
Introduction to commutative algebra

Lecture notes for Math 614, Fall 2022

Mircea Mustaţă
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CHAPTER 1

Preface

Our goal in this course is to give an introduction to commutative algebra. We
will not follow any textbook, but you can find the material that we will discuss
(and quite a bit more) in either of the following two sources: [Eis95] and [Mat89].

We will assume familiarity with the definition of topological spaces and con-
tinuous maps. We will also assume familiarity with some basic algebraic notions
and constructions, at the level of a first-year graduate course in algebra (prime
and maximal ideals, localization, field extensions, modules, the isomorphism theo-
rems for rings and modules, tensor products). We will review briefly some of these
notions, but without going into details.

All rings that we will consider will have a unit and all ring homomorphisms
we will consider will preserve the unit. Furthermore, unless explicitly mentioned
otherwise, all rings that will appear will be assumed to be commutative.

vii





CHAPTER 2

Prime ideals and localization

Let R be a ring (as usual, we assume that R is commutative).

2.1. Review of prime and maximal ideals

We begin by recalling the definition of prime and maximal ideals.

Definition 2.1. An ideal p in R is prime if p 6= R and for every a, b ∈ R, if
ab ∈ p, then a ∈ p or b ∈ p.

Remark 2.2. It follows directly from the definition that p is a prime ideal in
R if and only if R/p is a domain.

Definition 2.3. An ideal m in R is maximal if m 6= R and there is no ideal I,
with m ( I ( R.

Remark 2.4. Since the ideals in R/m are in inclusion-preserving bijection with
the ideals in R that contain m, it follows that m is a maximal ideal if and only if
R/m is not the zero ring and it doesn’t have any nontrivial ideals; in other words,
R/m is a field.

Remark 2.5. Since every field is an integral domain, it follows that every
maximal ideal is prime.

Remark 2.6. A useful fact (proved using Zorn’s lemma) is that if I ( R is a
proper ideal, then there is a maximal ideal m in R with I ⊆ m.

2.2. The prime spectrum

Associated to every ring R, we have a topological space, the prime spectrum
Spec(R), defined as follows. The underlying set of Spec(R) is the set of all prime
ideals in R. It is convenient to describe the topology on this set in terms of closed
sets (instead of open sets). For every ideal I in R, we put

V (I) =
{
p ∈ Spec(R) | I ⊆ p

}
.

It is clear from the definition that for two ideals I and J , we have

(2.1) V (I) ⊆ V (J) if J ⊆ I.

If I = (a1, . . . , an), then we write V (a1, . . . , an) for V (I).

Proposition 2.7. The sets V (I), when I varies over the ideals in R, form the
closed sets of a topology on Spec(R).

This topology is called the Zariski topology on Spec(R).

1



2 2. PRIME IDEALS AND LOCALIZATION

Proof of Proposition 2.7. Recall that a family F of subsets of a set X
form the closed sets of a topology if and only if it contains ∅ and X and it is closed
under arbitrary intersections and finite unions. Let’s check these properties in our
setting.

Note first that ∅ = V (R) and Spec(R) = V (0). Suppose now that we have a
family if ideals Iα of R. For an ideal p in R, we have Iα ⊆ p for all α if and only if∑
α Iα ⊆ p. Therefore we have

(2.2)
⋂
α

V (Iα) = V

(∑
α

Iα

)
,

which implies that our family is closed under arbitrary intersections.
Suppose now that I and J are two ideals in R. We will show that

(2.3) V (I) ∪ V (J) = V (I ∩ J) = V (I · J),

which implies that our family is closed under finite unions. Since I · J ⊆ I ∩ J , the
inclusions

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (I · J)

follows from (2.1). In order to complete the proof of (2.3) it is thus enough to show
that V (I · J) ⊆ V (I) ∪ V (J). Arguing by contradiction, suppose that we have a
prime ideal p, such that I · J ⊆ p, but I 6⊆ p and J 6⊆ p. We can find a ∈ I r p and
b ∈ J r p. Therefore we have ab ∈ I · J ⊆ p, but this contradicts the fact that p is
a prime ideal. This completes the proof of the proposition. �

Remark 2.8. For every a ∈ R, let

D(a) :=
{
p ∈ Spec(R) | a 6∈ p

}
= Spec(R) r V (a),

so this is an open subset of Spec(R). In fact, these open sets form a basis for the
topology on Spec(R). Indeed, given an open subset U of Spec(R), there is an ideal
I such that U = Spec(R) r V (I). If I = (aλ | λ ∈ Λ), then U =

⋃
λ∈ΛD(aλ).

Example 2.9. We have Spec(R) = ∅ if and only if R = 0.

Example 2.10. If k is a field, then Spec(k) consists of one point, namely (0).

Example 2.11. If k is a field and R = k[x]/(x2), then again Spec(R) consists
of only one point, namely (x)/(x2).

Example 2.12. If R = Spec(Z), then Spec(Z) consists of the points η = (0)
and pZ, where p is a positive prime integer. We note that each point pZ is a closed
point of Spec(R), while {η} = Spec(R) (since η ∈ V (I) implies I = (0)).

Example 2.13. Similarly, if k is a field and R = k[x], then Spec(R) consists of
η = (0) and of the primes (f), where f runs over the monic irreducible polynomials
in R. We use here the fact that every ideal in R is principal and a nonzero ideal
(f) is prime if and only if f is an irreducible polynomial.

We next discuss the functoriality of the prime spectrum. Recall first that if M
is an R-module and I is an ideal in M , then IM is the submodule of M generated
by {ax | a ∈ I, x ∈M}, that is,

IM =

{
r∑
i=1

aixi | r ≥ 0, ai ∈ I, xi ∈M

}
.



2.3. LOCALIZATION 3

In particular, if f : R→ S is a ring homomorphism and I is an ideal in R, we may
consider IS. This is not just an R-submodule of S, but an ideal of S (in fact, it is
the ideal generated by f(I)).

Proposition 2.14. If f : R→ S is a ring homomorphism, then for every prime
ideal p in S, the ideal f−1(p) ⊆ R is prime. Moreover the induced map

Spec(f) : Spec(S)→ Spec(R), p→ f−1(p)

is continuous.

Proof. The first assertion follows immediately from the definitions: if a, b ∈ R
are such that ab ∈ f−1(p), then f(a)f(b) = f(ab) ∈ p. Since p is a prime ideal, we
have f(a) ∈ p (in which case a ∈ f−1(p)) or f(b) ∈ p (in which case b ∈ f−1(p).

Note that Spec(f) is continuous if and only if the inverse image of any closed
set is closed. If I is an ideal in R and p is a prime ideal in S, then I ⊆ f−1(p) if
and only if f(I) ⊆ p, which is equivalent to IS ⊆ p. We thus have

Spec(f)−1
(
V (I)

)
= V (IS),

which implies that Spec(f) is a continuous map. �

Remark 2.15. In this way we get a contravariant functor from the category of
all commutative rings to the category of topological spaces. For this, it is enough to
check that if f : R→ S and g : S → T are ring homomorphisms, then Spec(g ◦f) =
Spec(f) ◦ Spec(g), which is clear.

Definition 2.16. The maximal spectrum of a ring R is the topological space
Max(R) ⊆ Spec(R) (with the induced topology) consisting of all maximal ideals in
R. We will see later that this subspace is important when R is a finitely generated
algebra over a field, in which case Max(R) recovers all information about Spec(R).

2.3. Localization

In this section we review briefly, without checking the details, the localization
construction for rings and modules. Let R be a ring. Recall that a subset S ⊆ R is
a multiplicative system if 1 ∈ S and whenever s1, s2 ∈ S, we have s1s2 ∈ S. Given
such a multiplicative system, the ring of fractions S−1R is defined as the set of
all symbols a

s , where a ∈ R and s ∈ S, modulo the equivalence relation a1
s1
∼ a2

s2
if there is s ∈ S such that s(s2a1 − s1a2) = 0 (note that if R is a domain and
S ⊆ Rr {0}, then this condition is equivalent to s2a1 = s1a2). One can check that
S−1R becomes a commutative ring with the operations given by

a1

s1
+
a2

s2
=
s2a1 + s1a2

s1s2
and

a1

s1
· a2

s2
=
a1a2

s1s2
.

Moreover, we have a ring homomorphism ϕ : R → S−1R given by ϕ(a) = a
1 . This

satisfies the following universal property: for every s ∈ S, the image ϕ(s) ∈ S−1R
is invertible; moreover, ϕ is universal with this property (in other words, for every
ring homomorphism ϕT : R → T such that ϕT (s) ∈ T is invertible for all s ∈ S,
there is a unique ring homomorphism f : S−1R→ T such that f ◦ ϕ = ϕT ).

Suppose now that S ⊆ R is a multiplicative system and M is an R-module.
We can similarly define S−1M as the set of all symbols u

s , where u ∈ M and
s ∈ S, modulo the equivalence relation u1

s1
∼ u2

s2
if there is s ∈ S such that we have
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s(s2u1 − s1u2) = 0. One can check that S−1M becomes an S−1R-module with
respect to the operations

u1

s1
+
u2

s2
=
s2u1 + s1u2

s1s2
and

a

s
· u
t

=
au

st
.

Moreover, we have a functor from the category of all R-modules to the category
of all S−1R-modules that takes M to S−1M . We have a morphism of R-modules
ψ : M → S−1M (where we view S−1M as an R-module via ϕ) given by ψ(u) = u

1 .

Remark 2.17. Suppose that f : R → R′ is a ring homomorphism and S ⊆ R
and S′ ⊆ R′ are multiplicative systems such that f(S) ⊆ S′. In this case, it follows
from the universal property of S−1R that we have a unique ring homomorphism

g : S−1R→ S′
−1
R′ such that the diagram

R

ϕR

��

f // R′

ϕR′
��

S−1R
g // S′−1

R′

is commutative. We also note that if S′ = f(S), then we have a canonical isomor-
phism of S−1R-modules

S−1R′ ' S′−1
R′,

where on the left-hand side we view R′ as a left R-module via f .

Example 2.18. If R is a ring and a ∈ R, then S = {an | n ≥ 0} is a multiplica-
tive system in R. In this case we denote S−1R by Ra and if M is an R-module, we
denote S−1M by Ma.

Example 2.19. If p is a prime ideal in a ring R, then S = R r p is a multi-
plicative system. In this case we write Rp for S−1R and if M is an R-module, we
write Mp for S−1M . A special case of this is when R is a domain and p = (0): in
this case Rp is a field, the field of fractions of R, denoted Frac(R).

Remark 2.20. It is useful to think of Ma as “describing the behavior of M
on D(a)” and of Mp as describing the behavior of M at the point p of Spec(R).
This can be made precise involving the notion of sheaf, but we will not go in that
direction.

Passing from R to Rp is useful because the ring Rp satisfies the following
property:

Definition 2.21. A ring R is local if it has a unique maximal ideal m (in this
case we also say that (R,m) is a local ring). The residue field of the local ring is
R/m.

Remark 2.22. Since every proper ideal of R is contained in a maximal ideal,
R is local if and only if there is a proper ideal m of R that contains every proper
ideal of R.

Lemma 2.23. If m is an ideal in the ring R, then (R,m) is a local ring if and
only if m 6= R and every element of Rrm is invertible.

Proof. The fact that all elements in Rrm are invertible is equivalent to the
fact that every proper ideal of R is contained in m. This gives the assertion in the
lemma by Remark 2.22. �
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Remark 2.24. A fact that we will often use is that if (R,m) is a local ring,
u ∈ R is invertible, and x ∈ m, then u+ x is invertible. Indeed, we have u+ x 6∈ m
(since otherwise we would get u = (u + x) − x ∈ m), hence it is invertible by the
above lemma.

Proposition 2.25. If p is a prime ideal in a ring R, then Rp is a local ring,
with maximal ideal pRp.

Proof. Note first that if a
s = b

t and a ∈ p, then b ∈ p. Indeed, the equality of
the two fractions means that there is u 6∈ p, such that ubs = uat ∈ p. Since u, b 6∈ p
and p is a prime ideal, we have b ∈ p.

It is then easy to see that

pRp =
{
a
s | a ∈ p, s 6∈ p

}
(we leave the proof of this assertion as an exercise). The fact that pRp is a proper
ideal of Rp is now clear, since 1 = 1

1 6∈ pRp. On the other hand, if a
s 6∈ pRp,

then a 6∈ p, and thus a
s is invertible in Rp, with inverse s

a . The assertion in the
proposition then follows from Lemma 2.23. �

2.4. Nakayama’s lemma

Many of the good properties of local rings can be traced back to the following

Proposition 2.26 (Nakayama’s Lemma). If (R,m) is a local ring and M is a
finitely generated R-module such that M = mM , then M = 0.

Proof. We use the so-called determinant trick. Let u1, . . . , un be generators
of M . By assumption, we have ui ∈ mM for all i, hence we can write

ui =

mi∑
j=1

ai,jvi,j with ai,j ∈ m, vi,j ∈M.

Since u1, . . . , un generate M , we can also write

vi,j =

n∑
k=1

bi,j,kuk, with bi,j,k ∈ R,

hence

ui =

n∑
k=1

ci,kuk, where ci,k =

mi∑
j=1

ai,jbi,j,k ∈ m.

If C is the n× n matrix (ci,k), then the above relations can be written as

(In − C) ·

u1

. . .
un

 = 0.

Multiplying this with the classical adjoint of In −C we see that det(In −C)ui = 0
for all i. Since u1, . . . , un generate M , it follows that

(2.4) det(In − C) ·M = 0.

On the other hand, since ci,k ∈ m for all i and k, by expanding the determinant
we see that det(In−C) = 1 +u, where u ∈ m. Since R is local, with maximal ideal
m, we conclude that 1 + u is invertible. Therefore (2.4) gives M = 0. �

We will often use Nakayama’s lemma through the following
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Corollary 2.27. If (R,m) is a local ring, M is a finitely generated R-module,
and N ⊆M is a submodule such that M = N + mM , then N = M .

Proof. The R-module M = M/N is finitely generated and the hypothesis
implies mM = (N +mM)/N = M . Applying Nakayama’s lemma gives M = 0. �

Remark 2.28. It follows from Corollary 2.27 that if (R,m) is a local ring and
M is a finitely generated module, then u1, . . . , un ∈ M generate M if and only if
their images u1, . . . , un ∈M/mM generate M/mM over the residue field k = R/m.
Hence a minimal system of generators of M corresponds to a basis of M/mM over
k.

2.5. Exercises

Recall that a ring R is reduced if for every a ∈ R such that an = 0 for some
n ≥ 1, we have a = 0. An ideal I in R is a radical ideal if the quotient ring R/I
is reduced (equivalently, for every a ∈ R such that an ∈ I for some n ≥ 1, we have
a ∈ I).

Exercise 2.29. Let I be an ideal in a ring R. Show that

rad(I) := {a ∈ R | an ∈ I for some n ≥ 1}

is the smallest radical ideal that contains I (it is called the radical of I).

Exercise 2.30. Show that if M ′ is a submodule of an R-module M and S is a
multiplicative system in R, then the induced map S−1M ′ → S−1M is injective and
its image is the kernel of the map S−1M → S−1(M/M ′) (induced by the canonical
map M →M/M ′), which is surjective.

Exercise 2.31. Let R be a ring, S ⊆ R a multiplicative system, and ϕ : R →
T = S−1R the canonical homomorphism. An ideal a in R is S-saturated if whenever
a, b ∈ R, with a ∈ S and ab ∈ a, we have b ∈ a.

i) Show that if b is an ideal in T , then there is a unique S-saturated ideal a
in R such that S−1a = b, namely a = ϕ−1(b). Moreover, if a′ is any ideal
in R such that S−1a′ = b, then a′ ⊆ a.

ii) Show that the induced map ϕ̃ : Spec(T )→ Spec(R) induces a homeomor-
phism onto its image (with the induced topology), which consists of the
prime ideals p in R such that S ∩ p = ∅.

Exercise 2.32. Let I be an ideal in the ring R. Recall that every ideal in the
quotient ring R/I is of the form J/I, for a unique ideal J in R containing I. Show
that J/I is a prime (maximal) ideal in R/I if and only if J has the same property.

Exercise 2.33. Show that if I is an ideal in the ring R and π : R → R/I is
the canonical surjective homomorphism, then Spec(π) : Spec(R/I)→ Spec(R) is a
homeomorphism onto a closed subset (with the induced topology).

Exercise 2.34. Show that if R1, . . . , Rn are commutative rings and we take
R = R1 × . . .×Rn, then we have a homeomorphism

Spec(R)
'−→

n⊔
i=1

Spec(Ri),
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where on the right-hand side we have the disjoint union of the Spec(Ri), with the
topology given by the condition that U is open if and only if U ∩ Spec(Ri) is open
for all i.

Exercise 2.35. Let I be an ideal in a ring R. Show that I is a radical ideal if
and only if it is the intersection of a (possibly infinite) family of prime ideals in R.

Exercise 2.36. Let R be a ring. If Z ⊆ Spec(R) is a subset, we put

I(Z) :=
⋂
p∈Z

p.

i) Show that for every subset Z ⊆ Spec(R), we have V
(
I(Z)

)
= Z.

ii) Show that for every ideal a in R, we have I
(
V (a)

)
= rad(a).

iii) Deduce that the maps I(−) and V (−) give order-reversing inverse bijec-
tions between the set of closed subsets of Spec(R) and the set of radical
ideals in R.

Exercise 2.37. Show that if M is an R-module and N ⊆ M is a submodule,
then the following are equivalent:

i) N = M .
ii) Np = Mp for every prime ideal p in R.
iii) Nm = Mm for every maximal ideal m in R.

Exercise 2.38. Prove the following variant of Nakayama’s lemma: if R is a
domain, I ( R is an ideal, and M is a finitely generated module with no torsion
(that is, if a ∈ R and x ∈M are such that ax = 0, then a = 0 or x = 0) such that
IM = M , then M = 0.





CHAPTER 3

Finite and integral homomorphisms

In this chapter we study in the context of rings two notions generalizing those
of finite/algebraic field extensions. We first discuss some general properties of these
notions and then study the induced map between the prime spectra.

3.1. Basic properties of finite and integral homomorphisms

Let f : R→ S be a ring homomorphism (so S is an R-algebra).

Definition 3.1. 1) We say that f is of finite type (or that S is a finite
type R-algebra) if S is a finitely generated R-algebra (that is, there are
b1, . . . , bn ∈ S, for some positive integer n, such that S = R[b1, . . . , bn]).

2) We say that f is finite (or that S is a finite R-algebra) if S is a finitely
generated R-module.

3) We say that f is integral (or that S is an integral R-algebra) if every
element u ∈ S is integral over R: this means that there is a positive
integer n and a1, . . . , an ∈ R such that

un + a1u
n−1 + . . .+ an = 0.

Remark 3.2. Let f : R→ T be a ring homomorphism. If I is an ideal in R and
J is an ideal in T such that I ⊆ f−1(J), then we have an induced homomorphism
f : R/I → T/J . If f is of finite type (or finite or integral), then f has the same
property. Similarly, if S is a multiplicative system in R, then we get an induced
homomorphism g : S−1R→ S−1T . If f is of finite type (or finite or integral), then
g has the same property. Both assertions follow directly from definitions.

Remark 3.3. It is clear that if f is finite, then it is also of finite type: if
b1, . . . , bn generate S as an R-module, then they also generate S as an R-algebra.
The converse is false: for example, the polynomial ring R[x] is a finite type R-
algebra, but it is not finite (prove this!).

Remark 3.4. If f of finite type and also integral, then f is finite. More
precisely, if b1, . . . , bn ∈ S generate S as an R-algebra and each bi satisfies an
equation

bdii + ai,1b
ni−1
i + . . .+ ai,di = 0,

for some ai,1, . . . , ai,di ∈ R, then S is generated as an R-module by the monomials

bj11 . . . bjnn , with 0 ≤ ji ≤ di − 1 for all i.

In fact, the converse of the assertion in the last remark also holds, because we
have

Proposition 3.5. If S is a finite R-algebra, then S is an integral R-algebra.

9



10 3. FINITE AND INTEGRAL HOMOMORPHISMS

Proof. This is another application of the determinant trick: suppose that S
is generated as an R-module by b1, . . . , bn. Given any y ∈ S, for every i ≤ n, we
can write

ybi =

n∑
j=1

ai,jbj for some ai,j ∈ R.

If A is the n× n matrix
(
f(ai,j)

)
∈Mn(S), then we have

(yIn −A) ·

u1

. . .
un

 = 0.

This implies det(yIn − A) · ui = 0 for 1 ≤ i ≤ n. Since 1 is a linear combination
of u1, . . . , un, we conclude that det(yIn − A) = 0. Expanding the determinant, we
obtain

yn + c1y
n−1 + . . .+ cn = 0 for some c1, . . . , cn ∈ R.

Therefore y is integral over R. �

Proposition 3.6. If f : R → S and g : S → T are ring homomorphisms and
f and g are both finite (respectively of finite type or integral), then g ◦ f has the
same property.

