P^n \) be a closed subvariety of dimension \(d \) and let \(G = G(r + 1, n + 1) \). If we put

\[
M_r(X) = \{ [W] \in G \mid W \cap X \neq \emptyset \},
\]

then the following hold:

i) The set \(M_r(X) \) is a closed subset of \(G \), which is irreducible if \(X \) is irreducible.

ii) We have \(\dim(M_r(X)) = \dim(G) - (n - r - d) \) for \(0 \leq r \leq n - d \).

\(^1\)Given a variety \(F \), we say that a morphism \(f: X \to Y \) is locally trivial, with fiber \(F \), if there is an open cover \(Y = U_1 \cup \ldots \cup U_r \) such that for every \(i \), we have an isomorphism \(f^{-1}(U_i) \simeq U_i \times F \) of varieties over \(U_i \).
Exercise 1.13. Consider the Grassmann variety $G = G(r + 1, n + 1)$ parametrizing the r-dimensional linear subspaces in \mathbb{P}^n. Show that if Z is a closed subset of G, then the set

$$\tilde{Z} := \bigcup_{[V] \in Z} V \subseteq \mathbb{P}^n$$

is a closed subset of \mathbb{P}^n, with $\dim(\tilde{Z}) \leq \dim(Z) + r$.

Exercise 1.14. Show that if X and Y are disjoint closed subvarieties of \mathbb{P}^n, then the join $J(X,Y) \subseteq \mathbb{P}^n$, defined as the union of all lines in \mathbb{P}^n joining a point in X and a point in Y, is a closed subset of \mathbb{P}^n, with

$$\dim(J(X,Y)) \leq \dim(X) + \dim(Y) + 1.$$
the projective space \mathbb{P}^{N_d} consisting of classes of homogeneous polynomials $F \in S_d$ such that the ideal (F) is radical. We will denote by $[H]$ the point of \mathcal{H}_d corresponding to the hypersurface $H \subseteq \mathbb{P}^n$.

Lemma 2.1. The subset $\mathcal{H}_d \subseteq \mathbb{P}^{N_d}$ is a non-empty open subset.

Proof. Note that given $F \in S_d$, the ideal (F) is not reduced if and only if there is a positive integer e and a homogeneous polynomial $G \in S_e$ such that G^2 divides F. For every e such that $0 < 2e \leq d$, consider the map

$$\alpha_e : \mathbb{P}^{N_e} \times \mathbb{P}^{N_d-2e} \to \mathbb{P}^{N_d}$$

that maps $([G], [H])$ to $[G^2 H]$. It is straightforward to see that this is a morphism. Since the source is a projective variety, it follows that the image of α_e is closed. Since \mathcal{H}_d is equal to $\mathbb{P}^{N_d} \setminus \bigcup_{1 \leq e \leq \lfloor d/2 \rfloor} \text{Im}(\alpha_e)$, we see that this set is open in \mathbb{P}^{N_d}. In order to see that it is non-empty, it is enough to consider $f \in S_d$ which is the product of d distinct linear forms. \square

Exercise 2.2. Show that if $X \subseteq \mathbb{P}^n$ is a smooth closed subvariety, then for a general hypersurface H of degree d in \mathbb{P}^n, the intersection $X \cap H$ is smooth.

Exercise 2.3. Show that the set of those $[F] \in \mathcal{H}_d$ defining a smooth hypersurface is a non-empty open subset of \mathcal{H}_d.

We next construct the *universal hypersurface* over \mathcal{H}_d. In fact, for many purposes, it is more convenient to work with the whole space \mathbb{P}^{N_d} instead of restricting to \mathcal{H}_d (this is due to the fact that \mathbb{P}^{N_d} is complete, while \mathcal{H}_d is not). Define

$$\mathcal{Z}_d := \{ (p, [F]) \in \mathbb{P}^n \times \mathbb{P}^{N_d} \mid F(p) = 0 \}.$$

It is easy to see that via the composition of closed embeddings

$$\mathbb{P}^n \times \mathbb{P}^{N_d} \xrightarrow{\nu_x \times 1} \mathbb{P}^{N_d} \times \mathbb{P}^{N_d} \xrightarrow{\beta} \mathbb{P}^M,$$

where ν_x is the d^{th} Veronese embedding and β is the Segre embedding, \mathcal{Z}_d is the inverse image of a hyperplane, hence it is a closed subset of $\mathbb{P}^n \times \mathbb{P}^{N_d}$.

Note that the projections onto the two components induce two morphisms

$$\varphi : \mathcal{Z}_d \to \mathbb{P}^n \quad \text{and} \quad \psi : \mathcal{Z}_d \to \mathbb{P}^{N_d}.$$

Since \mathbb{P}^n and \mathbb{P}^{N_d} are projective varieties, we deduce that both φ and ψ are proper morphisms. It follows from definition that for every $[H] \in \mathcal{H}_d$, we have $\psi^{-1}([H]) = H$.

On the other hand, for every $p \in \mathbb{P}^n$, the fiber $\varphi^{-1}(p)$ consists of the classes of those $F \in S_d$ such that $F(p) = 0$. This is a hyperplane in \mathbb{P}^{N_d}. We deduce from Proposition 5.1 in Chapter 5 that \mathcal{Z}_d is irreducible, of dimension $N_d + n - 1$.

We now turn to linear subspaces on projective hypersurfaces. Given $r < n$, let $G = G(r + 1, n + 1)$ be the Grassmann variety parametrizing the r-dimensional linear
subspaces in \(P^n \). Consider the incidence correspondence \(I \subseteq P^N \times G \) consisting of pairs \(([F],[\Lambda])\) such that \(F \) vanishes on \(\Lambda \).

We first show that \(I \) is closed in \(P^N \times G \). Suppose that we are over the open subset \(V = V_{1,...,r} \simeq A^{(r+1)(n-r)} \) of \(G \), where a subspace \(\Lambda \) is described by the linear span of the rows of the matrix

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & a_{0,r+1} & \cdots & a_{0,n} \\
0 & 1 & \cdots & 0 & a_{1,r+1} & \cdots & a_{1,n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & a_{r,r+1} & \cdots & a_{r,n}
\end{pmatrix}
\]

The hypersurface corresponding to \(c = (c_\alpha) \), which is defined by \(f_c = \sum_\alpha c_\alpha x^\alpha \) contains the subspace corresponding to the above matrix if and only if

\[
f_c \left(x_0, \ldots, x_r, \sum_{0 \leq i \leq r} a_{i,r+1} x_i, \ldots, \sum_{0 \leq i \leq r} a_{i,n} x_i \right) = 0 \quad \text{in} \quad k[x_0, \ldots, x_r].
\]

We can write

\[
f_c \left(x_0, \ldots, x_r, \sum_{0 \leq i \leq r} a_{i,r+1} x_i, \ldots, \sum_{0 \leq i \leq r} a_{i,n} x_i \right) = \sum_\beta F_\beta(a, c) x^\beta,
\]

where the sum is running over those \(\beta = (\beta_0, \ldots, \beta_r) \) with \(\sum_i \beta_i = d \). Note that each \(F_\beta \) is a polynomial in the \(a_{i,j} \) and \(c_\alpha \) variables, homogeneous of degree 1 in the \(c_\alpha \)'s. With this notation, \(I \cap (P^N \times V) \) is the zero-locus in \(P^N \times V \) of the ideal generated by all \(F_\beta \); in particular, it is a closed subset. The equations over the other charts in \(G \) are similar.

In particular, we see that \(I \) is a projective variety. Let \(\pi_1: I \to P^N \) and \(\pi_2: I \to G \) be the morphisms induced by the projections onto the two factors.

Definition 2.4. For every hypersurface \(H \) of degree \(d \) in \(P^n \), the Fano variety of \(r \)-planes in \(H \), denoted \(F_r(H) \), is the fiber \(\pi_1^{-1}([H]) \) of \(\pi_1 \), parametrizing the \(r \)-dimensional linear subspaces contained in \(H \).