Proof. If T is generated as an S-module by u1, . . . , un, and S is generated
as an R-module by v1, . . . , vm, then T is generated as an R-module by f(vi)uj , for
1 ≤ i ≤ m and 1 ≤ j ≤ n. Indeed, given any w ∈ T , we can write w =

∑n
i=1 aiui,

with a1, . . . , an ∈ S, and for every i, we can write ai =
∑m
j=1 bi,jvj , for some

bi,j ∈ R. We then have

w =

n∑
i=1

n∑
j=1

bi,jf(vj)ui.

If T = S[u1, . . . , un] and S = R[v1, . . . , vm], then

T = R
[
u1, . . . , un, f(v1), . . . , f(vm)

]
,

hence T is a finitely generated R-algebra.
Finally, suppose that both f and g are integral homomorphisms. Given u ∈ T ,

there is a positive integer n and a1, . . . , an ∈ S such that

un + a1u
n−1 + . . .+ an = 0.

Since a1, . . . , an are integral over R, the R-algebra R′ = R[a1, . . . , an] is finite by
Remark 3.4. Similarly, since u is integral over R′, the R′-algebra R′[u] is finite, and
thus R′[u] is a finite R-algebra, by what we have already proved. Proposition 3.5
then implies that u is integral over R. �

Proposition 3.7. If S is an R-algebra, then the subset R′ ⊆ S consisting of
all elements of S that are integral over R is an R-subalgebra of S.

Proof. If u, v ∈ R′, then R[u, v] is a finite R-algebra by Remark 3.4. Therefore
u− v and uv are integral over R by Proposition 3.5, hence they belong to R′. �

Definition 3.8. In the setting of the above proposition, R′ is called the integral
closure of R in S.
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Definition 3.9. If R is a domain, then the integral closure of R is its integral
closure in Frac(R). We say that R is integrally closed if this integral closure is equal
to R.

The following proposition will be useful when studying the behavior of prime
ideals in integral extensions.

Proposition 3.10. If i : R ↪→ S is an injective integral homomorphism, with
both R and S domains, then R is a field if and only if S is a field.

Proof. Since i is injective, in order to simplify notation, we may and will
assume that R is a subring of S. Note first that since R and S are domains, we
know that R 6= 0 and S 6= 0.

Suppose first that R is a field and let u ∈ S r {0}. Since u is integral over R,
it follows that we can write

un + a1u
n−1 + . . .+ an = 0

for some positive integer n, and some a1, . . . , an ∈ R. We may assume that n is
chosen to be minimal; in this case, since u 6= 0, we have an 6= 0. We see that we
have uv = 1, where

v = (−an)−1 · (un−1 + . . .+ an−2u+ an−1),

hence u is invertible. Since this holds for every nonzero u, it follows that S is a
field.

Conversely, suppose that S is a field and let a ∈ Rr {0}. Let b = 1
a ∈ S. Since

b is integral over R, we can write

br + α1b
r−1 + . . .+ αr = 0

for some positive integer r and some α1, . . . , αr ∈ R, hence

1 + α1a+ . . .+ αna
n = 0.

Therefore
1

a
= −α1 − α2a− . . .− αrar−1 ∈ R,

we conclude that a in invertible in R. Since this holds for every nonzero a ∈ R, it
follows that R is a field. �

Corollary 3.11. If f : R → S is an integral homomorphism, q ∈ Spec(S),
and p = f−1(q), then p is a maximal ideal in R if and only if q is a maximal ideal
in R.

Proof. The assertion follows by applying the proposition to the induced ho-
momorphism R/p→ S/q (it is clear that this is injective and integral). �

3.2. Behavior of prime ideals in integral homomorphisms

We now give the main results concerning Spec(f), when f is an integral homo-
morphism.

Theorem 3.12. If f : R → S is an injective integral homomorphism, then for
every p ∈ Spec(R) there is q ∈ Spec(S) such that p = f−1(q).
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Proof. Consider the induced homomorphism fp : Rp → Sp, which is clearly

injective and integral. If we have a prime ideal I in Sp such that f−1
p (I) = pRp,

then we can write I = qRp, for a prime ideal q in S and p = f−1(q). Therefore we
may and will assume that p is a maximal ideal of R.

In this case it is enough to show that pS 6= S: every maximal ideal q of S that
contains pS will have the property that f−1(q) = p. Let us assume that pS = S,
so we can write

1 =

n∑
i=1

aibi, for some ai ∈ p, bi ∈ S.

In this case R′ = R[b1, . . . , bn] is a finite R-algebra by Remark 3.4 and pR′ = R′:
indeed, for every u ∈ R′, we can write u =

∑n
i=1 ai(biu) ∈ pR′. Nakayama’s lemma

implies R′ = 0, a contradiction with the fact that f is injective. This completes the
proof. �

Recall that a map f : X1 → X2 is closed if f(F ) is closed in X2 for every closed
subset F ⊆ X1.

Corollary 3.13. If f : R → S is an injective integral homomorphism, then
ϕ = Spec(f) : Spec(S) → Spec(R) is a surjective closed map (this implies that a
subset Z ⊆ Spec(R) is closed if and only if ϕ−1(Z) is closed).

Proof. Surjectivity follows directly from the theorem. In order to prove that
ϕ is closed, it is enough to show that for every ideal I in S, we have

ϕ
(
V (I)

)
= V

(
f−1(I)

)
.

The inclusion “⊆” is a general fact: it follows from the fact that if I ⊆ q, then
f−1(I) ⊆ f−1(q). The reverse inclusion follows by applying the theorem for the
injective integral homomorphism R/f−1(I)→ S/I. �

Theorem 3.14 (Going-up). If f : R → S is an integral homomorphism and
p1 ⊆ p2 are prime ideals in R and q1 is a prime ideal in S such that f−1(q1) = p1,
then there is a prime ideal q2 in S with q1 ⊆ q2 and f−1(q2) = p2.

Proof. Consider the induced homomorphism g : R/p1 → S/q1, which is in-
jective and integral. Applying Theorem 3.12 for the prime ideal p2/p1 in R/p1, we
conclude that there is a prime ideal q2/q1 in S/q1 such that g−1(q2/q1) = p2/p1.
It is then clear that q2 satisfies the conclusion of the theorem. �

Theorem 3.15. If f : R → S is an integral homomorphism and q1 ( q2 are
prime ideals in S, then f−1(q1) 6= f−1(q2).

Proof. Arguing by contradiction, suppose that p = f−1(q1) = f−1(q2). Con-
sider the induced homomorphism g : Rp → Sp, which is again integral. Note that
q1Sp ⊆ q2Sp are distinct prime ideals in Sp. In particular, q1Sp is not a max-
imal ideal. However, g−1(q1Sp) is the maximal ideal pRp, contradicting Corol-
lary 3.11. �



CHAPTER 4

Noetherian rings and modules

In this chapter we discuss the definition and some basic properties of Noetherian
rings and modules. We then prove the main result on this topic, Hilbert’s Basis
Theorem and give some applications, to the Artin-Rees theorem and the Krull
Intersection Theorem.

4.1. Definition and first properties

In this section we do not assume that the rings are commutative since the
notions we discuss are useful also in the non-commutative context. Let R be a ring
and M a left (or right) R-module.

Definition 4.1. M is a Noetherian module if it satisfies the Ascending Chain
Condition (ACC, for short), that is, there is no strictly increasing infinite sequence
of submodules

(4.1) M1 (M2 (M3 ( . . . (M.

We say that the ring R is left (respectively, right) Noetherian if it is Noetherian as
a left (respectively, right) R-module.

In order to fix ideas, we will work with left R-modules, but of course all results
have analogous ones for right R-modules.

Proposition 4.2. Given a ring R and a left R-module M , the following are
equivalent:

i) Every submodule N of M is finitely generated.
ii) M is a Noetherian R-module.
iii) Every nonempty family of submodules of M contains a maximal element.

Proof. Suppose first that i) holds. If there is an infinite strictly increasing
sequence of submodules of M as in (4.1), consider N :=

⋃
i≥1Mi. This is a sub-

module of M , hence it is finitely generated by i). If u1, . . . , ur generate N , then we
can find m such that ui ∈Mm for all i. In this case we have N = Mj for all j ≥ m,
contradicting the fact that the sequence is strictly increasing.

The implication ii)⇒iii) is clear: if a nonempty family F has no maximal
element, let us choose N1 ∈ F . Since this is not maximal, there is N2 ∈ F such
thatN1 ( N2, and we continue in this way to construct an infinite strictly increasing
sequence of submodules of M .

In order to prove the implication iii)⇒i), let N be a submodule of M and
consider the family F of all finitely generated submodules of N . This is nonempty,
since it contains the zero submodule. By iii), F has a maximal element N ′. If
N ′ 6= N , then there is u ∈ NrN ′ and the submodule N ′+Ru is a finitely generated

13
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submodule of N strictly containing N ′, a contradiction with the maximality of N ′.
Therefore N ′ = N and thus N is finitely generated. �

Proposition 4.3. If M ′ is a submodule of a left R-module M , then M is
Noetherian if and only if both M ′ and M/M ′ are Noetherian.

Proof. We will use the characterization of the Noetherian property in Propo-
sition 4.2i). Suppose first that M is Noetherian. Since every submodule of M ′ is a
submodule of M , hence finitely generated, it follows that M ′ is Noetherian. Since
every submodule of M/M ′ is isomorphic to N/M ′, for a submodule N of M that
contains M ′, and since N being finitely generated implies that N/M ′ is finitely
generated, we conclude that M/M ′ is Noetherian.

Conversely, suppose that both M ′ and M/M ′ are Noetherian, and let N be
a submodule of M . Since N ∩ M ′ is a submodule of M ′, it is finitely gener-
ated, and since N/(N ∩M ′) is isomorphic to a submodule of M/M ′, we have that
N/(N ∩M ′) is finitely generated. Finally, since both N ∩M ′ and N/(N ∩M ′) are
finitely generated, it follows that N is finitely generated: if N ∩M ′ is generated
by u1, . . . , ur and N/(N ∩M ′) is generated by v1, . . . , vs, then N is generated by
u1, . . . , ur, v1, . . . , vs. �

Corollary 4.4. If R is a Noetherian ring, then an R-module M is Noetherian
if and only if it is finitely generated.

Proof. We only need to show that ifM is finitely generated, then it is Noether-
ian, since the converse follows from Proposition 4.2. Since M is finitely generated,
we have a surjective morphism R⊕n → M , and it follows from Proposition 4.3
that it is enough to show that R⊕n is Noetherian. This follows again from the
proposition by induction on n. �

Remark 4.5. If R is a commutative Noetherian ring and I is an ideal in R,
then R/I is a Noetherian ring. Indeed, every left ideal in R/I is of the form J/I,
for some left ideal J in R containing I. Since J is finitely generated, it follows that
J/I is finitely generated.

Remark 4.6. If R is a Noetherian commutative ring and S ⊆ R is a multi-
plicative system, then S−1R is a Noetherian ring. Indeed, every ideal in S−1R is of
the form S−1J , for some ideal J in R. If J is generated by a1, . . . , ar, then S−1J
is generated by a1

1 , . . . ,
ar
1 .

Example 4.7. If R is any commutative ring, the polynomial ring in countably
many variables R[xi | i ≥ 1] is not Noetherian. Indeed, we have the following
strictly increasing chain of ideals:

(x1) ( (x1, x2) ( (x1, x2, x3) . . . .

Exercise 4.8. Let R be a commutative ring and I1, . . . , Ik be ideals in R such
that I1 ∩ . . .∩ Ik = (0). Show that if R/Ij is a Noetherian ring for 1 ≤ j ≤ k, then
R is a Noetherian ring.

A topological space X is Noetherian if there is no infinite strictly decreasing
sequence

F1 ) F2 ) F3 ) · · ·
of closed subsets of X.
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Exercise 4.9. Show that if R is a Noetherian ring, then Spec(R) is a Noether-
ian topological space.

Given a closed subset Z of a topological space X, we say that Z is irreducible
if it is nonempty and it can’t be written as Z = Z1 ∪ Z2, where Z1, Z2 ⊆ X are
closed subsets with Z1 6= Z and Z2 6= Z.

Exercise 4.10. Show that if Z, Z1, . . . , Zr are closed subsets of a topological
space X, with Z ⊆ Z1 ∪ . . . ∪ Zr, and if Z is irreducible, then there is i such that
Z ⊆ Zi.

Exercise 4.11. Show that if R is a ring, then a closed subset Z ⊆ Spec(R) is
irreducible if and only if Z = V (p) for some prime ideal p of R.

Exercise 4.12. Show that a nonempty topological space is irreducible if and
only if every nonempty open subset of X is dense in X.

Exercise 4.13. Show that if X is a Noetherian topological space, then every
nonempty closed subset Z of X can be written as a finite union Z = Z1 ∪ . . .∪Zr,
with Z1, . . . , Zr irreducible closed subsets of X. Furthermore, if we assume that
Zi 6⊆ Zj for any i 6= j (which we can always do), then Z1, . . . , Zr are unique up to
reordering (they are the irreducible components of Z).

Exercise 4.14. Show that if I ( R is a proper ideal in a Noetherian ring R,
then the irreducible components of V (I) correspond to the minimal prime ideals
containing I. Deduce that there are finitely many such prime ideals.

4.2. Hilbert’s Basis Theorem

From now on we assume again that all rings are commutative. The following
result was one of the most influential in the development of commutative algebra.

Theorem 4.15 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then the
polynomial ring R[x] is Noetherian.

Proof. Let I be an ideal in R[x]. We consider the following recursive con-
struction. If I 6= 0, let f1 ∈ I be a polynomial of minimal degree. If I 6= (f1), then
let f2 ∈ I r (f1) be a polynomial of minimal degree. Suppose now that f1, . . . , fn
have been chosen. If I 6= (f1, . . . , fn), let fn+1 ∈ I r (f1, . . . , fn) be a polynomial
of minimal degree.

If this process stops, then I is finitely generated. Let us assume that this is not
the case, aiming for a contradiction. We write

fi = aix
di + lower degree terms, with ai 6= 0.

By our minimality assumption, we have

d1 ≤ d2 ≤ . . . .

Let J be the ideal of R generated by the ai, with i ≥ 1. Since R is Noetherian, J is
a finitely generated ideal, hence there is m such that J is generated by a1, . . . , am.
In particular, we can find u1, . . . , um ∈ R such that

am+1 =

m∑
i=1

uiai.
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In this case, we have

h := fm+1 −
m∑
i=1

uix
dm+1−difi ∈ I r (f1, . . . , fm)

and deg(h) < dm+1, a contradiction. This completes the proof of the theorem. �

Corollary 4.16. If R is a Noetherian ring, then every R-algebra of finite type
is Noetherian.

Proof. Since every R-algebra of finite type is a quotient of a polynomial al-
gebra R[x1, . . . , xn], it follows from Remark 4.5 that it is enough to show that
R[x1, . . . , xn] is Noetherian. This follows from the theorem by induction on n. �

Example 4.17. Since a field is clearly Noetherian, it follows from Corollary 4.16
that every k-algebra of finite type is Noetherian.

Example 4.18. If R is a PID (for example, R = Z), then every ideal in R is
principal, hence finitely generated. Therefore R is Noetherian and it follows from
Corollary 4.16 that every R-algebra of finite type is Noetherian.

4.3. The Artin-Rees theorem and Krull’s Intersection Theorem

We begin by discussing the Artin-Rees Theorem. This concerns the interplay
between multiplying with (powers of) a given ideal and intersection with a sub-
module.

Theorem 4.19 (Artin-Rees). Let A be a Noetherian ring, M a finitely gen-
erated A-module, and N ⊆ M a submodule. For every ideal I ⊆ A, there is a
nonnegative integer a such that

InM ∩N ⊆ In−aN for all n ≥ a.

The proof of the theorem makes use of the Rees construction, which is of inde-
pendent interest. The Rees algebra of the ring A with respect to an ideal I is the
A-algebra

R(I, A) =
⊕
n≥0

Intn ⊆
⊕
n≥0

Atn = A[t].

Note that R(I, A) is indeed an A-subalgebra of A[t] since Im · In = Im+n for every
m,n ≥ 0.

Remark 4.20. If A is a Noetherian ring, then R(I, A) is a finitely generated A-
algebra. Indeed, if I = (f1, . . . , fn), then R(I, A) = A[f1t, . . . , fnt]. In particular,
R(I, A) is a Noetherian ring by Corollary 4.16.

Suppose now that M is an A-module. We put

R(I,M) =
⊕
n≥0

(InM)tn,

which is naturally an R(I, A)-module, using the fact that Im · InM = Im+nM for
all m,n ≥ 0.

Remark 4.21. If M is generated over A by u1, . . . , ud, then R(I,M) is gener-
ated over R(I, A) by u1t, . . . , udt. In particular, it is a finitely generated R(I, A)-
module. Using also Remark 4.20, we thus see that if A is a Noetherian ring and M
is a finitely generated A-module, then R(I,M) is a Noetherian R(I, A)-module.
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Proof of Theorem 4.19. Consider the followingR(I, A)-submodule ofR(I,M):

T =
⊕
n≥0

(InM ∩N)tn ↪→ R(I,M).

Since R(I,M) is a Noetherian R(I, A)-module by Remark 4.21, it follows that T
is a finitely generated R(I,A)-module. We may choose a system of generators
u1t

i1 , . . . , uN t
iN . If we take a = max{i1, . . . , iN}, then we see that for every n ≥ a

and every u ∈ InM ∩N , we can write

utn =

N∑
j=1

(fjt
n−ij )ujt

ij for some fj ∈ In−ij ,

hence u ∈ In−aN . �

As a consequence, we obtain the following

Corollary 4.22 (Krull’s Intersection Theorem). If R is a Noetherian ring, M
is a finitely generated R-module, and I ⊆ R is an ideal, and if N =

⋂
n≥1 I

nM , then

N = IN . In particular, if in addition (R,m) is local and I ⊆ m, then
⋂
n≥1 I

nM =
0.

Proof. The second assertion follows from the first one and Nakayama’s lemma,
hence it is enough to prove the first assertion. Of course, we only need to prove
N ⊆ IN . By the Artin-Rees theorem, there is a nonnegative integer a such that
InM ∩ N ⊆ In−aN for all n ≥ a. Since N ⊆ Ia+1M by definition, we obtain
N ⊆ Ia+1M ∩N ⊆ IN . �





CHAPTER 5

Associated primes and primary decomposition

In the first section we prove a basic general result about prime ideals: the Prime
Avoidance lemma. In the second section we discuss associated primes and zero-
divisors. Finally, in the last section we discuss primary decomposition in Noetherian
rings.

5.1. The prime avoidance lemma

The following result, known as the Prime Avoidance lemma, is often useful.

Lemma 5.1. Let R be a commutative ring, r a positive integer, and p1, . . . , pr
ideals in R such that pi is prime for all i ≥ 3. If I is an ideal in R such that
I ⊆ p1 ∪ . . . ∪ pr, then I ⊆ pi for some i ≥ 1.

Proof. The assertion is trivial for r = 1. We prove it by induction on r ≥ 2.
If r = 2 and I 6⊆ p1 and I 6⊆ p2, then we may choose a ∈ I r p1 and b ∈ I r p2.
Note that since I ⊆ p1 ∪ p2, we have a ∈ p2 and b ∈ p1. Since a + b ∈ I, we have
a + b ∈ p1 or a + b ∈ p2. In the first case, we see that a = (a + b) − b ∈ p1, a
contradiction and in the second case, we see that b = (a+ b)−a ∈ p2, leading again
to a contradiction. This settles the case r = 2.

Suppose now that r ≥ 3 and that we know the assertion for r − 1 ideals. If
I 6⊆ pi for every i, it follows from the induction hypothesis that given any i, we
have I 6⊆

⋃
j 6=i pj . Let us choose

ai ∈ I r
⋃
j 6=i

pj .

By hypothesis, we must have ai ∈ pi for all i.
Since pr is a prime ideal and ai 6∈ pr for i 6= r, it follows that

∏
1≤j≤r−1 aj 6∈ pr.

Consider now the element

u = ar +
∏

1≤j≤r−1

aj ∈ I.

By assumption, we have u ∈ p1 ∪ . . . ∪ pr. If u ∈ pr, since ar ∈ pr, we deduce
that

∏
1≤j≤r−1 aj ∈ pr, a contradiction. On the other hand, if u ∈ pi for some

i ≤ r − 1, since
∏

1≤j≤r−1 aj ∈ pi, we conclude that ar ∈ pi, a contradiction. We
thus conclude that I ⊆ pi for some i, completing the proof of the induction step. �

5.2. Associated primes and zero-divisors

The associated primes provide a way to handle the zero-divisors in a ring or
with respect to a module.

19
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Definition 5.2. If R is a ring and M is an R-module, a zero-divisor on M is
an element a ∈ R such that au = 0 for some nonzero u ∈ M . If a does not satisfy
this condition, then it is a non-zero-divisor. By taking M = R, we have the notion
of zero-divisor and non-zero-divisor in R.

Since we often deal with rings that are not domains, it is important to find
a description of all zero-divisors in the ring. Even if one is only interested in the
ring itself, it turns out that it is more convenient to treat the more general case of
R-modules.

Definition 5.3. If M is an R-module, an associated prime of M is a prime
ideal p in R such that

p = AnnR(u) := {a ∈ R | au = 0} for some u ∈M,u 6= 0.

The set of associated primes of M is denoted Ass(M) (we write AssR(M) if the
ring is not understood from the context).

Example 5.4. If p is a prime ideal in R, then Ass(R/p) = {p}. Indeed, for
every u ∈ Rr p, we have AnnR(u) = p.

The following is the main result concerning associated primes. The assertion
in iii) is the reason why associated primes are important.

Theorem 5.5. If R is a Noetherian ring and M is a finitely generated R-
module, then the following hold:

i) The set Ass(M) is finite.
ii) If M 6= 0, then Ass(M) is non-empty.
iii) The set of zero-divisors of M is equal to⋃

p∈Ass(M)

p.

We begin with the following easy lemma:

Lemma 5.6. If M ′ is a submodule of M , then we have the following inclusions:

Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′) ∪Ass(M/M ′).

Proof. The first inclusion is obvious, hence we only prove the second one.
Suppose that p ∈ Ass(M), and let us write p = AnnR(u), for some nonzero u ∈M .
If u ∈M ′, then clearly p ∈ Ass(M ′). Otherwise, the image u of u in M ′′ is nonzero
and it is clear that p ⊆ AnnR(u). If this is an equality, then p ∈ Ass(M ′′), hence
let us assume that there is a ∈ AnnR(u) r p. In this case au ∈ M ′ r {0}, and the
fact that p is prime implies that the obvious inclusion AnnR(u) ⊆ AnnR(au) is an
equality. Therefore p ∈ Ass(M ′). �

Corollary 5.7. If M1, . . . ,Mr are R-modules, then

Ass(M1 ⊕ . . .⊕Mr) =

r⋃
i=1

Ass(Mi).

Proof. Arguing by induction on r, we see that it is enough to prove the
assertion for r = 2. In this case, we have an embedding of M1 and M2 in M1⊕M2,
such that the quotients are isomorphic to M2, respectively M1. The equality in the
corollary then follows from the lemma. �
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Proof of Theorem 5.5. We may assume that M is nonzero, as otherwise
all assertions are trivial. Consider the set P consisting of the ideals of R of the
form AnnR(u), for some u ∈ M r {0}. Since R is Noetherian, there is a maximal
element p ∈ P. We show that in this case p is a prime ideal, so that p ∈ Ass(M).

By assumption, we can write p = AnnR(u), for some u ∈Mr{0}. Since u 6= 0,
we have p 6= R. If b ∈ Rr p, then bu 6= 0 and we clearly have

AnnR(u) ⊆ AnnR(bu).

By the maximality of p, we conclude that this is an equality, hence for every a ∈ R
such that ab ∈ p, we have a ∈ p; we thus conclude that p is a prime ideal.

In particular, this proves ii). We thus know that if M is non-zero, then we can
find u ∈ M r {0} such that AnnR(u) = p1 is a prime ideal. If M1 = Ru, then the
map R → M that maps a to au gives an isomorphism R/p1 ' M1. Since p1 is a
prime ideal, it follows from Example 5.4 that Ass(R/p1) = {p1}, and the lemma
implies

Ass(M) ⊆ Ass(M/M1) ∪ {p1}.
Therefore in order to prove that Ass(M) is finite it is enough to show that Ass(M/M1)
is finite. If M/M1 6= 0, we can repeat this argument and find M1 ⊆ M2 such that
M2/M1 ' R/p2, for some prime ideal p2 in R. Since M is a Noetherian module, this
process must terminate, hence after finitely many steps we conclude that AssR(M)
is finite.

We now prove the assertion in iii). It is clear from definition that for every
p ∈ Ass(M), the ideal p is contained in the set of zero-divisors of M . On the other
hand, if a ∈ R is a zero-divisor, then a ∈ I, for some I ∈ P. If we choose a maximal
p in P that contains I, then we have seen that p ∈ AssR(M), hence a lies in the
union of the associated primes of M . This completes the proof of the theorem. �

We record in the next corollary a useful assertion that we obtained in the above
proof.

Corollary 5.8. If R is a Noetherian ring and M is a finitely generated R-
module, then there is a sequence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M

such that Mi/Mi−1 ' R/pi for 1 ≤ i ≤ r, where each pi is a prime ideal in R.

Remark 5.9. The results in Theorem 5.5 are often applied as follows: if an
ideal I in R contains no non-zero-divisors on M , then it is contained in the union
of the associated primes. Since there are finitely such prime ideals, the Prime
Avoidance lemma implies that I is contained in one of them. Therefore there is a
nonzero u ∈M such that I · u = 0.

Remark 5.10. Let M be a an R-module and I ⊆ AnnR(M) an ideal, where

AnnR(M) = {a ∈ R | au = 0 for all u ∈M}

is the annihilator of M (it is easy to see that this is an ideal of R). Note that M
can be viewed as an R/I-module. It is clear from definition that if p ∈ Ass(M),
then I ⊆ p. Moreover, we have

AssR/I(M) = {p/I | p ∈ AssR(M)}.
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Exercise 5.11. Show that if M is a module over a Noetherian ring R and S
is a multiplicative system in R, then

AssS−1R(S−1M) = {S−1p | p ∈ Ass(M), S ∩ p = ∅}.

Exercise 5.12. Show that if M ′ is a submodule of M , then

Supp(M) = Supp(M ′) ∪ Supp(M/M ′).

Definition 5.13. If M is an R-module, then the support of M is

Supp(M) =
{
p ∈ Spec(R) |Mp 6= 0

}
.

Proposition 5.14. If M is a finitely generated R-module, then

Supp(M) = V
(
AnnR(M)

)
.

In particular, the support of M is a closed subset of Spec(R).

Proof. The fact that every p ∈ Supp(M) contains AnnR(M) holds for every
R-module M : by assumption, there is a nonzero element u

s ∈ Mp. In this case we
have AnnR(M) ⊆ AnnR(u) ⊆ p.

For the reverse inclusion we need the fact that M is finitely generated: suppose
that AnnR(M) ⊆ p. Arguing by contradiction, suppose that Mp = 0. If u1, . . . , un
generate M , since ui

1 = 0 in Mp, we conclude that there is si 6∈ p such that
siui = 0. In this case s =

∏
i si 6∈ p and sui = 0 for all i, hence s ∈ AnnR(M).

This contradicts our assumption. �

Remark 5.15. Note that for every R-module M and every p ∈ Ass(M), we
have AnnR(M) ⊆ p (we have already mentioned this in Remark 5.10).

Proposition 5.16. If M is a nonzero finitely generated module over the Noe-
therian ring R, then every minimal prime p in Supp(M) is in Ass(M).

Proof. By assumption, the Rp-module Mp is nonzero, hence AssRp
(Mp) is

non-empty by Theorem 5.5. However, note that AnnR(M)p ⊆ AnnRp
(Mp) and our

assumption implies that the only prime ideal in Rp containing AnnR(M)p is pRp.
Therefore pRp ∈ AssRp

(Mp) and using Exercise 5.11 we see that p ∈ AssR(M). �

A prime in Ass(M) which is not minimal in Supp(M) is an embedded associated
prime of M .

Remark 5.17. If I ( R is a proper ideal in a Noetherian ring, since AssR(R/I)
is finite by Theorem 5.5, it follows from Proposition 5.16 that there are finitely
minimal primes containing I. Recall that we have also seen this, with a different
proof, in Exercise 4.14.

Remark 5.18. If I is an ideal in a ring R, then every prime ideal p containing I
contains a minimal prime ideal containing I. Note first that by replacing R by R/I,
we may assume that I = 0. We prove the assertion by considering the (nonempty)
family P of prime ideals of R contained in p and using Zorn’s lemma. It is enough
to show that given a set of elements (pi)i∈J of P, any two of them comparable via
inclusion, the intersection q =

⋂
i∈J pi is in P. If x, y ∈ R are such that x, y 6∈ q,

then there are i, j ∈ J such that x 6∈ pi and y 6∈ pj . We have either pi ⊆ pj or
pj ⊆ pi. Without any loss of generality we may assume we are in the former case,
so x, y 6∈ pi, hence xy 6∈ pi, and thus xy 6∈ q.
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Remark 5.19. Let I be a proper radical ideal in the Noetherian ring R. We
have seen in Exercise 2.35 that I is an intersection of prime ideals. Since there are
finitely many minimal primes p1, . . . , pr containing I and since we have seen in the
previous remark that every prime ideal containing I contains a minimal such prime
ideal, it follows that we can write

I = p1 ∩ . . . ∩ pr.

Note that every a ∈ Rr
⋃
i pi is a non-zero-divizor on R/I: indeed, if b ∈ R is such

that ab ∈ I, we have b ∈ pi for all i, hence b ∈ I. We thus conclude that in this
case R/I has no embedded associated primes.

5.3. Primary decomposition

In this section we discuss primary decomposition and its connection to associ-
ated primes. For simplicity, and since we will only need this case in what follows,
we stick to the case of ideals (as opposed to submodules of a module). Actually,
while associated primes will play an important role, primary decomposition will not
feature much in the later chapters.

Let R be a Noetherian ring. Recall that every proper radical ideal I in R can
be written as a finite intersection

I = p1 ∩ . . . ∩ pr,

where the pi are prime ideals. Our goal is to get a similar description for arbitrary
ideals in R.

Definition 5.20. A proper ideal q in R is primary if whenever a, b ∈ R are
such that ab ∈ q and a 6∈ q, we have b ∈ rad(q).

Remark 5.21. Of course, every prime ideal is a primary ideal. However, we
will see that there are a lot more primary ideals than prime ideals.

Remark 5.22. Note that if q is a primary ideal, then p := rad(q) is a prime
ideal (it is common to say that q is a p-primary ideal). First, since q 6= R, we have
p 6= R. Suppose now that a, b ∈ R are such that ab ∈ p and a 6∈ p. Let n ≥ 1 be
such that (ab)n ∈ q. Using repeatedly the fact that q is a primary ideal and a 6∈ p,
we conclude that bn ∈ q, hence b ∈ p.

Definition 5.23. A primary decomposition of a proper ideal I is an expression

I = q1 ∩ . . . ∩ qn,

where all qi are primary ideals.

Remark 5.24. It follows from definition that if I ⊆ q are ideals in R, then q/I
is a primary ideal in R/I if and only if q is a primary ideal in R.

Proposition 5.25. If q is an ideal in R, then q is a primary ideal if and only if
AssR(R/q) has only one element. Moreover, in this case the only associated prime
of R/q is rad(q).

Proof. Suppose first that q is p-primary. Note that p is a minimal prime
ideal containing q (in fact, it is the unique such prime ideal), hence p ∈ Ass(R/q)
by Proposition 5.16. On the other hand, since q is p-primary, it follows that every
zero-divisor of R/q lies in p. Since the set of zero-divisors of R/q is the union of
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the associated primes of R/q by Theorem 5.5, and each of these associated primes
contains AnnR(R/q) = q, we conclude that p is the only element of AssR(R/q).

Conversely, suppose that AssR(R/q) has only one element p. In this case, it
follows from Proposition 5.16 that p is the unique minimal prime containing q, hence
p = rad(q). Moreover, it follows from Theorem 5.5 that the set of non-zero-divisors
of R/q is equal to p, which implies, by definition, that q is a primary ideal. �

Example 5.26. If q is an ideal such that p := rad(q) is a maximal ideal, then
q is a primary ideal. Indeed, in this case the only prime ideal containing q is m.
In particular, AssR(R/I) has only one associated prime and the assertion follows
from Proposition 5.25.

Theorem 5.27 (Lasker-Noether). Every proper ideal I in R has a primary
decomposition.

Proof. After replacing R by R/I, we may assume that I = 0 (see Re-
mark 5.24). We claim that for every p ∈ Ass(R), there is a primary ideal q in
R (in fact, a p-primary ideal) such that p 6∈ Ass(q). Indeed, consider the ideals
J in R such that p 6∈ Ass(J) (the set is non-empty since it contains 0) and since
R is Noetherian, we may choose an ideal q which is maximal with this property.
Note that since p ∈ Ass(R), we have q 6= R, hence Ass(R/q) is non-empty. By
Proposition 5.25, in order to show that q is a p-primary ideal, it is enough to show
that for every prime ideal p′ 6= p, we have p′ 6∈ Ass(R/q). If p′ ∈ Ass(R/q), then we
obtain an ideal q′ ⊇ q such that q′/q ' R/p′. We assumed p′ 6= p, while Lemma 5.6
implies

Ass(q′) ⊆ Ass(q) ∪Ass(q′/q) = Ass(q) ∪ {p′},
hence p 6∈ Ass(q′), contradicting the maximality of q.

We thus conclude that if p1, . . . , pr are the associated primes of R, we can find
primary ideals q1, . . . , qr such that pi 6∈ Ass(qi) for all i. If a = q1 ∩ . . . ∩ qr, then
Ass(a) ⊆ Ass(R) and at the same time Ass(a) ⊆ Ass(qi) for all i, hence pi 6∈ Ass(a).
This implies that a has no associated primes, hence a = 0. �

Remark 5.28. Note that if q1, . . . , qn are p-primary ideals, then q1 ∩ . . . ∩
qn is a p-primary ideal. It is thus straightforward to see that given any ideal I
and any primary decomposition I = q1 ∩ . . . ∩ qr, we can obtain a minimal such
decomposition, in the sense that the following conditions are satisfied:

i) We have rad(qi) 6= rad(qj) for all i and j, and
ii) For every i, with 1 ≤ i ≤ r, we have

⋂
j 6=i qj 6= I.

Given such a minimal primary decomposition, if pi = rad(qi), then p1, . . . , pr
are the distinct associated primes of R/I. Indeed, the injective morphism

R/I ↪→
r⊕
i=1

R/qi,

together with Corollary 5.7 and Proposition 5.25 give that Ass(R/I) ⊆ {p1, . . . , pr}.
On the other hand, for every i, there is u ∈

⋂
j 6=i qj such that u 6∈ qi. Moreover,

after multiplying u by a suitable element in pmi , for some non-negative integer m,
we may assume that u · pi ⊆ qi. In this case, pi is the annihilator of the image of u
in R/I, hence pi ∈ Ass(R/I).
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Remark 5.29. In general, the primary ideals in a minimal primary decompo-
sition of I are not unique. However, if p is a minimal prime containing I, then the
corresponding p-primary ideal q in a minimal primary decomposition of I is unique.
Indeed, it is easy to check that I ·Rp = q ·Rp and deduce, using that q is p-primary,
that q = ϕ−1(I ·Rp), where ϕ : R→ Rp is the canonical homomorphism.

Exercise 5.30. Show that if n ∈ Z is a nonzero integer and n = ±pk11 · · · pkrr
is the prime factorization, then

(n) = (p1)k1 ∩ . . . ∩ (pr)
kr

is the unique primary decomposition of (n).

Exercise 5.31. Let k be a field and consider the ideal (x2, xy) ⊂ k[x, y].

i) Give two distinct minimal primary decompositions of I.
ii) Show that k[x, y]/(x2, xy) has one minimal prime and one embedded as-

sociated prime.

Exercise 5.32. Let k be a field and let R = k[x, y, z]/(xy − z2). Show that
the ideal p = (x, z) ⊂ R is prime, rad(p2) = p, but p2 is not a primary ideal.

Exercise 5.33. Let R be a ring, S a multiplicative system in R, and ϕ : R→
S−1R the canonical homomorphism.

i) Show that if q is a p-primary ideal in R and S ∩ q 6= ∅, then qS−1R is a
pS−1R-primary ideal in S−1R. Moreover, we have q = ϕ−1(qS−1R).

ii) Conversely, show that if a is a b-primary ideal in S−1R, then ϕ−1(a) is a
ϕ−1(b)-primary ideal in R, with S ∩ ϕ−1(a) = ∅.

iii) Show that if I is a proper ideal in R with a primary decomposition I =
q1 ∩ . . . ∩ qr, then IS−1R is a proper ideal in S−1R if and only if there is
i, with 1 ≤ i ≤ r, such that S ∩ qi = ∅. In this case

IS−1R =
⋂

i,qi∩S=∅

qiS
−1R

is a primary decomposition of IS−1R.

Exercise 5.34. Let p be a prime ideal in a Noetherian ring R and let ϕ : R→
Rp be the canonical homomorphism.

i) Show that for every positive integer n, the ideal p(n) := ϕ−1(pnRp) is
p-primary (it is called the nth symbolic power of p).

ii) Show that we always have pn ⊆ p(n) and give an example where this
inclusion is strict.

Exercise 5.35. Let A be a reduced Noetherian ring and B the total ring of
fractions of A (that is, B = S−1A, where S is the set of all non-zero-divisors in A).
Show that B is a direct product of fields.

Exercise 5.36. Let I and J be ideals in the Noetherian ring A. Show that if
Ip ⊆ Jp for every p ∈ AssA(A/J), then I ⊆ J .

Exercise 5.37. Let f : R → S be a homomorphism of Noetherian rings and
let M be a finitely generated S-module. Show that if ϕ = Spec(f) : Spec(S) →
Spec(R), then

ϕ
(
AssS(M)

)
= AssR(M).
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Note that this implies that AssR(M) is finite, in spite of the fact that M might not
be finitely generated over R.



CHAPTER 6

Noether normalization, Nullstellensatz, and the
maximal spectrum

Our goal in this chapter is to give an introduction to affine algebraic geometry,
explaining the correspondence between algebraic subsets of the affine space and rad-
ical ideals in the polynomial ring over an algebraically closed field. This is based on
Hilbert’s Nullstellensatz, which in turn is a consequence of Noether normalization.
In the last section we discuss briefly the situation over general fields.

6.1. Noether normalization

The following result allows, in certain instances, reducing the study of arbitrary
domains of finite type over a field k to that of polynomial rings. We will make use
of it in this chapter to prove Hilbert’s Nullstellensatz, but we will see later in the
course that it has other useful applications.

Theorem 6.1 (Noether normalization). Let k be a field and A a finitely gen-
erated k-algebra which is a domain, with fraction field K. If trdeg(K/k) = n, then
there is a k-subalgebra B of A, such that

1) B is isomorphic as a k-algebra to the polynomial algebra k[x1, . . . , xn],
and

2) The inclusion B ↪→ A is finite.

We first give the following

Lemma 6.2. If A ↪→ B is an injective, finite homomorphism between two do-
mains, and K = Frac(A) and L = Frac(B), then the induced field extension K ↪→ L
is finite.

Proof. Let S = Ar {0} and consider the induced injective homomorphisms

K = S−1A
i
↪→ S−1B ↪→ L.

If B is generated as an A-module by b1, . . . , bm, then S−1B is generated over S−1A
by b1

1 , . . . ,
br
1 . In particular, i is a finite homomorphism. Since K is a field and

S−1B is a domain, it follows from Proposition 3.10 that S−1B is a field as well.
Therefore we have S−1B = L (this follows, for example, from the universal property
of Frac(B)). In particular, we see that [L : K] <∞. �

Proof of Theorem 6.1. We give the proof following [Mum99, p. 2]. Let
y1, . . . , ym ∈ A be generators of A as a k-algebra. In particular, we have K =
k(y1, . . . , ym), hence m ≥ n. We argue by induction on m. Note that if m = n,
then y1, . . . , ym are algebraically independent over k and we are done. Suppose now
that m > n and note that it is enough to show that we can find a k-subalgebra

27
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A′ ⊆ A that is generated over k by m− 1 elements and such that A is a finite A′-
algebra. Indeed, in this case it follows by the induction hypothesis that there is a k-
subalgebra B ⊆ A′ that is isomorphic to k[x1, . . . , xn] (note that K ′ = Frac(A′) and
K au the same transcendence degree over k since the extension K/K ′ is algebraic
by Lemma 6.2). Moreover, A is a finite B-algebra by Proposition 3.6, hence we are
done.

Since m > n, it follows that y1, . . . , ym are algebraically dependent over k.
Therefore there is a nonzero polynomial f ∈ k[x1, . . . , xm] such that f(y1, . . . , ym) =
0. For positive integers r2, . . . , rm, we define z2, . . . , zm by

z2 = y2 − yr21 , z3 = y3 − yr31 , . . . , zm = ym − yrm1 .

It is then clear that A = k[y1, z2, . . . , zm]. If we show that we can choose r2, . . . , rm
such that y1 is integral over B = k[z2, . . . , zm], then A is a finite B-algebra (see
Remark 3.4) and we are done.

Let us write f =
∑
α∈Λ cαx

α for a finite set Λ ⊆ Zm≥0, where all cα are nonzero

and where for α = (α1, . . . , αm) we write xα for xα1
1 · · ·xαm

m . We know that

f(y1, z2 + yr21 , . . . , zm + yrm1 ) = 0.

Note that for every α = (α1, . . . , αm) ∈ Λ, in the expansion of

cαy
α1
1 (z2 + yr21 )α2 · · · (zm + yrmm )αm

the unique monomial of top degree with respect to y1 is

(6.1) yα1+α2r2+...+αmrm
1 .

The point is that if we choose r2, . . . , rm such that 0 � r2 � r3 � . . . � rm,
then all the exponents in (6.1), when α runs over the elements of Λ, are distinct.
More precisely, we construct r2, . . . , rm inductively such that if 1 ≤ k ≤ m and
α, β ∈ Λ are such that (α1, . . . , αk) 6= (β1, . . . , βk), then α1 + α2r2 + . . . + αkrk 6=
β1 + β2r2 + . . . + βkrk. Indeed, there is nothing to do for k = 1. If k ≥ 2 and
r1, . . . , rk−1 have been constructed, we only need to choose rk such that for α, β as
above, we have

(αk − βk)rk 6= (β1 − α1) + . . .+ (αk−1 − βk−1)rk−1.