Proposition 2.5. The projective variety \(I \) is irreducible, of dimension

\[
(r + 1)(n - r) + \binom{n + d}{d} - \binom{r + d}{d} - 1.
\]

Proof. Consider the morphism \(\pi_2: I \to G \). By Proposition 5.1 in Chapter 5, it is enough to show that every fiber \(\pi^{-1}([\Lambda]) \) is isomorphic to a linear subspace of \(P^N \), of codimension \(\binom{r+d}{d} \). In order to see this, we may assume that \(\Lambda \) is defined by \(x_{r+1} = \ldots = x_n = 0 \). It is clear that a polynomial \(f \) vanishes on \(\Lambda \) if and only if all coefficients of the monomials in \(x_0, \ldots, x_r \) in \(f \) vanish; this gives a linear subspace of codimension \(\binom{r+d}{d} \). \(\square \)

Example 2.6. Consider lines on cubic surfaces: that is, we specialize to the case when \(n = 3 = d \) and \(r = 1 \). Note that in this case \(I \) is an irreducible variety of dimension 19, the same as the dimension of the projective space parametrizing homogeneous polynomials of degree 3 in \(S = k[x_0, x_1, x_2, x_3] \). We claim that the morphism \(\pi_1: I \to P^{19} \) is surjective; in
other words, every hypersurface in \mathbb{P}^3 which is the zero-locus of a degree 3 homogeneous polynomial contains at least one line. In order to see this, it is enough to exhibit such a hypersurface that only contains finitely many lines (this follows from Theorem 4.1 in Chapter 2). At least for $\text{char}(k) \neq 3$, such an example is given by the Fermat cubic surface below.

Example 2.7. Suppose that $\text{char}(k) \neq 3$ and let X be the Fermat surface in \mathbb{P}^3 defined by the equation

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0.$$

Of course, if $\text{char}(k) = 3$, then the zero locus of this polynomial is the hyperplane $x_0 + x_1 + x_2 + x_3 = 0$, which contains infinitely many lines.

Up to reordering the variables, every line $L \subseteq X$ can be given by equations of the form

$$x_0 = \alpha x_2 + \beta x_3 \quad \text{and} \quad x_1 = \gamma x_2 + \delta x_3,$$
for some $\alpha, \beta, \gamma, \delta \in k$. This line lies on X if and only if

$$(\alpha x_2 + \beta x_3)^3 + (\gamma x_2 + \delta x_3)^3 + x_2^3 + x_3^3 = 0 \quad \text{in} \quad k[x_2, x_3].$$

This is equivalent to the following system of equations:

$$\alpha^3 + \gamma^3 = -1, \quad \alpha^2 \beta + \gamma^2 \delta = 0, \quad \alpha \beta^2 + \gamma \delta^2 = 0, \quad \text{and} \quad \beta^3 + \delta^3 = -1.$$

If $\alpha, \beta, \gamma, \delta$ are all nonzero, then it follows from the third equation that

$$\gamma = -\alpha \beta^2 \delta^{-2},$$
and plugging in the second equation, we get

$$\alpha^2 \beta + \alpha^2 \beta^4 \delta^{-4} = 0,$$
which implies $\beta^3 = -\delta^3$, contradicting the fourth equation.

Suppose now, for example, that $\alpha = 0$. We deduce from the second equation that $\gamma \delta = 0$. Moreover, $\gamma^3 = -1$ by the first equation, hence $\delta = 0$ and $\beta^3 = -1$ by the fourth equation. We thus get in this way the 9 lines with the equations

$$x_0 = \beta x_3 \quad \text{and} \quad x_1 = \gamma x_2,$$
where $\beta, \gamma \in k$ are such that $\beta^3 = -1 = \gamma^3$. After permuting the variables, we obtain 2 more sets of lines on X, hence in total we have 27 lines.