If αk−βk = 0, then this is satisfied by the inductive hypothesis, while if αk−βk 6= 0,
then this is clearly achieved for rk � 0 (we only need to avoid finitely many values).
This completes the proof of the theorem. �

Exercise 6.3. Let f : R→ S be an injective homomorphism of finite type and
consider the corresponding continuous map ϕ : Spec(S) → Spec(R). Show that if
R and S are domains, then the following hold:

i) There is a nonzero f ∈ R such that the inclusion Rf ↪→ Sf factors as

Rf
i
↪→ Rf [x1, . . . , xn]

j
↪→ Sf ,

where x1, . . . , xn are algebraically independent over Frac(R) and j is finite.
ii) Deduce that there is a nonempty open subset U of Spec(R) that’s con-

tained in Im(ϕ); in particular, Im(ϕ) is dense in Spec(R).



6.3. INTRODUCTION TO CLASSICAL AFFINE ALGEBRAIC GEOMETRY 29

6.2. Hilbert’s Nullstellensatz

In this section we deduce some easy consequences of Noether normalization.

Corollary 6.4. If k is a field, A is a finitely generated k-algebra, and K =
A/m, where m is a maximal ideal in A, then K is a finite extension of k.

Proof. Note that K is a field which is finitely generated as a k-algebra. It
follows from Theorem 6.1 that if n = trdeg(K/k), then there is a finite injective
homomorphism

k[x1, . . . , xn] ↪→ K.

Since K is a field, it follows from Proposition 3.10 that k[x1, . . . , xn] is a field, hence
n = 0. Therefore K/k is finite. �

Corollary 6.5. If k is a field and f : A → B is a homomorphism of finitely
generated k-algebras, then for every maximal ideal m in B, the ideal f−1(m) ⊆ A
is maximal.

Proof. If p = f−1(m), then we have an injective k-algebra homomorphism
i : A/p ↪→ K = B/m. By assumption, K is a field, and Corollary 6.4 implies that
K/k is a finite extension. In particular, i is an integral homomorphism, hence
Proposition 3.10 implies that A/p is a field, hence p is a maximal ideal. �

Remark 6.6. It follows from Corollary 6.5 that if f : A → B is a homomor-
phism of finitely generated k-algebras, then Spec(f) induces a (continuous) map
Max(B)→ Max(A). Our goal in the remaining part of this chapter is to show that
for finitely generated algebras over a field, the maximal spectrum recovers, in fact,
all the topological information contained in the prime spectrum. We will do this
first when the field k is algebraically closed, by making use of the following result.

Corollary 6.7 (Hilbert’s Nullstellensatz, weak version). If k is an algebraically
closed field, then every maximal ideal m in R = k[x1, . . . , xn] is of the form
(x1 − a1, . . . , xn − an), for some a1, . . . , an ∈ k.

Proof. It follows from Corollary 6.4 that if K = R/m, then the field extension
K/k is finite. Since k is algebraically closed, the canonical homomorphism k → K
is an isomorphism. In particular, for every i there is ai ∈ R such that xi − ai ∈ m.
Therefore we have (x1 − a1, . . . , xn − an) ⊆ m and since both ideals are maximal,
they must be equal. �

We will prove a stronger version of Nullstellensatz in the next section, after
discussing the correspondence between ideals in k[x1, . . . , xn] and subsets of kn.

6.3. Introduction to classical affine algebraic geometry

Let Rn = k[x1, . . . , xn], where k is an algebraically closed field and n is a
positive integer. Recall that Spec(Rn) contains as a subspace the maximal spectrum
Max(Rn), consisting of the maximal ideals in Rn, with the induced topology. Note
that by Corollary 6.7 we have a canonical bijection between Max(Rn) and the set
kn (also written as An

k and called the n-dimensional affine space over k), that
maps the maximal ideal (x1 − a1, . . . , xn − an) to the point (a1, . . . , an). We get a
topology on An

k (the Zariski topology) that makes this bijection a homeomorphism.
The closed subsets of An

k are also called algebraic subsets.
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By definition, a closed subset of Max(Rn) is of the form V (I) ∩Max(Rn), for
some ideal I ⊆ Rn. We will denote the corresponding algebraic subset of An

k by
Z(I) (though this is sometimes denoted by V (I) as well). Note that for every
a = (a1, . . . , , an) ∈ kn, the kernel of the evaluation homomorphism

k[x1, . . . , xn]→ k, f → f(a)

is the maximal ideal (x1 − a1, . . . , xn − an). We thus see that for an ideal I in Rn,
we have I ⊆ (x1 − a1, . . . , xn − an) if and only if f(a) = 0 for all f ∈ I. Since
V (I) ∩Max(Rn) consists of all maximal ideals containing I, it follows that

Z(I) =
{

(a1, . . . , an) ∈ An
k | f(a1, . . . , an) = 0 for all f ∈ I}.

Remark 6.8. Of course, in this context one is interested in studying the al-
gebraic subsets of the affine space and the Zariski topology on An

k provides a con-
venient framework for doing so. Moreover, this motivates the definition of the
topology on Spec(R) for an arbitrary ring R.

Recall that for any ring R, we have seen in Exercise 2.36 we have order reversing
inverse bijections between the closed subsets of Spec(R) and the radical ideals in
R. The same result holds for Max(Rn), though here the result is less formal: it
relies on a strong version of Nullstellensatz. As in Exercise 2.36, if V is a closed
subset of Max(Rn), we put I(V ) :=

⋂
m∈V m ⊆ Rn. Note that if Z ⊆ An

k is the
closed subset corresponding to V , then I(V ) (which we also write as I(Z)) is given
by

I(V ) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ Z}.

In the next proposition we collect some easy properties of the maps I(−) and
Z(−).

Proposition 6.9. Let a, b be ideals in Rn and A, B be closed subsets of An
k .

i) If a ⊆ b, then Z(b) ⊆ Z(a).
ii) If A ⊆ B, then I(B) ⊆ I(A).
iii) We have Z

(
I(A)

)
= A.

iv) We have rad(a) ⊆ I
(
Z(a)

)
.

Proof. The assertions in i) and ii) are straightforward to check. Furthermore,
it follows directly from the definitions that we have the inclusions A ⊆ Z

(
I(A)

)
and

a ⊆ I
(
Z(a)

)
. For every Z ⊆ An

k , the ideal I(Z) is radical (being an intersection of

maximal ideals), hence rad(a) ⊆ I
(
Z(a)

)
.

In order to complete the proof of the proposition, we are left with proving the
inclusion Z

(
I(A)

)
⊆ A in iii). Since A is closed, we can write A = Z(J) for some

ideal J in Rn. In this case, the inclusion J ⊆ I
(
Z(J)

)
implies by i) that we have

A = Z(J) ⊇ Z
(
I(Z(J))

)
= Z

(
I(A)

)
.

This completes the proof of the proposition. �

We next show that, in fact, we have equality in iv) above:

Theorem 6.10 (Hilbert’s Nullstellensatz, strong version). If a is an ideal in
Rn, then I

(
Z(a)

)
= rad(a).
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Proof. It follows from Corollary 6.7 that given any ideal b of Rn, different
from Rn, the zero-locus Z(b) of b is nonempty. Indeed, since b 6= Rn, there is a
maximal ideal m containing b. By Corollary 6.7, we have

m = (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k.

In particular, we see that a = (a1, . . . , an) ∈ Z(m) ⊆ Z(b). We will use this fact in
the polynomial ring Rn+1 = k[x1, . . . , xn, y]; this is Rabinovich’s trick.

We only need to prove the inclusion I
(
Z(a)

)
⊆ rad(a). Suppose that f ∈

I
(
Z(a)

)
. Consider now the ideal b in Rn+1 generated by a and by 1 − fy. If

b 6= Rn+1, we have seen that there is (a1, . . . , an, b) ∈ Z(b). By definition of b,
this means that g(a1, . . . , an) = 0 for all g ∈ a (that is, (a1, . . . , an) ∈ Z(a)) and
1 = f(a1, . . . , an)g(b). In particular, we have f(a1, . . . , an) 6= 0, contradicting the
fact that f ∈ I

(
Z(a)

)
.

We thus conclude that b = R. Therefore we can find f1, . . . , fr ∈ a and
g1, . . . , gr+1 ∈ Rn+1 = Rn[y] such that

(6.2)

r∑
i=1

fi(x)gi(x, y) +
(
1− f(x)y

)
gr+1(x, y) = 1.

We now consider the Rn-algebra homomorphism ϕ : Rn[y]→ (Rn)f given by ϕ(y) =
1
f . The relation (6.2) gives

r∑
i=1

fi(x)gi
(
x, 1/f(x)

)
= 1

and after clearing the denominators (recall that Rn is a domain), we see that there is
a positive integer N such that fN ∈ (f1, . . . , fr), hence f ∈ rad(a). This completes
the proof of the theorem. �

Corollary 6.11. If R is a k-algebra of finite type, where k is an algebraically
closed field, then for every closed subset Z of Spec(R), Z ∩Max(R) is dense in Z.

Proof. Let’s consider a surjective k-algebra homomorphism

p : S = k[x1, . . . , xn]→ R.

In this case, Spec(p) gives a homeomorphism of Spec(R) onto a closed subset of
Spec(S). Without any loss of generality, we may thus assume thatR = k[x1, . . . , xn].
Let I ⊆ R be an ideal such that Z = V (I) and suppose that U ⊆ V (I) is nonempty.
By Remark 2.8, we may assume that U = Z ∩D(a), for some a ∈ R. The fact that
U is nonempty is equivalent to V (I) 6⊆ V (a), which by Exercise 2.36 is equivalent
to a 6∈ rad(I). In this case, it follows from Theorem 6.10 that there is m ∈ Max(R)
with m ⊇ I and such that a 6∈ m. Therefore Z ∩D(a) ∩Max(R) is nonempty. �

We end this chapter by briefly describing the category of affine algebraic vari-
eties over k.

Definition 6.12. An affine algebraic variety (over k) is an algebraic subset X
of some affine space An

k , for some n ≥ 0. Given such X, the coordinate ring of X
is the quotient O(X) := k[x1, . . . , xn]/I(X). Note that this is a reduced k-algebra
of finite type and every such k-algebra is isomorphic to the coordinate ring of an
algebraic variety.
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Remark 6.13. Note that we have a canonical homomorphism

O(X)→ {f : X → k}
that maps the class g of g ∈ k[x1, . . . , xn] to the map a → g(a) (note that this is
indeed well-defined and the resulting homomorphism is injective by definition of
I(X)). The image of O(X) are the regular functions on X.

Definition 6.14. Let X ⊆ Am
k and Y ⊆ An

k . A morphism of affine algebraic

varieties f : X → Y is a map such that the composition X
f−→ Y ↪→ An

k is given
by (f1, . . . , fn), where each fi : X → k is a regular function on X.

Exercise 6.15. Show that if f : X → Y and g : Y → Z are morphisms of affine
algebraic varieties, then their composition g ◦ f is a morphism of affine algebraic
varieties. We thus see that we have the category of affine algebraic varieties over
k.

Remark 6.16. Let X and Y be as in Definition 6.14. Given f1, . . . , fn ∈
k[x1, . . . , xm], we have a unique morphism of k-algebras

ϕ : k[x1, . . . , xn]→ k[x1, . . . , xm], ϕ(xi) = fi for 1 ≤ i ≤ n.
Note that the map f = (f1, . . . , fn) : X → An

k is uniquely determined by the classes
of f1, . . . , fn in O(X). Moreover, the image of f is contained in Y (so it corresponds
to a morphism X → Y ) if and only if for every g ∈ I(Y ), we have ϕ(g) ∈ I(X). This
is the case if and only if ϕ induces a k-algebra homomorphism O(Y )→ O(X). We
thus have a canonical bijection between the morphisms of affine algebraic varieties
X → Y and Homk−alg

(
O(Y ),O(X)

)
. It is easy to check that this identification

is compatible with composition. Since every reduced k-algebra of finite type is
isomorphic to O(X) for some affine algebraic variety X over k, a general result
of category theory implies that the functor that maps every affine variety X to
the k-algebra O(X) and every morphism X → Y to the corresponding k-algebra
homomorphism O(Y ) → O(X), gives an equivalence of categories between the
category of affine algebraic varieties over k and the dual of the category of reduced
finitely generated k-algebras.

Example 6.17. The projection p : An
k → An−1

k given by p(a1, . . . , an) =
(a1, . . . , an−1) is a morphism of affine algebraic varieties. The corresponding k-
algebra homomorphism is the inclusion k[x1, . . . , xn−1] ↪→ k[x1, . . . , xn].

Example 6.18. The map f : A2
k → A2

k given by f(a1, a2) = (a1, a1a2) is a
morphism of affine algebraic varieties. The corresponding k-algebra homomorphism
ϕ : k[x1, x2]→ k[x1, x2] is given by ϕ(x1) = x1 and ϕ(x2) = x1x2.Note that image
of f consists of

((
A1 r {0}

)
×A1

)
∪
{

(0, 0)
}

.

Definition 6.19. A map f : X → Y between affine algebraic varieties over k is
an isomorphism if it is bijective and both f and f−1 are morphisms. It follows easily
from the above remark that a morphism f : X → Y is an isomorphism if and only
if the corresponding k-algebra homomorphism O(Y )→ O(X) is an isomorphism.

Example 6.20. Let X = Z(x2
1 − x3

2) ⊆ A2
k and consider the map f : A1 → X

given by f(a) = (a3, a2). This is a morphism of affine algebraic varieties corre-
sponding the the k-algebra homomorphism ϕ : k[x1, x2]/(x2

1 − x3
2)→ k[y] given by

ϕ(x1) = y3 and ϕ(x2) = y2. Note that f is a bijective morphism, but it is not an
isomorphism.
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Example 6.21. Suppose now that char(k) = p > 0 and consider the map
f : An

k → An
k given by f(a1, . . . , an) = (ap1, . . . , a

p
n). This is a morphism that is

bijective, but it is not an isomorphism.

Exercise 6.22. Show that if X ⊆ Am
k and Y ⊆ An

k are two affine algebraic
varieties and f : X → Y is a morphism, then f is continuous.

Exercise 6.23. i) Show that if X and Y are topological spaces, with X

irreducible, and f : X → Y is a continuous map, then f(X) is irreducible.
ii) Show that the subset

Mr
m,n(k) = {A ∈Mm,n(k) | rank(A) ≤ r}

of Amn
k is closed and irreducible.

Exercise 6.24. Let n ≥ 2 be an integer.

i) Show that the set

Bn =

{
(a0, a1, . . . , an) ∈ An+1

k | rank

(
a0 a1 . . . an−1

a1 a2 . . . an

)
≤ 1

}
is a closed subset of An+1

k .
ii) Show that

Bn = {(sn, sn−1t, . . . , tn) | s, t ∈ k}.

Deduce that Bn is irreducible.

6.4. The case of arbitrary fields

Our goal is to prove the following version of Corollary 6.11 over arbitrary fields.

Proposition 6.25. If R is an algebra of finite type over a field, then for every
closed subset Z of Spec(R), Z ∩Max(R) is dense in Z.

The proof of Proposition 6.25 follows verbatim the proof of Corollary 6.11, once
we show the following

Theorem 6.26. If a is an ideal in a finitely generated algebra R over a field k,
then rad(a) =

⋂
m⊇a m, where m varies over the maximal ideals containing a.

Proof. Since we know that rad(a) =
⋂

p⊇a p, where p varies over the prime

ideals containing a (see Exercise 2.35), it follows that it is enough to prove the
assertion in the theorem when a is a prime ideal, hence from now on we make this
assumption. Of course, the inclusion a ⊆

⋂
m⊇a m is trivial, hence we only need to

prove the opposite inclusion.
Note that we can find an isomorphism R ' k[x1, . . . , xn]/I and the ideal a

corresponds to b/I, for some prime ideal b in k[x1, . . . , xn]. After replacing R by
k[x1, . . . , xn] and a by b, we see that we may assume that R = k[x1, . . . , xn].

Consider an algebraic closure k of k and consider the inclusion homomorphism

i : R = k[x1, . . . , xn] ↪→ R′ = k[x1, . . . , xn].

This is an integral homomorphism: every element of k is integral over k, hence
over R, and each xi is clearly integral over R; therefore the assertion follows from
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Proposition 3.7. We apply Theorem 3.12 for the prime ideal a ⊆ R: we get a prime
ideal a′ ⊆ R′ such that a′ ∩R = a. Applying Theorem 6.10, we obtain

a′ =
⋂

m′⊇a′
m′,

where the intersection is over the maximal ideals in m′ ⊆ R′ that contain a′. Note
that for every such ideal m′, the intersection m′ ∩ R is a maximal ideal in R by
Corollary 3.11. The conclusion of the proposition thus follows from the inclusion⋂

m⊇a

m ⊆ R ∩
⋂

m′⊇a′
m′ = R ∩ a′ = a.

�



CHAPTER 7

Dimension theory

Our goal in this chapter is to discuss the main results concerning the dimension
theory of Noetherian rings.

7.1. The dimension of a ring

The notion of (Krull) dimension makes sense for an arbitrary topological space,
as follows.

Definition 7.1. If X is a nonempty topological space, then the dimension
of X (also called Krull dimension), denoted dim(X), is the supremum over the
nonnegative integers n, with the property that there is a sequence

X0 ( X1 ( . . . ( Xn,

where X0, . . . , Xn are irreducible closed subsets of X (we will refer to this as a
chain of irreducible closed subsets of X). By convention, we put dim(X) = −1 if
X = ∅.

Definition 7.2. If R is a commutative ring, then the dimension of R, denoted
dim(R), is the dimension of Spec(R).

Remark 7.3. Note that by Exercise 4.11, the irreducible subsets of Spec(R)
are those of the form V (p), where p is a prime ideal of R. Moreover, it follows from
Exercise 2.36 that if p1 and p2 are prime ideals in R, we have V (p1) ⊆ V (p2) if and
only if p2 ⊆ p1. Therefore if R 6= 0, then the dimension of R is the supremum of
the nonnegative integers n, such that there is a sequence

p0 ( p1 ( . . . ( pn

of prime ideals in R (we will refer to this as a chain of prime ideals in R).

Example 7.4. It is clear that if k is a field, then dim(k) = 0. In general, for a
ring R we have dim(R) = 0 if and only if every prime ideal is maximal.

Example 7.5. Let k be a field. For every positive integer n, we have the
following sequence of prime ideals in k[x1, . . . , xn]:

(0) ( (x1) ( (x1, x2) ( . . . ( (x1, . . . , xn).

This implies that dim
(
k[x1, . . . , xn]

)
≥ n. We will see later that this is, in fact, an

equality.

Example 7.6. Since the prime ideals in Z are (0) and (p), where p is a prime
integer, it follows that dim(Z) = 1. The same argument shows that if R is a PID
and it is not a field, then dim(R) = 1.

35
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Example 7.7. For every ideal I in R, we have dim(R/I) ≤ dim(R). Similarly,
for every multiplicative system S in R, we have dim(S−1R) ≤ dim(R). The asser-
tions follow from the description of the prime ideals in R/I and S−1R in terms of
the prime ideals in R.

Definition 7.8. If M is a finitely generated module over a ring R, then the
dimension of M is

dim(M) := dim
(
Supp(M)

)
.

Remark 7.9. Note that by Proposition 5.14, we have

dim(M) = dim
(
R/AnnR(M)

)
.

Definition 7.10. If X is a topological space and Z is an irreducible closed
subset of X, then the codimension of Z, denoted codim(Z) or codimX(Z), is the
supremum of the nonnegative integers n, with the property that there is a sequence

Z = Z0 ( Z1 ( . . . ( Zn ⊆ X,
with each Zi a closed and irreducible subset of X. If X is a Noetherian topological
space and Z is any nonempty closed subset, then the codimension of Z is defined
by

codim(Z) = min
W⊆Z

codim(W ),

where W is a maximal irreducible closed subset of Z.

Definition 7.11. For every ring R, if p is a prime ideal in R, the codimension
codim(p) (sometimes also called height and denoted ht(p)) is the codimension of
the corresponding closed irreducible subset V (p) of Spec(R). Explicitly, this is the
supremum over the nonnegative integers n such that there is a sequence

p0 ( p1 ( . . . ( pn = p

of prime ideals in R.
If I is a proper ideal in R, the codimension codim(I) is the codimension of

V (I) in Spec(R). If (pi)i∈I are the minimal prime ideals containing I, then

codim(I) = min
i∈I

codim(pi).

In the next proposition we collect a few properties of Krull dimension and
codimension that follow directly from the definition.

Proposition 7.12. Let a and p be ideals in R, with p prime and a 6= R.

i) If (qi)i∈I are the minimal prime ideals inR, then dim(R) = supi dim(R/qi).
ii) If (pj)j∈J are the minimal primes of R contained in p, then codim(p) =

supj codim(p/pj).
iii) We have codim(p) = dim(Rp).
iv) We have dim(R) ≥ dim(R/a) + codim(a).

Proof. The assertions in i) and ii) follow from the definition and the fact that
every prime ideal contains a minimal prime ideal (see Remark 5.18). The equality in
iii) follows from the description of prime ideals in localizations (see Exercise 2.31).
Finally, in order to prove iv), note that if (pj)j∈J are the minimal prime ideals
containing I, then it follows from i) that

dim(R/I) = sup
j∈J

dim(R/pj).
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Note now that since we can concatenate a chain of prime ideals contained in pj
with a sequence of prime ideals containing pj , we have

dim(R) ≥ dim(R/pj) + codim(pj) for all j ∈ J.

By definition of codim(I), we thus have

codim(I) ≤ codim(pj) ≤ dim(R)− dim(R/pj) for all j ∈ J.

By taking the infimum over j ∈ J , we obtain the inequality in iv). �

As a consequence of our results on the behavior of prime ideals in integral ring
extensions, we obtain the following:

Theorem 7.13. If R ↪→ S is an injective integral homomorphism, then dim(R) =
dim(S).

Proof. We prove separately the two inequalities. Suppose first that we have
a chain of prime ideals

p0 ( p1 ( . . . ( pn

in R. First, it follows from Theorem 3.12 that there is a prime ideal q0 in S such
that q0 ∩ R = p0. Next, by successively applying Theorem ??, we obtain prime
ideals qi in S, for 1 ≤ i ≤ n, such that qi ∩ R = pi and qi−1 ⊆ qi for 1 ≤ i ≤ n.
Note that qi−1 6= qi since qi−1 ∩ R 6= qi ∩ R. We thus see that dim(S) ≥ n, hence
dim(S) ≥ dim(R).

In order to prove the reverse inequality, suppose that we have a chain of prime
ideals

q0 ( q1 ( . . . ( qm

in S. If pi = qi ∩R, then we have a sequence of prime ideals in R

p0 ⊆ p1 ⊆ . . . ⊆ pm.

Moreover, all inclusions are strict by Theorem 3.15. Therefore dim(R) ≥ m and we
obtain dim(R) ≥ dim(S). �

Exercise 7.14. Prove that for any rings R1, . . . , Rn, we have

dim(R1 × . . .×Rn) =
n

max
i=1

dim(Ri).

7.2. Modules of finite length

Before proving the main results in dimension theory, we discuss Artinian rings
and, more generally, modules of finite length. To begin with, let R be an arbitrary
(commutative) ring.

Definition 7.15. An R-module M is simple if M 6= 0 and for every submodule
M ′ of M , we have either M ′ = 0 or M ′ = M .

Remark 7.16. An R-module M is simple if and only if it is isomorphic to
R/m, for some maximal ideal m of R. Indeed, suppose that M is simple and let
u ∈ M r {0}. Since M is simple, it follows that Ru = M . If m = AnnR(u), then
M = Ru ' R/m and the fact that M is simple implies that m is a maximal ideal
in R. The converse is clear.
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Definition 7.17. An R-module M is of finite length if it has a composition
series, that is, a sequence of submodules

0 = M0 (M1 ( . . . (Mr = M

such that Mi/Mi−1 is a simple module for 1 ≤ i ≤ r. We denote by `(M) (or
`R(M) if the ring is not clear from the context) the smallest r such that we have
a composition series of length r, as above (we will see shortly that, in fact, all
composition series have the same length).

Definition 7.18. An R-module M is Artinian if it satisfies the Descending
Chain Condition (DCC, for short), that is, there is no infinite strictly decreasing
sequence

M1 )M2 ) . . .

of submodules of M . The ring R is Artinian if it is Artinian when viewed as an
R-module.

We begin with some easy properties regarding finite length modules.

Proposition 7.19. If M ′ is a submodule of the R-module M , then the module
M has finite length if and only if both M ′ and M/M ′ have finite length, Moreover,
if M ′ 6= M , then `(M ′) < `(M).

Proof. It is clear that if M ′ and M ′′ have finite length, then we obtain a
composition series for M by concatenating the composition series for M ′ and M ′′.
Suppose now that M has finite length and consider a composition series

0 = M0 (M1 ( . . . (Mn = M.

Note that for 1 ≤ i ≤ n, the quotient (Mi ∩M ′)/(Mi−1 ∩M ′) is isomorphic to
a submodule of Mi/Mi−1, hence it is either 0 or a simple module. It follows that
after removing the repeated terms in the sequence

0 = M0 ∩M ′ ⊆M1 ∩M ′ ⊆ . . . ⊆Mn ∩M ′ = M ′,

we obtain a composition series for M ′.
This implies `(M ′) ≤ `(M). Furthermore, we see that if we have equality, then

there are no terms to remove, that is

(Mi ∩M ′)/(Mi−1 ∩M ′) = Mi/Mi−1 for 1 ≤ i ≤ n.
This implies Mi ⊆ Mi−1 + M ′ for 1 ≤ i ≤ n, and we see by induction on i that
Mi ⊆M ′ for all i, hence M = M ′.

In order to show that M/M ′ has finite length, consider the image M i of Mi in
M/M ′. In this case M i/M i−1 is a quotient of Mi/Mi−1, hence it is either 0 or a
simple module. It follows that after removing the repeated terms in the sequence

0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M/M ′,

we obtain a composition series for M/M ′. �

Proposition 7.20. An R-module M has finite length if and only if it is both
Noetherian and Artinian.

Proof. Suppose first that M is both Noetherian and Artinian. Since M is
Noetherian, it follows from Proposition 4.2 that if M 6= 0, then the family P1

consisting of all proper submodules of M (this is nonempty, since it contains 0) has
a maximal element M1. It is then clear that M/M1 is simple. If M1 6= 0, then we
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apply again Proposition 4.2 to conclude that the family P2 consisting of all proper
submodules of M1 has a maximal element M2, so M1/M2 is simple. Repeating this
argument, we construct a sequence of submodules

M )M1 )M2 ) . . . ;

since M is Artinian, this sequence stabilizes, that is, then is n such that Mn = 0.
We thus obtain a composition series for M .

Suppose now that M has finite length. If there is a strictly increasing infinite
sequence of submodules

M1 (M2 ( . . . ⊆M,

ihen it follows from Proposition 7.19 that all Mn have finite length and

`(M1) < `(M2) < . . . ≤ `(M),

a contradiction, since all `(Mi) are integers.
Similarly, if there is a strictly decreasing infinite sequence of submodules

M ⊇M1 )M2 ) . . . ,

then all Mn have finite length and

`(M1) > `(M2) > . . . ,

a contradiction, since all `(Mn) are nonnegative integers. �

Proposition 7.21 (Jordan-Hölder). If M is an R-module of finite length, then
any two composition series of M have the same length, and moreover, the successive
quotients are pairwise isomorphic after relabeling.

Proof. We say that two composition series are equivalent if the successive
quotients are pairwise isomorphic, after relabeling. We argue by contradiction. Re-
call first that all submodules of M have finite length by Proposition 7.19. Assuming
that the conclusion fails for M , we replace M by a minimal element of the family
consisting of the submodules of M for which the conclusion fails (note that such
a minimal element exists since M is Artinian by Proposition 7.20). Therefore we
may and will assume that the theorem holds for all proper submodules of M .

Consider two composition series

M• : 0 = Mr (Mr−1 ( . . . (M0 = M and

N• : 0 = Ns ( Ns−1 ( . . . ( N0 = M

that are not equivalent. If M1 = N1, then the corresponding composition series
of this submodule are equivalent, and we get a contradiction. Suppose now that
M1 6= N1, in which case, using the fact that M/M1 is simple, we conclude that
M1 +N1 = M . Therefore we have

(7.1) M1/(M1 ∩N1) 'M/N1 and N1/(M1 ∩N1) 'M/M1.

After choosing any composition series for M1 ∩N1, we obtain the following compo-
sition series for M :

M ′• : 0 = Kt ( Kt−1 ( . . . ( K0 = M1 ∩N1 (M1 (M and

N ′• : 0 = Kt ( Kt−1 ( . . . ( K0 = M1 ∩N1 ( N1 (M.

Since M1 satisfies the proposition, it follows that M• and M ′• are equivalent, and
since N1 satisfies the theorem, it follows that N• and N ′• are equivalent. Since
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M ′• and N ′• are equivalent by (7.1), it follows that M• and N• are equivalent, a
contradiction. �

Corollary 7.22. If M ′ is a submodule of an R-module of finite length M ,
then

`(M) = `(M ′) + `(M ′′).

Proof. It follows from Proposition 7.19 that both M ′ and M ′′ have finite
length. Moreover, as pointed out in the proof of the same proposition, we obtain
a composition series of M by concatenating composition series for M ′ and M/M ′.
Since we now know that all composition series have the same length, we obtain the
equality in the statement. �

Proposition 7.23. If R is a Noetherian ring, then an R-module M has finite
length if and only if M is finitely generated and dim

(
R/AnnR(M)

)
= 0.

Remark 7.24. Note that if a Noetherian ring has dimension 0, then it has
finitely many prime ideals. Indeed, in this case every prime ideal is a minimal prime
and we know that there are only finitely many such prime ideals by Remark 5.17.

Proof of Proposition 7.23. Suppose first that M has a composition series

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

with Mi/Mi−1 ' R/mi for 1 ≤ i ≤ r, where each mi is a maximal ideal of R.
Since each Mi/Mi−1 is finitely generated, we conclude that M is finitely generated
(alternatively, we could use the fact that M is Noetherian by Proposition 7.20, and
thus finitely generated). Moreover, we have

∏r
i=1 mi ⊆ AnnR(M), hence if a prime

p contains AnnR(M), then it must contain some mi, hence p = mi. This implies
that dim

(
R/AnnR(M)

)
= 0.

Conversely, if M is finitely generated over R, then it follows from Corollary 5.8
that we have submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

such that Mi/Mi−1 ' A/pi for 1 ≤ i ≤ r, where each pi is a prime ideal in R. If we
have dim

(
R/AnnR(M)

)
= 0, then every prime ideal in R/AnnR(M) is a maximal

ideal. Since we clearly have AnnR(M) ⊆ pi for all i, we conclude that each quotient
Mi/Mi−1 is a simple module, hence M has finite length. �

Corollary 7.25. If R is a Noetherian ring, then R is Artinian if and only if
dim(R) = 0.

Proof. If dim(R) = 0, then it follows from Proposition 7.23 that R has finite
length as a module over itself, and thus it is Artinian by Proposition 7.20. Con-
versely, suppose that R is Artinian. Since we know that R is Noetherian, it follows
from Proposition 7.20 that R has finite length as a module over itself, in which case
dim(R) = 0 by Proposition 7.23. �

Remark 7.26. If (R,m) is a Noetherian local ring, then dim(R) = 0 if and
only if mN = 0 for some N . Indeed, suppose first that dim(R) = 0. In this case
it follows from Corollary 7.25 that R is Artinian. By considering the sequence of
ideals

. . . ⊇ mN ⊇ mN+1 ⊇ . . . ,
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we see that there is N such that mN = mN+1. In this case Nakayama’s Lemma
implies mN = 0.

Conversely, if we know that mN = 0, then for every prime ideal p in R, we have
mN ⊆ p, hence m ⊆ p, and thus p = m. Therefore R has a unique prime ideal and
it is clear that dim(R) = 0.

Note that if M is a finitely generated module, then by applying the above
assertion for R/AnnR(M) and using Proposition 7.23, we conclude that M has
finite length if and only if there is N such that mN ·M = 0.

Remark 7.27. It is in fact a result due to Akizuki that if R is Artinian, it is
also Noetherian. For a proof, see [Mat89, Theorem 3.2]. We do not discuss the
proof since we will not need this result.

Remark 7.28. We note that if R is a Noetherian ring, with dim(R) = 0, then
R is the product of finitely many local rings. Indeed, given a minimal primary
decomposition

(0) = q1 ∩ . . . ∩ qr,

by the Chinese Remainder theorem we have

R '
r∏
i=1

R/qi

(note that the ideals rad(qi) are mutually distinct maximal ideals, hence qi+qj = R
whenever i 6= j). Note that each R/qi is a local ring, with maximal ideal rad(qi)/qi.

Proposition 7.29. If R is an algebra of finite type over a field k and M is an
R-module, then M has finite length if and only if dimk(M) <∞. In particular, R
is Artinian if and only if dimk(R) <∞.

Proof. Note that since R is an algebra of finite type over a field, then it is
Noetherian (see Example 4.17), hence Proposition 7.20 implies that R is Artinian
if and only if it has finite length as an R-module. Therefore the second assertion
in the proposition follows from the first one.

Suppose first that M has finite length. Consider a composition series

0 = M0 (M1 ( . . . (Mr = M.

Note that for 1 ≤ i ≤ r, we have Mi/Mi−1 ' R/mi for a maximal ideal mi of R.
By Corollary 6.4, we have dimk(Mi/Mi−1) <∞. In this case we have

dimk(M) =

r∑
i=1

dimk(Mi/Mi−1) <∞.

Conversely, suppose that dimk(M) < ∞. This clearly implies that M has
finite length as a k-vector space, hence it is both Noetherian and Artinian as a k-
vector space by Proposition 7.20. Since every R-submodule of M is also a k-vector
subspace, it follows that M is both Noetherian and Artinian as an R-module, and
thus has finite length by Proposition 7.20. �

Exercise 7.30. Let R be a Noetherian ring with dim(R) = 0 and let f : R→ R
be an R-linear map. Show that if f is injective, then it is also surjective.
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Exercise 7.31. Prove that if R is a Noetherian ring with dim(R) = 0, and if
p1, . . . , pn are the prime ideals of R, then the canonical homomorphism

ϕ : R→ Rp1 × . . .×Rpn , ϕ(x) =
(
x
1 , . . . ,

x
1

)
is a ring isomorphism.

Exercise 7.32. Suppose now that R is a Noetherian ring, M is an R-module
of finite length, and p1, . . . , pn are the prime ideals in Supp(M).

i) Show that every module Mpi is of finite length (over R) and

`R(M) =

n∑
i=1

`(Mpi).

ii) Show that the canonical R-linear map

ϕ : M →
r⊕
i=1

Mpi

is injective.
iii) Deduce that ϕ is an isomorphism.

Exercise 7.33. Let k a field.

i) Show that if A is an Artinian algebra of finite type over k and k is alge-
braically closed, then `A(A) = dimk(A).

ii) Show that if R = k[x1, . . . , xn], m = (x1, . . . , xn), then for every d ≥ 1,

the R-module R/md has finite length and this is equal to
(
n+d−1
d−1

)
.

7.3. The Principal Ideal theorem

The starting point in dimension theory is the following result, known as Krull’s
Principal Ideal theorem.

Theorem 7.34. If R is a Noetherian ring and p is a minimal prime ideal
containing a principal ideal (x), then codim(p) ≤ 1.

Proof. After replacing R by Rp, we may assume that R is a local ring and p
is the maximal ideal. It is enough to show that for every prime ideal q ( p in R,
we have codim(q) = 0.

The ring R/(x) is Noetherian and by hypothesis, has only one prime ideal,
namely p/(x). It follows from Corollary 7.25 that R/(x) is Artinian. Note that if
we put q(n) := qnRq ∩R for n ≥ 1, then we have the non-increasing chain of ideals
in R/(x):(

q(1) + (x)
)
/(x) ⊇

(
q(2) + (x)

)
/(x) ⊇ . . . ⊇

(
q(n) + (x)

)
/(x) ⊇ . . . ,

which thus must stabilize. We deduce that we have n ≥ 1 such that q(n) + (x) =
q(n+1) + (x). This implies that for every u ∈ q(n), there are a ∈ R and v ∈ q(n+1)

such that u = v + ax. Since ax ∈ q(n) and x 6∈ q, we have a ∈ q(n) (recall that
q(n) is q-primary by Exercise 5.34). We thus conclude that q(n) = x · q(n) + q(n+1).
Since x lies in the unique maximal ideal in R, it follows from Nakayama’s lemma
(see Corollary 2.27) that q(n) = q(n+1). This implies that qnRq = qn+1Rq, and
using Nakayama’s lemma in Rq, we conclude that qnRq = 0. This implies that
codim(q) = dim(Rq) = 0 (see Remark 7.26) and thus completes the proof of the
theorem. �
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The above theorem is usually applied in the following more general form.

Corollary 7.35. If R is a Noetherian ring and p is a minimal prime ideal
containing (x1, . . . , xn), then codim(p) ≤ n.

Proof. We argue by induction on n. The assertion is trivial if n = 0 (in this
case p is a minimal prime, hence codim(p) = 0) and if n = 1, then it follows from
the theorem. Suppose now that n ≥ 2 and we know the assertion for n− 1.

Suppose that we have a sequence of prime ideals

pm ( . . . ( p1 ( p0 = p

in R. We need to prove that m ≤ n. Note first that we may assume that there is
no prime ideal q with p1 ( q ( p. Indeed, it is enough to replace p1 by a maximal
element of

{
q ∈ Spec(R) | p1 ⊆ q ( p

}
(note that such a maximal element exists

since R in Noetherian, see Proposition 4.2).
Since p is minimal over (x1, . . . , xn), it follows that there is i, with 1 ≤ i ≤ n,

such that xi 6∈ p1. After relabeling the xj , we may assume that i = 1. Since there
is no prime ideal strictly between p1 and p, it follows that p is a minimal prime
containing p1 + (x1). Suppose that the other minimal prime ideals containing
p1 + (x1) are q1, . . . , qs. Let f ∈ (q1 ∩ . . . ∩ qs) r p (since qi 6⊆ p, we can choose
fi ∈ qi r p for all i, and then take f =

∏s
i=1 fi). Note that we may replace R by

Rf : since f 6∈ p, then we have the sequence of prime ideals in Rf :

pmRf ( . . . ( p1Rf ( pRf

and pRf is clearly a minimal prime ideal containing
(
x1

1 , . . . ,
xn

1

)
. Therefore, after

possibly replacing R by Rf , we may and will assume that p is the unique minimal
prime ideal containing p1 + (x1), hence p is the radical of p1 + (x1). In this case,
for every j, with 2 ≤ j ≤ n, we can write

x
mj

j − yj ∈ (x1), where mj ∈ Z>0, yj ∈ p1.

Note that we have (y2, . . . , yn) ⊆ p1. In order to complete the proof, it is
enough to show that p1 is a minimal prime ideal containing (y2, . . . , yn): indeed,
the inductive hypothesis then gives m − 1 ≤ n − 1. Suppose that there is a prime
ideal q, with (y2, . . . , yn) ⊆ q ( p1. Note that in the quotient ring R/(y2, . . . , yn),
the ideal p = p/(y2, . . . , yn) is a minimal prime ideal containing (x1): this follows
from the fact that p is a minimal prime ideal containing (x1, . . . , xn) and the fact
that in this quotient ring we have xj ∈ rad(x1) for 2 ≤ j ≤ n. We thus deduce
from the theorem that codim(p) ≤ 1 and thus there is no prime ideal q, with
(y2, . . . , yr) ⊆ q ( p1. This completes the proof of the corollary. �

Corollary 7.36. If p is a prime ideal in a Noetherian ring R, then codim(p) <
∞.

Proof. If p = (a1, . . . , an), then it follows from Corollary 7.35 that codim(p) ≤
n. �

Remark 7.37. We note that it is not true that if R is a Noetherian ring, then
dim(R) <∞. A famous counterexample was given by Nagata.

We also have the following partial converse to Corollary 7.35:

Proposition 7.38. If p is a prime ideal in a Noetherian ring R and codim(p) =
n, then there are x1, . . . , xn ∈ p such that p is a minimal prime containing (x1, . . . , xn).
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Proof. We construct inductively x1, . . . , xn ∈ p such that for every r, with
1 ≤ r ≤ n, every ideal containing x1, . . . , xr has codimension ≥ r. This satisfies the
conclusion of the corollary: if (x1, . . . , xn) ⊆ q ( p, with q prime, then codim(q) ≥
n, hence codim(p) ≥ n+ 1, a contradiction.

Let’s begin by constructing x1, assuming n ≥ 1. Note that if p1, . . . , pd are
the minimal primes of R, then p 6⊆ (p1 ∪ . . . ∪ pd): otherwise the Prime Avoidance
lemma implies p ⊆ pi for some i, which implies p = pi has codimension 0. We may
thus choose x1 ∈ pr (p1 ∪ . . . ∪ pd). By construction, every prime ideal containing
x1 has codimension ≥ 1.

Suppose now that x1, . . . , xr ∈ p have been constructed such that every prime
ideal containing x1, . . . , xr has codimension ≥ r. If r = n, then we are done. On
the other hand, if r < n, then p is not a minimal prime containing (x1, . . . , xr):
by construction and Corollary 7.35, those have codimension r. Arguing as before,
we may choose xr+1 ∈ pr (q1 ∪ . . . ∪ qs), where q1, . . . , qs are the minimal primes
containing (x1, . . . , xr). If q is a prime ideal containing (x1, . . . , xr+1), then there
is j such that qj ( q, hence

codim(q) ≥ codim(qj) + 1 ≥ r + 1.

This completes the proof of the inductive step. �

The following result will allow us to give the first nontrivial examples of dimen-
sion computation:

Theorem 7.39. If R is a Noetherian ring, then dim
(
R[x]

)
= dim(R) + 1.

Proof. Note first that if I is any ideal in R, we get an ideal I[x] in R[x]
consisting of all polynomials with coefficients in I. It is clear that we have an
isomorphism R[x]/I[x] ' (R/I)[x]. Since a polynomial ring over a domain is again
a domain, it follows that if p is a prime ideal in R, then p[x] is a prime ideal in
R[x]. Moreover, we note that I[x] is never a maximal ideal, since x is not invertible
in (R/I)[x] when I 6= R.

Given a chain of prime ideals in R

p0 ( p1 ( . . . ( pn,

we obtain a chain of prime ideals in R[x]

p0[x] ( p1[x] ( . . . ( pn[x].

Since pn[x] is not a maximal ideal, it follows that dim
(
R[x]

)
≥ n + 1. Since this

holds for every chain of prime ideals in R, we have dim
(
R[x]

)
≥ dim(R) + 1.

In order to prove the opposite inequality, it is enough to show that for every
prime ideal q in R[x], if p = q ∩R, then

(7.2) codim(q) ≤ codim(p) + 1.

Note that we have p[x] ⊆ q. In order to prove (7.2), we may replace R by Rp and
R[x] by Rp[x] ' R[x]p, so we may assume that p is a maximal ideal. Therefore
R[x]/p[x] ' k[x], where k = R/p is a field. Therefore q/p[x] is a principal ideal,
hence there is f ∈ q such that q = p[x] + (f). Note now that by Proposition 7.38,
if codim(p) = r, then there are x1, . . . , xr ∈ p such that p is a minimal prime ideal
containing (x1, . . . , xr). In this case q is a minimal ideal containing (x1, . . . , xr, f):
indeed, if (x1, . . . , xr, f) ⊆ q′ ( q, with q′ a prime ideal, then (x1, . . . , xr) ⊆ q′∩R ⊆
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p, hence q′∩R = p; we thus have q = p[x]+(f) ⊆ q′, hence q′ = q. We conclude that
codim(q) ≤ r + 1 by Corollary 7.35. This completes the proof of the theorem. �

Example 7.40. It follows from the theorem, by induction on n, that if k is a
field, then dim

(
k[x1, . . . , xn]

)
= n. Similarly, we have dim

(
Z[x1, . . . , xn]

)
= n+ 1.

Theorem 7.41. If R is a finitely generated k-algebra which is a domain and
K = Frac(R), then dim(R) = trdeg(K/k).

Proof. It follows from Theorem 6.1 that if n = trdeg(K/k), then we have an
injective finite homomorphism k[x1, . . . , xn] ↪→ R. In this case we have

dim(R) = dim
(
k[x1, . . . , xn]

)
= n,

where the first equality follows from Theorem 7.13 and the second equality follows
from Example 7.40. �

Definition 7.42. A saturated chain of prime ideals in a ring R is a sequence
of prime ideals

p0 ( p1 ( . . . ( pr

such that for every i, with 1 ≤ i ≤ r, there is no prime ideal strictly between pi−1

and pi (in other words, codim(pi/pi−1) = 1).

Remark 7.43. Note that if R is a Noetherian ring, then between any two prime
ideals p ⊆ q in R there is a saturated chain of prime ideals: this is due to the fact
that every chain has length ≤ codim(q/p).

Definition 7.44. A ring R is catenary if between any two prime ideals p ⊆ q
there is a saturated chain of prime ideals and any two such chains have the same
length.

Proving that algebras of finite type over a field are catenary is a bit painful
(for a geometric proof of the Principal Ideal theorem that also allows showing the
catenarity of such algebras, see [Mum99, Chapter I.7]). We will deduce this fact
from a more general result later in the course (we will then return and give some
further results concerning dimension theory of algebras of finite type over a field).
In fact, essentially all rings one encounters are catenary. The first example of a
non-catenary ring was due to Nagata.

Exercise 7.45. Show that if R is a Noetherian ring with finitely many prime
ideals, then dim(R) ≤ 1.

Exercise 7.46. Let k be a field and R = k[x1, . . . , xn]/(f), for some n ≥ 1 and
some f 6∈ k. Show that dim(R) = n− 1. Hint: you can use the proof of Noether’s
Normalization theorem.

Exercise 7.47. Show that if (R,m) is a Noetherian local ring, M is a finitely
generated nonzero R-module, and x ∈ m is a non-zero-divisor on M , then

dim(M/xM) = dim(M)− 1.

Exercise 7.48. Let k be a field and consider the ideal I ⊆ S = k[a, b, c, d]
generated by the 2× 2 minors of the matrix(

a b c
b c d

)
and let R = S/I.
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i) Show that Ra ' k[x, y] ' Rd. Deduce that dim(R) ≥ 2.
ii) Show that if p is an ideal in R containing a, then (a, b, c) ⊆ p. Deduce

that dim
(
R/(a)

)
= 1.

iii) Show that dim(R) = 2.

7.4. Dimension of fibers

Definition 7.49. If f : R→ S is a ring homomorphism and p ∈ Spec(R), then
the fiber of f at p is the ring Sp/pSp.

Remark 7.50. If g : S → Sp/pSp is the canonical homomorphism, then the
induced continuous map gives a homeomorphism of Spec(Sp/pSp) onto ϕ−1(p),
where ϕ = Spec(f) (this justifies the name of Sp/pSp). Indeed, this follows from
Exercises 2.31 and 2.33 and the fact that the prime ideals q in S such that p ⊆
f−1(q) are precisely those such that pS ⊆ q, while those such that f−1(q) ⊆ p are
those such that f(Rr p) ∩ q = ∅.

Remark 7.51. Note that Sp/pSp is naturally a k(p)-algebra, where k(p) =
Rp/pRp is the residue field of Rp (also called the residue field of R at p).

Theorem 7.52. Let f : R → S be an injective ring homomorphism, of fi-
nite type, with both R and S domains. If Frac(R) = K and Frac(S) = L and
trdeg(L/K) = d, then there is a nonempty open subset U of Spec(R) such that
for every y ∈ U , the fiber of Spec(f) over y has dimension d (in particular, it is
nonempty).

We first give a slight variation on the result in Proposition 7.13.

Lemma 7.53. If f : A → B is a finite ring homomorphism, with A a domain,
such that the induced map Spec(f) is surjective, then dim(A) = dim(B).

Proof. Let I = ker(f). For every q ∈ Spec(B), we have I ⊆ f−1(q). Since
(0) ∈ Im

(
Spec(f)

)
, it follows that I = (0), hence f is injective. In this case the

assertion in the lemma follows from Proposition 7.13. �

Proof of Theorem 7.52. Note that L/K is a finitely generated field exten-
sion, so indeed d = trdeg(L/K) < ∞. Let p = (0) ⊆ R and consider the injective
ring homomorphism K = Rp ↪→ Sp, which is again of finite type. Note that Sp is a
subring of L, with field of fractions L. By Theorem 6.1, we can find x1, . . . , xd ∈ Sp

that are algebraically independent over K and such that K[x1, . . . , xn] ↪→ Sp is
finite, hence integral. We claim that there is f ∈ R nonzero such that the injective
homomorphism B = Rf [x1, . . . , xn] ↪→ Sf is finite.

Indeed, for every u ∈ S, there is an equation

uN + a1u
N−1 + . . .+ aN = 0,

with a1, . . . , aN ∈ Rp[x1, . . . , xn]. By taking the product of the denominators of all
nonzero coefficients of a1, . . . , aN , we find fu ∈ R nonzero such that u is integral
over Rfu [x1, . . . , xd]. If S = R[u1, . . . , ur], it follows that if f =

∏
i fui , then the

injective homomorphism Rf [x1, . . . , xd] ↪→ Sf is finite by Remark 3.4.
We now show that U = D(f) ⊆ Spec(R) has the desired property. We will use

the factorization of Rf ↪→ Sf as

Rf ↪→ B = Rf [x1, . . . , xd] ↪→ Sf .
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Note that B is a polynomial algebra over Rf in x1, . . . , xd, hence for every q ∈ U ,
we have

Bq/qBq ' k(q)[x1, . . . , xd].

In particular, this is a domain. On the other hand, since i : B ↪→ Sf is finite and
injective, it follows that Spec(i) is surjective, and thus

g : Bq/qBq → (Sf )q/q(Sf )q = Sq/qSq

has the property that Spec(g) is surjective. We thus conclude using the lemma that

dim(Sq/qSq) = dim(Bq/qBq) = d,

where the last equality follows from Example 7.40. �

Remark 7.54. Note that under the assumptions in Theorem 7.52, if R is a
finitely generated k-algebra, where k is a field, then

trdeg(L/K) = trdeg(L/k)− trdeg(K/k) = dim(S)− dim(R),

where the second equality follows from Theorem 7.41.

We end this chapter with a general result giving a lower bound for the dimension
of the fiber. We begin by introducing a notion that comes up often in commutative
algebra.

Definition 7.55. If (A,m) and (B, n) are local rings, then a ring homomor-
phism f : A→ B is a local homomorphism if f(m) ⊆ n.

Remark 7.56. The condition in the above definition can be rewritten as m ⊆
f−1(n). Note that this automatically implies m = f−1(n): this follows from the
fact that every u ∈ Arm is invertible in A, hence f(u) is invertible in B.

Remark 7.57. Given any ring homomorphism f : R→ S, if q is a prime ideal
in S and p = f−1(q), then we get an induced homomorphism g : Rp → Sq by the
universal property of localization. In fact, this is a local homomorphism. In the
same way that Sq records the properties of S at q, the homomorphism g records
the properties of f at q.

Theorem 7.58. If f : (A,m)→ (B, n) is a local homomorphism of Noetherian
local rings, then

dim(B) ≤ dim(B/mB) + dim(A).

Proof. Note that the dimension of a local ring is the same as the codimension
of the maximal ideal. We deduce from Proposition 7.38 that if dim(B/mB) = s
and dim(A) = r, then there are x1, . . . , xr ∈ m and y1, . . . , ys ∈ n such that m is
a minimal prime containing (x1, . . . , xr) and n/mB is a minimal prime containing
(y1, . . . , ys). In this case n is a minimal prime ideal containing

I =
(
f(x1), . . . , f(xr), y1, . . . , ys

)
.

Indeed, if q is a prime ideal in B containing I, then (x1, . . . , xn) ⊆ f−1(q), hence
f−1(q) = m. In this case we have mB + (y1, . . . , ys) ⊆ q, hence q = n. The fact
that codim(n) ≤ r + s now follows from Corollary 7.35. �





CHAPTER 8

Special classes of rings

In this chapter we discuss various important classes of rings and the connections
between them. We begin with valuation rings and especially DVRs, and then turn
to UFDs, normal rings, and Dedekind domains.

8.1. Valuation rings and DVRs

Let K be a field. Consider a totally ordered Abelian group (Γ,+,≤). Recall
that this means that (Γ,+) is an Abelian group and we have a total order ≤, such
that if a ≤ b, then for every c, we have a + c ≤ b + c. We also consider Γ ∪ {∞},
where a ≤ ∞ for all a ∈ Γ and a+∞ =∞ for all a ∈ Γ and ∞+∞ =∞.

Definition 8.1. A valuation on K with values in Γ is a map v : K → Γ∪{∞}
that satisfies the following properties:

i) v(a) =∞ if and only if a = 0.
ii) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.
iii) v(ab) = v(a) + v(b) for all a, b ∈ K.

A discrete valuation on K is a valuation with Γ = Z, and with v is surjective.

Remark 8.2. With v and K as in the above definition, note that i) plus iii)
imply v(1) = 0. Moreover, by letting a = b = −1 in iii), we get1v(−1) = 0. We
now see using iii) that v(a) = v(−a) for all a ∈ K.

Proposition 8.3. If v is a valuation on K with values in Γ, then

R := {a ∈ K | v(a) ≥ 0}

is a subring of K that has the property that for every a ∈ K r {0}, we have a ∈ R
or a−1 ∈ R (in particular, we have Frac(R) = K).

Proof. Property i) implies 0 ∈ R and we have already seen in Remark 8.2
that 1 ∈ R and if a ∈ R, then −a ∈ R. We now deduce from ii) that R is a
subgroup of K with respect to addition and iii) implies that it is closed under
multiplication. The last assertion in the proposition follows from the fact that if
a 6= 0, then v(a−1) = −v(a) by iii). �

Definition 8.4. We say that a domain R, with fraction field K, is a valuation
ring if for every element a ∈ K r {0}, we have a ∈ R or a−1 ∈ R.

Remark 8.5. If R is a valuation ring, then

m = {x ∈ R | x−1 6∈ R}

1Note that if a ∈ Γ is such that a+a = 0, then a = 0. Indeed, we have either a ≥ 0 or a ≤ 0.
In the former case, 0 = a + a ≥ a ≥ 0, hence a = 0; the case a ≤ 0 is similar.

49
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is an ideal in R. Indeed, note first that if a ∈ R and x ∈ m, since x−1 = a(ax)−1, it
follows that ax ∈ m. Suppose now that x, y ∈ m, with both x and y nonzero, and
let’s show that x+y ∈ m. Since R is a valuation ring, we have x

y ∈ R or y
x ∈ R. By

symmetry, we may assume that we are in the former case, hence x = by for some
b ∈ R. In this case x + y = (1 + b)y, and this lies in m, by what we have already
mentioned.

Since every element in R r m is invertible, it follows that R is a local ring,
with maximal ideal m. Note that if we are in the setting in Proposition 8.3, then
m = {x ∈ R | v(x) > 0}.

Our next result gives a converse to Proposition 8.3.

Proposition 8.6. If R is a valuation ring, with fraction field K, then there is
a valuation v : K → Γ ∪ {∞} such that

R = {x ∈ K | v(x) ≥ 0}.

Proof. Let R× = Rrm be the multiplicative group of invertible elements in
R. This is a subgroup of K× = K r {0}, and we put Γ = K×/R×. We define
an order on Γ by putting x ≤ y if y

x ∈ R. It is straightforward to see that this is
well-defined. It is an order:

a) We have x ≤ x for every x ∈ Γ.
b) If x ≤ y and y ≤ x, then x

y ∈ R
×, hence x = y.

c) If x ≤ y and y ≤ z, then z
x = z

y ·
y
x ∈ R, hence x ≤ z.

The fact that this is a total order follows from the fact that R is a valuation ring.
Finally, if x ≤ y, then xz ≤ yz for every z ∈ K×: this is clear. Therefore Γ is an
ordered Abelian group.

If we define v : K → Γ∪ {∞} by v(0) =∞ and v(x) = x for x ∈ K×, then v is
a valuation:

i) v(a) =∞ if and only if a = 0: this follows from definition.
ii) v(a + b) ≥ min

{
v(a), v(b)

}
for all a, b ∈ K. Of course, we may assume

that a, b, and a+ b are nonzero. In this case, if v(a) ≥ v(b), then a
b ∈ R,

and a+b
b = 1 + a

b ∈ R, hence v(a+ b) ≥ v(b).
iii) v(ab) = v(a)·v(b) for all a, b ∈ K (recall that the operation in Γ is denoted

multiplicatively). Again, we may assume that a and b are nonzero. In this
case, the formula follows from the definition.

Finally, it is clear from the definition that

R = {a ∈ K | v(a) ≥ 1}

(recall that the identity in Γ is 1). This completes the proof. �

We next consider in more detail the case of discrete valuations. Recall that a
principal ideal domain (or PID, for short) is a domain with the property that every
ideal is a principal ideal.

Proposition 8.7. Given an domain R, with fraction field K, the following are
equivalent:

i) There is a discrete valuation v on K such that R = {a ∈ K | v(a) ≥ 0}.
ii) R is a local PID, which is not a field.
iii) R is local, Noetherian, and the maximal ideal is principal and non-zero.
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Definition 8.8. A ring that satisfies the above equivalent properties is a dis-
crete valuation ring (or DVR, for short).

Proof of Proposition 8.7. Let us show first that i)⇒ii). We have already
seen that in this case R is a local ring, with maximal ideal

m = {a ∈ K | v(a) > 0}

(see Remark 8.5).
Given any non-zero ideal I in R, consider a ∈ I such that v(a) is minimal.

Given any other b ∈ I, we have v(b) ≥ v(a), hence v(ba−1) ≥ 0, and therefore
b ∈ (a). This shows that I = (a) and therefore R is a PID. Note that R is not a
field, since an element a ∈ K with v(a) = 1 is a non-invertible element of R.

Since the implication ii)⇒iii) is trivial, in order to complete the proof, it is
enough to prove iii)⇒i). Suppose that (R,m) is a Noetherian local domain and
m = (π), for some π 6= 0. Given any non-zero element α, it follows from Krull’s
Intersection theorem (see Corollary 4.22) that there is j ≥ 0 such that α ∈ mj r
mj+1. Therefore we can write α = uπj , with u invertible. Since K is the fraction
ring of R, it follows that every non-zero element β in K can be written as β = uπj

for a unique j ∈ Z and u ∈ R r m. If we put v(β) = j (and v(0) = ∞), then we
see as in the proof of Proposition 8.6 that v is a (discrete) valuation and we have
R = {a ∈ K | v(a) ≥ 0}. �

Remark 8.9. Note that if (R,m) is a DVR, then it follows from the above
proof that every nonzero ideal of R is equal to mi, for some i ∈ Z≥0. In particular,
we see that the only prime ideals of R are (0) and m, hence dim(R) = 1.

Example 8.10. If R is a PID which is not a field and p is a nonzero prime
ideal in R, then it follows from Proposition 8.7 that the localization Rp is a DVR.
For example, the localization ZpZ, where p ∈ Z is a prime integer, is a DVR.
The corresponding valuation is given by v(a) = m if for a ∈ Q nonzero we write
a = pm r

s , where r, s 6= 0 are integers relatively prime to p.
Similarly, if k is a field, then the localization k[x](x) is a DVR. The corre-

sponding valuation on k(x) is given by v(f) = m if for f ∈ k(x) nonzero we write
f = xm g

h , with g(0) 6= 0 6= h(0).

Example 8.11. Let k be a field and v : k(x, y)→ Z∪{0} be defined as follows.
Given u ∈ k(x, y) nonzero, we write u = xm g

h , for some g, h ∈ k[x, y], none of them
divisible by x. It is straightforward to check that v is a discrete valuation, with
corresponding DVR given by k[x, y](x).

Example 8.12. Let us consider an example of a non-discrete valuation. Let
v : k(x, y)→ R ∪ {0} be the unique valuation with the property that v(x) = 1 and

v(y) =
√

2. Explicitly, if f =
∑
i,j ai,jx

iyj ∈ k[x, y] is nonzero, then

v(f) = min{i+ j
√

2 | ai,j 6= 0}.

This extends uniquely to a valuation on K such that v(f/g) = v(f) − v(g) for
every nonzero f, g ∈ k[x, y]. Describing the corresponding valuation ring R is more
complicated. We clearly have k[x, y] ⊆ R, but we also have the monomials xiyj ∈ R,

where i, j ∈ Z, with i+ j
√

2 ≥ 0.

We end this section with a result that identifies the Noetherian valuation rings.
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Proposition 8.13. If R is a valuation ring, then R is Noetherian if and only
if R is a DVR or a field.

Proof. By Proposition 8.7, it is enough to show that if R is a Noetherian
valuation ring which is not a field (hence its maximal ideal m is nonzero), then m
is principal. Since R is Noetherian, we may choose an ideal (x) which is maximal
among all principal ideals contained in m. Note that since m is nonzero, it follows
that x 6= 0. If there is y ∈ mr (x), then y

x 6∈ R, hence R being a valuation ring, we
have x

y ∈ R. We thus see that (x) ( (y) ⊆ m, a contradiction with our choice of x.

Therefore m = (x). �

Exercise 8.14. Let K be a field and v : K → Γ ∪ {∞} a valuation on K
Show that if R = {x ∈ K | v(x) ≥ 0} is the corresponding valuation ring, and if
w : K → K×/R× ∪{∞} is the valuation we defined in the proof of Proposition 8.6,
then there is an injective group homomorphism ϕ : K×/R× → Γ, which preserves
the order, and such that v(x) = ϕ

(
w(x)

)
for every x ∈ K r {0}.

Exercise 8.15. Let K be a field. We consider local subrings (A,m) of K. We
say that (B, n) dominates (A,m) is A ⊆ B and the inclusion A ↪→ B is a local
homomorphism (that is, we have m = n ∩A).

i) Show that any local subring (A,m) of K is contained in a maximal such
subring (with respect to the relation of dominance).

ii) Show that a local subring (A,m) of K is maximal with respect to the
relation of dominance if and only if A is a valuation ring, with Frac(A) =
K.

Exercise 8.16. Let R be a domain.

i) Show that R is a valuation ring if and only if for every two ideals a and b
in R, we have a ⊆ b or b ⊆ a.

ii) Deduce that if R is a valuation ring and p is a prime ideal in R, then Rp

and R/p are valuation rings.

Exercise 8.17. Let R be a valuation ring, with fraction field K. Show that
for every ring S, with R ⊆ S ⊆ K, there is a unique prime ideal p in R such that
S = Rp. Deduce that the set of such rings S is totally ordered with respect to
inclusion.

8.2. Unique Factorization Domains

In this section we review some notions regarding Unique Factorization Domains,
that we assume are more or less familiar, and only discuss in detail the interplay of
this notion with that of Noetherian ring.

Definition 8.18. Let R be a domain and let a ∈ R be nonzero and noninvert-
ible. We say that a is a prime element if the ideal (a) is a prime ideal. We say that
a is an irreducible element if whenever a = bc, with b, c ∈ R, either b or c is a unit.

Remark 8.19. It is clear from the definition that if u ∈ R is invertible and
a ∈ R is arbitrary, then au is irreducible or prime if and only if a has this property.

Exercise 8.20. Show that every prime element is irreducible.

Definition 8.21. A domain R is a Unique Factorization Domain (UFD, for
short) if the following conditions hold:
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i) For every nonzero, noninvertible a ∈ R, we can write

a = π1 · · ·πr,

for some r ≥ 1 and irreducible elements π1, . . . , πr.
ii) Such an expression is essentially unique, in the sense that if

a = π′1 · · ·π′s
is another such expression, then r = s and after relabeling that π′i, we
have (πi) = (π′i) for all i.

Proposition 8.22. A domain R is a UFD if and only if condition i) in Defini-
tion 8.21 holds and every irreducible element is prime.

Proof. Suppose first that R is a UFD and let us show that if a ∈ R is irre-
ducible, then it is prime. Suppose that b, c ∈ R are such that bc ∈ (a), hence we
can write bc = ad for some d ∈ R. After writing each of of b, c, and d as products
of irreducible elements and using assertion ii) in Definition 8.21 and the fact that
a is irreducible, we see that b ∈ (a) or c ∈ (a).

Conversely, suppose that i) in Definition 8.21 holds and that every irreducible
element in R is prime. It follows that in order to prove that ii) in Definition 8.21
holds it is enough to prove the same uniqueness result for factorizations in prime
elements. Suppose that

a = π1 · · ·πr = π′1 · · ·π′s,
with πi and π′j prime elements. Arguing by induction on min{r, s}, we may assume
that (πi) 6= (π′j) for every i and j. If r ≥ 1, since π′1 · · ·π′s ∈ (π1), which is a prime
ideal, it follows that s ≥ 1 and there is j such that π′j ∈ (π1). Since π′j is prime,
hence irreducible, it follows that (π1) = (π′j), a contradiction. The argument in the
case s ≥ 1 is similar. �

Proposition 8.23. If R is a Noetherian domain, then every nonzero, non-
invertible element a ∈ R can be written as a = π1 · · ·πr, for some r ≥ 1 and
irreducible elements π1, . . . , πr.

Proof. Arguing by contradiction, let us assume that there is a that does not
satisfy the conclusion and let us choose one such that the ideal (a) is maximal
among all such ideals (we can do this since R is Noetherian). In particular, a is
not irreducible, hence we can write a = a1a2, with a1 and a2 noninvertible. In this
case we have (a) ( (a1) and (a) ( (a2), hence by maximality of (a), it follows that
we can write a1 = b1 · · · br and a2 = c1 · · · cs, with b1, . . . , br, c1, . . . , cs irreducible.
Since a = b1 · · · brc1 · · · cs, we have a contradiction. �

By combining Propositions 8.22 and 8.23, we obtain the following

Corollary 8.24. If R is a Noetherian domain, then R is a UFD if and only
if every irreducible element is prime.

The following characterization of the UFD property in Noetherian rings makes
a connection with dimension theory:

Proposition 8.25. If R is a Noetherian domain, then R is a UFD if and only
if every prime ideal p in R, with codim(p) = 1, is principal.
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Proof. Suppose first that R is a UFD. If p is a prime ideal of codimension
1, let us choose a non-zero a ∈ p. If we write a = a1 · · · ar, with all ai irreducible
elements, since p is prime, it follows that ai ∈ p for some i. Since R is a UFD, the
ideal (ai) is a prime ideal (see Proposition 8.22), and since codim(p) = 1, it follows
that p = (ai).

Conversely, suppose that every codimension 1 prime ideal in R is principal.
By Corollary 8.24, we see that in order to show that R is a UFD, it is enough to
show that if π is an irreducible element in R, then (π) is a prime ideal. Let p be
a minimal prime ideal containing (π). If follows from the Principal Ideal theorem
that codim(p) = 1; note that we can’t have codim(p) = 0 since the only prime ideal
of codimension 0 is the ideal (0). By assumption, p is a principal ideal. If we write
p = (b), the inclusion (π) ⊆ (b) implies that π = bc, for some c ∈ R. Since π is
irreducible, it follows that c is invertible, hence (π) = (b) is a prime ideal. �

Remark 8.26. If R is a Noetherian UFD and S is a multiplicative system in
R, then S−1R is a UFD. Indeed, this follows from Proposition 8.25: a prime ideal
in S−1R is of the form q = p ·S−1R for some prime ideal p in R, with S∩p 6= ∅ and
codim(q) = codim(p); moreover, if p is principal, then so is q. However, one can
remove the condition that R is Noetherian and prove the assertion starting from
the definition: we leave this as an exercise.

We end this section by discussing some examples.

Example 8.27. Every PID is a UFD. Indeed, since a PID is Noetherian, the
assertion trivially follows from Proposition 8.25.

Example 8.28. If R is a domain, then R is a UFD if and only if the polynomial
ring R[x] is a UFD (for a proof, see for example [DF04, Chapter 8,Theorem 7]).
In particular, since any field k is trivially a UFD, it follows by induction on n that
any polynomial ring k[x1, . . . , xn] is a UFD. Note that for n 6= 2, we get examples
of UFDs that are not PIDs.

Similarly, since Z is a UFD by Example 8.27, it follows by induction on n that
every polynomial ring Z[x1, . . . , xn] is a UFD.

Example 8.29. Let k be a field and f = x1x2 − x3x4 ∈ S = k[x1, x2, x3, x4].
It is easy to see that f is irreducible (if it factors as a product f = gh, with both g
and h noninvertible, it follows that both g and h have total degree 1 and we get a
contradiction by inspecting the coefficients). Since S is a UFD, it follows that (f)
is a prime ideal, so R = S/(f) is a domain. Note that R is not a UFD: this follows
from the fact that x1 ·x2 = x3 ·x4 are two distinct irreducible decompositions (check
this!).

Exercise 8.30. Let d ∈ Z be an integer that is not a square and consider the
subring

Z[
√
d] = {a+ b

√
d | a, b ∈ Z}

of C. For every u = a+ b
√
d, we put

N(u) = (a+ b
√
d)(a− b

√
d) = a2 − db2 ∈ Z.

i) Show that if N(u) is a prime integer, then u is irreducible.
ii) Use this to show that Z[

√
−5] is not a UFD, by considering the following

factorizations:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).
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8.3. Normal rings

Recall that a domain R with fraction field K is integrally closed if every element
of K that is integral over R lies in R.

Example 8.31. If R is a UFD, then R is normal. Indeed, suppose that a, b ∈
Rr {0} are such that u = a

b is integral over R, but a
b 6∈ R. Since R is a UFD, the

latter condition implies that there is a prime element π ∈ R such that b ∈ (π), but
a 6∈ (π). Since u is integral over R, we can find c1, . . . , cn ∈ R such that

un + c1u
n−1 + . . .+ cn = 0.

Clearing the denominators, we obtain

an = −c1an−1b− . . .− cnbn ∈ (π).

Since (π) is a prime ideal, we obtain a ∈ (π), a contradiction.

Example 8.32. Let S = k[x, y, z], where k is a field, and R = S/(x2 − yz2).
It is easy to see that x2 − yz2 is irreducible (check this!), hence prime, since S
is a UFD. Therefore R is a domain. Note that R is not integrally closed, since
u = x

z ∈ Frac(R)rR, and it is integral over R, since u2−y = 0 (check the details!).

Our next goal is to give a definition of integral closure that does not require R
to be a domain. We begin with a proposition that treats the behavior of integral
closure with respect to localization.

Lemma 8.33. Let R be a domain, with fraction field K, and R′ the integral
closure of R in K.

i) If S is a multiplicative system in R, then the integral closure of S−1R in
K is S−1R′.

ii) In particular, R is integrally closed in K if and only if Rp is integrally
closed in K for every prime (maximal) ideal p in R.

Proof. We first prove i). If u ∈ R′, then we can find a positive integer n and
a1, . . . , an ∈ R such that

un +

n∑
i=1

aiu
n−i = 0.

In this case, for every s ∈ S, we have(u
s

)n
+

n∑
i=1

ai
si
·
(u
s

)n−i
= 0,

hence u
s lies in the integral closure of S−1R.

Conversely, suppose that v ∈ K lies in the integral closure of S−1R. We can
thus find a positive integer n and bi ∈ S−1R such that

vn +

n∑
i=1

biv
n−i = 0.

We can find s ∈ S such that sv ∈ R and sbi ∈ R for all i, in which case we see that

(sv)n +

n∑
i=1

(sibi)(sv)n−i = 0,

hence sv ∈ R′ and thus v ∈ S−1R′. This completes the proof of i).
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The assertion in ii) follows immediately from the fact that R = R′ if and only
if Rp = R′p for all prime (maximal) ideals p in R (see Exercise 2.37). �

Definition 8.34. A ring R is normal if Rp is an integrally closed domain for
every prime ideal p in R.

Remark 8.35. In the above definition, it is enough to put the condition for
maximal ideals. Indeed, every prime ideal p is contained in a maximal ideal m, and
if Rm is an integrally closed domain, then so is its localization Rp = (Rm)pRm

by
Lemma 8.33.

Remark 8.36. If R is a domain, then R is normal if and only if it is integrally
closed. This follows from Lemma 8.33.

Proposition 8.37. If a ring R has the property that Rm is reduced for every
maximal ideal m in R, then R is reduced. In particular, every normal ring is
reduced.

Proof. If R is normal, then for every prime ideal p, the localization Rp is a
domain, hence it is reduced. Therefore it is enough to prove the first assertion in
the proposition.

If a ∈ R is such that an = 0 for some positive integer n, then a
1 = 0 in Rm for

every maximal ideal m in R. This implies that the ideal I = {b ∈ R | ba = 0} is
not contained in any maximal ideal, hence I = R, and thus a = 0. Therefore R is
reduced. �

Proposition 8.38. Let R be a ring.

i) If R = R1 × . . . × Rn, then R is normal if and only if Ri is normal for
every i.

ii) If R is a normal Noetherian ring, then R ' R1 × . . . × Rn, for some
integrally closed domains R1, . . . , Rn.

Proof. Indeed, every prime ideal p in R is of the form π−1
i (pi), for some i

and some prime ideal pi in Ri, where πi : R1 × . . . × Rn → Ri is the projection.
Moreover, in this case the canonical morphism Rp → (Ri)pi

is an isomorphism
(check this!). Therefore the assertion in i) follows from the definition.

Suppose now that R is Noetherian and normal. In this case R is reduced
by Proposition 8.37, hence if p1, . . . , pn are the minimal primes of R, we have
(0) = p1 ∩ . . . ∩ pn (see Remark 5.19), hence the canonical morphism

R→ R/p1 × . . .×R/pn
is injective. It is also surjective by the Chinese Remainder theorem, since pi+pj = R
for i 6= j (this is due to the fact that no maximal prime ideal m contains both pi
and pj , since Rm has a unique minimal prime, namely (0)). The fact that each
R/pi is normal (hence integrally closed) now follows from i). �

We can use normality to give another characterization of DVRs.

Proposition 8.39. A ring R is a DVR if and only if it is a local Noetherian
normal domain, of dimension 1.

We begin with the following

Lemma 8.40. If R is a Noetherian domain ring, then for every nonzero a ∈ R
and every p ∈ Ass

(
R/(a)

)
, the localization Rp is a DVR.
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Proof. The hypothesis implies that pRp ∈ Ass
(
Rp/aRp

)
(see Exercise 5.11).

We may thus replace R by Rp in order to assume that (R, p) is a local ring By
assumption, there is b ∈ R such that

(8.1) p = {h ∈ R | hb ∈ (a)}.

In particular, we have b
a 6∈ R and p · ba ⊆ R. If p · ba ⊆ p, then the determinantal

trick (see, for example, the proof of Proposition 3.5) implies that b
a is integral over

R; since R is integrally closed, we get b
a ∈ R, a contradiction. Therefore p · ba = R,

that is, ab ∈ p. Moreover, if u ∈ p, then it follows from (8.1) that u ∈
(
a
b

)
. Therefore

p =
(
a
b

)
, hence R is a DVR by Proposition 8.7. �

Proof of Proposition 8.39. It follows from Proposition 8.7 that if R is a
DVR, then it is a local PID. In particular, it is a local Noetherian domain, and it is a
UFD, hence it is normal (see Example 8.31). Moreover, it follows from Remark 8.9
that dim(R) = 1.

We now prove the converse. Since dim(R) = 1, it follows that m 6= (0). Let
a ∈ mr{0}. By Theorem 5.5ii), we have AssR

(
R/(a)

)
6= ∅, and since (0) and m are

the only prime ideals in R, it follows that m ∈ AssR
(
R/(a)

)
. Lemma 8.40 implies

that R is a DVR. �

We end this section with the following characterization of normal domains,
which is a variant of a criterion due to Serre.

Proposition 8.41. A Noetherian domain R is normal if and only if the fol-
lowing two conditions hold:

i) For every prime ideal p in R, with codim(p) = 1, the ring Rp is a DVR.
ii) We have R =

⋂
codim(p)=1Rp, where the intersection is over all prime

ideals p in R, of codimension 1.

Moreover, in general condition ii) is equivalent to the following variant:

ii’) For every a ∈ R nonzero, and every p ∈ AssR
(
R/(a)

)
, we have codim(p) =

1.

Proof. Let K be the fraction field of R. We first prove the equivalence of
ii) and ii’). Suppose first that ii’) holds and consider 0 6= b

a ∈ K that lies in
Rp for all prime ideals p in R of codimension 1. We consider a minimal primary
decomposition

(a) = q1 ∩ . . . ∩ qr.

It follows from Remark 5.28 that if pj = rad(qj), then pj ∈ AssR
(
R/(a)

)
, hence

codim(pj) = 1 for all j by ii’). By hypothesis, we have b
a ∈ Rpj

for all j, hence there
is sj ∈ R r pj such that sjb ∈ (a) ⊆ qj . Since qj is a primary ideal, we conclude

that b ∈ qj for all j, hence b
a ∈ R.

Conversely, suppose that ii) holds and consider 0 6= a ∈ R and p ∈ AssR
(
R/(a)

)
.

It follows that there is b ∈ R such that p = {u ∈ R | ub ∈ (a)}. In particular, we
have b 6∈ (a), and thus by assumption, we can find a prime ideal q with codim(q) = 1,
such that b

a 6∈ Rq. This implies that

p = {u ∈ R | ub ∈ (a)} ⊆ q.

Since p 6= (0) (note that a ∈ p) and q has codimension 1, we conclude that p = q,
and thus codim(p) = 1.
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Suppose now that conditions i) and ii) hold. It follows from i) that if p is
a codimension 1 prime ideal in R, then Rp is integrally closed. We then deduce
from ii) that R is integrally closed: if u ∈ K is integral over R, then it is clearly
integral over Rp, for every prime ideal p in R of codimension 1, and thus u ∈⋂

codim(p)=1Rp = R.

On the other hand, if R is normal, then it follows from Proposition 8.39 that
condition i) holds and it follows from Lemma 8.40 that condition ii’) holds. This
completes the proof. �

8.4. Finiteness of integral closure

If A is a domain, with fraction field K, then we get a normal domain associated
to A by taking the integral closure B of A in K. In general, even if A is Noetherian,
it does not follow that B is Noetherian. However, this holds for most examples of
interest, since one can show that B is a finite A-algebra. In this section we prove
that this is the case for algebras of finite type over a field. More generally, we prove
the following

Theorem 8.42. Let A be an algebra of finite type over a field k, with A an
integral domain. If K is the fraction field of A and L is a finite field extension of
K, then the integral closure B of A in L is finite over A.

Proof. We give the proof following [Eis95]. Note that since A is Noetherian,
it is enough to show that B is a submodule of a finitely generated A-module. In
particular, we may replace at any point L by a finite extension L′: if the integral
closure of A in L′ is finite over A, then so is B.

The first step in the proof is to show that we may assume that A is normal and
the field extension L/K is a separable extension. We apply Noether Normalization
to find a subring R of A that is isomorphic to a polynomial ring k[x1, . . . , xn] and
such that A is finite over R. In this case, B is also the integral closure of R in L,
hence after replacing A by R, we may assume that A = k[x1, . . . , xn]. In particular,
A is normal, and K = k(x1, . . . , xn).

After possibly replacing L by a suitable finite extension, we may assume that
the extension L/K is normal. Let us show that we may assume that the extension
is also separable. If this is not separable, then let p = char(k) > 0, G = G(L/K),
and K ′ the subfield of L fixed by G. In this case the extension L/K ′ is separable
and K ′/K is purely inseparable. If we show that the integral closure A′ of A in K ′

is finite over A, then we only need to show that the integral closure of A′ in L is
finite over A′; since A′ is normal, this would complete the proof of the reduction
step. Since K ′/K is purely inseparable, we can find e > 0 such that for every
f ∈ K ′, we have fp

e ∈ K = k(x1, . . . , xn). We can thus find a finite extension k′ of

k such that K ′ ⊆ K ′′ = k′(x
1/pe

1 , . . . , x
1/pe

n ). Note that the integral closure of A in

K ′′ is k′[x
1/pe

1 , . . . , x
1/pe

n ] (indeed, this is a finite extension of k[x1, . . . , xn] and it is
a normal ring); this is clearly finite over A and since it contains A′, it follows that
A′ is finite over A.

We conclude that in order to complete the proof it is enough to treat the case
when A is normal and the extension L/K is separable. We note that from now
on we don’t use anymore the fact that A is a finite type algebra over a field (only
the fact that it is Noetherian). After possibly enlarging L, we may assume that
L/K is a Galois extension, with group G. Let σ1, . . . , σr be the elements of G
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and let u1, . . . , ur ∈ L be a basis of L over K. After multiplying each ui by a
suitable element of A, we may assume that ui ∈ B for every i (if S = A r {0},
then S−1A = K ↪→ S−1B is an integral, injective homomorphism, hence S−1B is
a field by Proposition 3.10, and thus S−1B = L). In this case we have σi(uj) ∈ B
for all i, j (note that σi(B) ⊆ B, as follows by applying σi to a monic equation
that witnesses the fact that an element in B is integral over A). Let us consider
the matrix M =

(
σi(uj)

)
∈Mr(B), with D = det(M).

Note first that D 6= 0. Indeed, if D = 0, then there are λ1, . . . , λr ∈ L, not all 0,
such that (

∑r
i=1 λiσi) (uj) = 0 for all j. Hence

∑r
i=1 λiσi = 0. This can’t happen

since distinct field automorphisms of L are linearly independent over L. We recall
the argument: after relabeling the σi, we may assume that

∑s
i=1 λiσi = 0, with all

λi 6= 0, and that s is minimal with the property that we have such a relation. Note
that s ≥ 2. For every a, b ∈ L, we have

0 =

s∑
i=1

λiσi(ab) =

(
s∑
i=1

λiσi(a)σi

)
(b),

hence
r∑
i=1

λiσi(a)σi = 0.

Choose a such that σ1(a) 6= σ2(a) and note that we have
s∑
i=2

(
σ1(a)− σi(a)

)
λiσi = 0.

Since the coefficient of σ2 is non-zero, this contradicts the minimality of s.
We thus have D 6= 0. Note that for every i, σi(D) is the determinant of a

matrix obtained by permuting the rows of M , hence σi(D) = ±D. This implies
that σi(D

2) = D2 for all i, hence D2 ∈ K.
We will show that B ⊆ 1

D2 ·
∑r
i=1A ·ui, which is a finitely generated A-module.

This would imply that B is finite over A, completing the proof. Given any u ∈ B,
we can write u =

∑r
j=1 αjuj , with αj ∈ K. In order to obtain our assertion, we

need to show that D2αj ∈ A for all j. Note that since u ∈ B, we have σi(u) ∈ B
for all i, hence

σi(u) =

r∑
j=1

σi(uj)αj ∈ B.

Since the matrix M · (α1, . . . , αr)
ᵀ has entries in B, after multiplying with the

classical adjoint of M , we deduce that D · αj ∈ B for all j. Since we have D ∈ B
and D2 ∈ K, it follows that

D2αj ∈ B ∩K = A for all j,

where the equality follows from the fact that A is integrally closed in K. This
completes the proof of the theorem. �

For future reference, we state explicitly the result that we proved as part of the
above proof.

Theorem 8.43. If A is a Noetherian normal domain, with fraction field K,
and L/K is a finite, separable field extension, then the integral closure of A in L is
a finite A-algebra.
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8.5. Dedekind domains

Definition 8.44. A Dedekind domain is a Noetherian domain R such that Rm

is a DVR for every maximal ideal m.

Example 8.45. Every PID R which is not a field is a Dedekind domain. Indeed,
this follows from the characterization of DVRs in Proposition 8.7ii).

Proposition 8.46. A ring R is a Dedekind domain if and only if it is a normal,
Noetherian domain, with dim(R) = 1.

Proof. The assertion follows from the definition of Dedekind domains and the
characterization of DVRs in Proposition 8.39, using the fact that R is normal if
and only if Rm is normal for all maximal ideals m of R (see Lemma 8.33). �

The following result can be used to provide many examples of Dedekind do-
mains.

Theorem 8.47. If R is a Dedekind domain with fraction field K and L/K is a
finite separable field extension, then the integral closure S of R in L is a Dedekind
domain.

Proof. It follows from Theorem 8.43 that the inclusion R ↪→ S is finite. In
particular, since R is Noetherian, so is S. We also have dim(S) = dim(R) = 1 by
Proposition 7.13. Since S is normal by construction, it follows that S is Dedekind
domain by Proposition 8.46. �

Remark 8.48. The condition that the field extension is separable in the above
theorem can be removed. In fact, there is a much more general result due to Krull
and Akizuki, which says that if R is a Noetherian domain with dim(R) = 1, and
L is a finite field extension of Frac(R), then every ring S with R ⊆ S ⊆ L is a
Noetherian ring, with dim(S) ≤ 1. For a proof, see [Mat89, Theorem 11.7].

Example 8.49. Recall that a number field is a finite field extension K of Q.
In this case, the ring of integers of K is the integral closure OK of Z in K. Since Z
is a Dedekind domain by Example 8.45, it follows from Theorem 8.47 that OK is a
Dedekind domain. Note that OK is a finitely generated free Z-module (it is finitely
generated by Theorem 8.43, and it is free, having no torsion, by the structure
theorem for finitely generated Z-modules).

The following result gives an analogue of unique factorization in arbitrary
Dedekind domains.

Theorem 8.50. Every proper nonzero ideal a in a Dedekind domain R can be
written as a product

a = pa11 · · · parr ,
where p1, . . . , pr are pairwise distinct maximal ideals in R and a1, . . . , ar are positive
integers. Moreover, the pairs (p1, a1), . . . , (pr, ar) are uniquely determined, up to
reordering.

Proof. Since dim(R) = 1 and a is a proper, nonzero ideal, it follows that R/a
is a nonzero Noetherian ring, of dimension 0. Let p1, . . . , pr be the prime (maximal)
ideals in R that contain a. Since R is a Dedekind domain, it follows that each Rpi
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is a DVR. In particular, it is principal, hence there is a positive integer ai such that
aRpi = paii Rpi (see Remark 8.9). We claim that

a = pa11 · · · parr .
In order to check this equality, it is enough to check that equality holds in each
Rm, where m is a maximal ideal in R. This is clear. Uniqueness follows similarly
by localizing at each maximal ideal of R. �

We end this section by discussing the characterization of Dedekind domains in
terms of fractional ideals and the class group of a Dedekind domain.

Definition 8.51. Let R be a domain, with fraction field K. A fractional ideal
a of R is an R-submodule of K contained in 1

aR for some a ∈ R nonzero.

Remark 8.52. If R is a Noetherian domain, since every ideal in R is finitely
generated and since for every finitely many elements u1, . . . , un ∈ K there is a
nonzero s ∈ R such that sui ∈ R for all i, we see that the fractional ideals of R are
precisely the R-submodules of K that are finitely generated as R-modules.

Definition 8.53. With the above notation, if a ⊆ K is a fractional ideal of R,
then

a−1 := {u ∈ K | u · a ⊆ R}.

Lemma 8.54. If R is a domain, with fraction field K, and a ⊆ K is a nonzero
fractional ideal of R, then a−1 is a nonzero fractional ideal, as well.

Proof. It is straightforward to see that a−1 is an R-submodule of K. If ab ∈ a

is nonzero, then it follows from the definition that a−1 ⊆ b
a · R, hence a−1 is a

fractional ideal. In order to see that a−1 is nonzero, note that by assumption, we
have a ⊆ 1

sR, for some nonzero s ∈ R. In this case, it is clear that s ∈ a−1. �

Lemma 8.55. If R is a Noetherian integral domain, with fraction field K, and
a ⊆ K is a fractional ideal of R, then for every multiplicative system S ⊆ Rr {0},
we have that S−1a is a fractional ideal of S−1R and (S−1a)−1 = S−1(a−1).

Proof. If a ⊆ 1
bR, then we have S−1a ⊆ 1

bS
−1R, hence S−1a is a fractional

ideal. The inclusion S−1(a−1) ⊆ (S−1a)−1 follows immediately from definition. For
the reverse inclusion, suppose that b

s ∈ (S−1a)−1, and let u1, . . . , ur ∈ a be a system
of generators as an R-module (note that a is a finitely generated R-module, see
Remark 8.52). For every i, with 1 ≤ i ≤ r, we can find ti ∈ S such that tib

s ui ∈ R.

In this case, if t =
∏
i ti, then tb

s ∈ a−1 and we have b
s = 1

t ·
tb
s ∈ S

−1(a−1). �

Definition 8.56. Let R be a domain, with fraction field K, and let a and b
be fractional ideals of R. In this case we denote by a · b the R-submodule of K
generated by all ab, with a ∈ a and b ∈ b. We say that a nonzero fractional ideal a
is invertible if a · a−1 = R (note that the inclusion “⊆” follows from the definition
of a−1).

Remark 8.57. With the notation is the above definition, note that a · b is a
fractional ideal of R: if a ⊆ 1

sR and b ⊆ 1
tR, for nonzero s, t ∈ R, then a · b ⊆ 1

stR.

Example 8.58. If a is a principal fractional ideal (that is, it is generated by
one element), then a is clearly invertible: indeed, if a = R · ab , then b

a ∈ a−1, hence

a · a−1 = R.
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Lemma 8.59. If R is a domain and a is an invertible fractional ideal of R, then
a is finitely generated.

Proof. It follows from the definition that there are u1, . . . , un ∈ a and v1, . . . , vn ∈
a−1 such that

∑n
i=1 uivi = 1. In this case a = (u1, . . . , un): indeed, for every w ∈ a,

we have

w =

n∑
i=1

ui(viw)

and viw ∈ R for all i. �

If R is local, we can be more precise:

Lemma 8.60. If R is a local domain and a is an invertible fractional ideal of
R, then a is a principal ideal.

Proof. With the notation in the proof of the previous lemma, note that since
R is local, it follows that there is i such that uivi is invertible. In this case a = (ui):
if w ∈ a, then w = ui(uivi)

−1(viw) ∈ (ui), since viw ∈ R. �

Theorem 8.61. A Noetherian domain R is a Dedekind domain if and only if
it is not a field and every nonzero fractional ideal is invertible.

Proof. Suppose first that R is a Dedekind domain and let a be a nonzero
fractional ideal of R. Since R is Noetherian, it follows from Lemma 8.55 that for
every maximal ideal p, we have (a−1)p = (ap)−1. Since Rp is a DVR, it follows
that ap is a principal fractional ideal: indeed, it is of the form 1

sb, for some ideal
b in Rp, and every such ideal is principal. We thus conclude that ap is invertible
by Example 8.58. Since localization clearly commutes with taking the product of
fractional ideals, we thus conclude that

(a · a−1)p = ap · (ap)−1 = Rp.

Since this holds for every maximal ideal p, we conclude that a · a−1 = R (see
Exercise 2.37). Therefore a is invertible.

Conversely, suppose that R is not a field and every nonzero ideal of R is invert-
ible. First, we conclude that R is Noetherian using Lemma 8.59. In order to show
that R is Dedekind, it is enough to show that for every maximal ideal p of R, the
ideal pRp is principal (note that it is nonzero R is not a field). Since p is invertible,
it follows that pRp is invertible using Lemma 8.55. Therefore it is principal by
Lemma 8.60. �

Let R be a Dedekind domain. Note that the nonzero fractional ideals of R
form an Abelian group under multiplication, with identity R: the only nontrivial
thing to check is the existence of inverses, and this follows from the fact that
every fractional ideal is invertible by Theorem 8.61. This contains the subgroup of
principal fractional ideals. The quotient is the class group Cl(R).

Remark 8.62. Let R be a Dedekind domain, with fraction field K. For every
maximal ideal p of R, the ring Rp is a DVR. Let vp : K → Z∪ {∞} be the discrete
valuation such that Rp = {x ∈ K | vp(x) ≥ 0}. If Λ is the set of maximal ideals in
R, then it follows from Theorem 8.50 that for every a ∈ K nonzero, we can write

(a) =
∏
p∈Λ

pnp ,
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where only finitely many np are nonzero. Localizing at p, we see that np = vp(a).
We deduce from the definition of Cl(R) that if Div(R) is the free Abelian

group on the set of maximal ideals of R, then Cl(R) is canonically isomorphic to
the cokernel of the group homomorphism

K×
div−→ Div(R),

given by div(ϕ) =
∑

p vp[p]. Note that the kernel of this homomorphism is R×:

indeed, if a = a1
a2

is such that vp(a1) = vp(a2) for all p ∈ Λ, then (a1) = (a2) by

Exercise 2.37, hence a ∈ R×.

Proposition 8.63. If R is a Dedekind domain, then the following are equiva-
lent:

i) Cl(R) = 0.
ii) R is a PID.

iii) R is a UFD.

Proof. If Cl(R) = 0, then it follows from the definition that every (fractional)
ideal of R is principal, hence R is a PID. Since the implication ii)⇒iii) is a general
fact, we only need to prove iii)⇒i). If R is a UFD, since it is a Noetherian domain
of dimension 1, it follows from Proposition 8.25 that every maximal ideal in R is
principal. Theorem 8.50 thus implies that every fractional ideal in R is principal,
hence Cl(R) = 0. �

Exercise 8.64. Prove that the converse of the assertion in Theorem 8.50 holds:
if R is a domain such that every proper nonzero ideal is a product of prime ideals,
then R is a Dedekind domain.





CHAPTER 9

Tor and Ext

9.1. Categories and functors

9.1.1. Abelian categories. We begin with a brief overview of some notions
of category theory. These will not play an important role in what follows since we
will only deal with categories of R-modules.

Definition 9.1. A category C consists of a class of objects Ob(C) and for every
A, B ∈ Ob(C) of a set of morphisms (or arrows) HomC(A,B), such that for every
A ∈ Ob(C) we have an element 1A ∈ HomC(A) and for every A,B,C ∈ Ob(C) we
have a composition map

HomC(A,B)×HomC(B,C)→ HomC(A,C), (f, g) 7→ g ◦ f,

that satisfy the following two conditions:

i) For every u ∈ HomC(A,B), we have u ◦ 1A = u and 1B ◦ u = u.
iii) For every u ∈ HomC(A,B), v ∈ HomC(B,C), and w ∈ HomC(C,D), we

have

w ◦ (v ◦ u) = (w ◦ v) ◦ u.

Remark 9.2. It is common to write u : A → B or A
u−→ B instead of u ∈

HomC(A,B).

Example 9.3. The category Sets has objects all the sets and the morphisms are
the maps between the corresponding sets, with the usual composition and identity
elements.

Example 9.4. If R is a commutative1 ring, then Mod(R) is the category in
which the objects are left R-modules, the morphisms are usual R-linear maps, and
with the usual composition and identity morphisms. If R = Z, then we have the
category Ab of Abelian groups.

Example 9.5. If C is any category, then the dual category C◦ has Ob(C◦) =
Ob(C) and HomC◦(A,B) = HomC(B,A) and such that if u ∈ HomC(A,B) and
v ∈ HomC(B,C), then the composition u ◦ v in C◦ is equal to v ◦ u in C. Note that
we have (C◦)◦ = C.

Remark 9.6. The dual category provides a convenient tool for treating dual
notions. They will not play an important role in what follows since we will typically
prove our results for categories of R-modules (as opposed to arbitrary categories).

1If R is not necessarily commutative, then we have two distinct categories, that of left R-
modules and that of right R-modules.

65
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Definition 9.7. A morphism u ∈ HomC(A,B) is an isomorphism if there is a
morphism v ∈ HomC(B,A) such that v◦u = 1A and u◦v = 1B (it is an easy exercise
to see that such a morphism is unique if it exists). We say that A,B ∈ Ob(C) are
isomorphic if there is an isomorphism in HomC(A,B) (it is straightforward to check
that this is an equivalence relation).

Remark 9.8. It is typical that when working in a categorical setting we are
only interested in objects up to isomorphism.

Definition 9.9. The categories that we will consider have more structure:
they are additive categories, in the following sense:

i) For every A,B ∈ Ob(C), the set HomC(A,B) is endowed with an Abelian
group structure such that the compositions are bilinear maps.

ii) We have a zero-object 0 = 0C ∈ Ob(C) such that HomC(A, 0) = 0 =
HomC(0, A) for every A ∈ Ob(C).

ii) For every two objects A,B ∈ Ob(C), a direct sum A⊕B exists in C (this is
an object A⊕B with morphisms i : A→ A⊕B and j : B → A⊕B such that
for every M ∈ Ob(C) and every morphisms u : A → M and v : B → M ,
there is a unique morphism ϕ : A ⊕ B → M such that ϕ ◦ i = u and
ϕ ◦ j = v.

Remark 9.10. Note that for a ring R, the category Mod(R) is an additive
category.

Remark 9.11. Note that if C is an additive category and 0 and 0′ are zero
objects in C, then the unique morphism 0→ 0′ is an isomorphism. Similarly, if we
have two objects in C that satisfy the definition of A ⊕ B, then there is a unique
isomorphism between them that commutes with the morphisms A → A ⊕ B and
B → A⊕B.

Proposition 9.12. If C is a category that satisfies conditions i) and ii) in
Definition 9.9, then for every A, B, and M in C, the following are equivalent:

i) We have morphisms i : A→M and j : B →M that make M a direct sum
of A and B in C.

ii) We have morphisms p : M → A and q : M → B that make M a direct
sum of A and B in C◦ (one says that M is a direct product of A and B).

iii) We have morphisms i : A → M , j : B → M , p : M → A, and q : M → B
such that

p ◦ i = 1A, p ◦ j = 0, q ◦ i = 0, q ◦ j = 1B , and i ◦ p+ j ◦ q = 1M .

Proof. We only prove the equivalence of i) and iii), the proof of ii) and iii)
follows similarly (or by applying the equivalence we prove for C◦). Suppose first
that i) holds. It follows from the definition of the direct sum that we have unique
p : M → A and q : M → B such that

p ◦ i = 1A, p ◦ j = 0, q ◦ i = 0, q ◦ j = 1B .

Furthermore, in order to show that i ◦ p + j ◦ q = 1M , it is enough to show that
we get the same morphism when we compose each side with i and j. This is
straightforward to check. We thus obtain iii).

Conversely, suppose that iii) holds. Given P ∈ Ob(C) and two morphisms
u : A → P and v : B → P , we need to show that there is a unique morphism
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w : M → P such that w ◦ i = u and w ◦ j = v. Note first that if w satisfies these
conditions, then

w = w ◦ (i ◦ p+ j ◦ q) = u ◦ p+ v ◦ q,
hence we have uniqueness. The existence follows from the fact that if w = u◦p+v◦q,
then

w ◦ i = u ◦ (p ◦ i) + v ◦ (q ◦ ji = u ◦ 1A + v ◦ 0 = u

and similarly w ◦ j = q. �

Corollary 9.13. If C is an additive category, then C◦ is an additive category,
too.

Proof. Indeed, the fact that C◦ satisfies conditions i) and ii) in Definition 9.9
is clear, and the fact that it satisfies condition iii) follows from the proposition. �

Definition 9.14. Let C be an additive category and u : A → B a morphism.
A kernel of u is a morphism i : ker(u) → A such that u ◦ i = 0 and it is universal
with this property (that is, for every morphism v : M → A such that u ◦ v = 0,
there is a unique morphism v′ : M → ker(u) such that v = i ◦ v′). A cokernel of
u is a morphism p : B → coker(u) such that p ◦ u = 0 and it is universal with this
property.

Remark 9.15. It is straightforward to see that given two kernels of u : A→ B,
there is a unique isomorphism between them that commutes with the morphisms
to A; the same holds for cokernels.

Remark 9.16. Note that the kernel (cokernel) of u : A → B in C is the same
as the cokernel (respectively, kernel) of u in C◦.

Example 9.17. Of course, if C =Mod(R), then these notions corresponds to
the familiar notions of kernel and cokernel for R-linear maps. In particular, we see
that kernels and cokernels exist in Mod(R).

Definition 9.18. Let u : A→ B be a morphism in an additive category C that
has kernels and cokernels. In this case, by definition of kernels and cokernels, we
have a unique morphism u : A = coker

(
ker(u) → A

)
→ B = ker

(
B → coker(u)

)
such that the following diagram is commutative:

A

p

��

u // B

A
u
// B,

i

OO

where p and i are the maps that come with the definition of a cokernel and kernel,
respectively. The category C is Abelian if every morphism has a kernel and cokernel
and for every u as above, u is an isomorphism.

Remark 9.19. For a ring R, the fact thatMod(R) is an Abelian category is a
consequence of the First Isomorphism theorem.

Remark 9.20. With the notation in Definition 9.18, it is easy to see that if
we consider u ∈ HomC◦(B,A), then the associated morphism is u ∈ HomC◦(B,A).
This implies that C is an Abelian category if and only if C◦ is an Abelian category.
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9.1.2. Functors. We will only consider categories of modules, so we will not
really need general notions and results concerning Abelian categories. On the other
hand, the language of functors will be very important.

Definition 9.21. Given categories C and D, a functor F : C → D is given
by associating to every object A ∈ Ob(C) an object F (A) ∈ Ob(D) and to every
morphism u : A → B in C a morphism F (u) : F (A) → F (B) in D such that the
following two conditions are satisfied:

i) For every A ∈ Ob(C), we have F (1A) = 1F (A).

ii) For every morphisms A
u−→ B

v−→ C in C, we have

F (v ◦ u) = F (v) ◦ F (u).

Definition 9.22. A contravariant functor F : C → D is a functor C◦ → D.
Explicitly, this means that F associates to every object A ∈ Ob(C) an object
F (A) ∈ Ob(D) and to every morphism u : A→ B in C a morphism F (u) : F (B)→
F (A) in D such that the following two conditions are satisfied:

i) For every A ∈ Ob(C), we have F (1A) = 1F (A).

ii) For every morphisms A
u−→ B

v−→ C in C, we have

F (v ◦ u) = F (u) ◦ F (v).

Remark 9.23. It follows easily from the definition that if F : C → D is a
(possibly contravariant) functor and f : A → B is an isomorphism in C, then
F (f) : F (A)→ F (B) is an isomorphism.

Definition 9.24. If C and D are additive categories, then an additive functor
F : C → D is a functor such that for every A,B ∈ Ob(C), the map HomC(A,B)→
HomD

(
F (A), F (B)

)
induced by F is a group homomorphism. We can similarly

define additive contravariant functors.

From now on we assume that R is a commutative ring.

Example 9.25. We have a forgetful functor Mod(R) → Ab that associates
to an R-module the underlying Abelian group and to an R-map, the same map,
viewed as a group homomorphism.

Example 9.26. For every ring R and every R-module M , we have an additive
covariant functor

HomR(M,−) : Mod(R)→Mod(R)

that associates to an R-module N the R-module2 HomR(M,N) and to an R-linear
map ϕ : N → N ′ the R-linear map

HomR(M,N)→ HomR(M,N ′), f 7→ ϕ ◦ f.

Similarly, we have an additive contravariant functor HomR(−,M) : Mod(R) →
Mod(R) that associates to an R-module P the R-module HomR(P,M) and to an
R-linear map ϕ : P ′ → P the R-linear map

HomR(P,M)→ HomR(P ′,M), f 7→ f ◦ ϕ.

2The R-module structure on HomR(M,N) is given by (aϕ)(u) = aϕ(u) = ϕ(au) for ϕ ∈
HomR(M,N), a ∈ R, and u ∈M ; the fact that this is, indeed, an R-linear map, makes use of the

fact that R is commutative.
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Proposition 9.27. If F : C → D is an additive functor between additive cate-
gories, then F commutes with finite direct sums.

Proof. Note that if A1, . . . , An ∈ Ob(C), then the canonical morphisms Ai →
A1 ⊕ . . .⊕An induce morphisms F (Ai)→ F (A1 ⊕ . . .⊕An), and by the definition
of the direct sum, we get a morphism

F (A1)⊕ . . .⊕ F (An)→ F (A1 ⊕ . . .⊕An).

The assertion in the proposition is that this is an isomorphism. Arguing by induc-
tion on n, it is enough to treat the case n = 2. In this case the assertion follows
from the characterization of the direct sum in Proposition 9.12iii). �

Definition 9.28. Let F , G : C → D be two functors. A natural transformation
u : F → G associates to every A ∈ Ob(C) an element uA ∈ HomD

(
F (A), G(A)

)
such

that for every ϕ ∈ HomC(A,B), the diagram

F (A)

uA

��

F (ϕ) // F (B)

uB

��
G(A)

G(ϕ)
// G(B),

is commutative. A natural transformation of contravariant functors is simply a
natural transformation of functors C◦ → D.

It is clear that we can define a composition of natural transformations, which
is associative and has identity elements 1F for every functor F : C → C.

Definition 9.29. An isomorphism between two functors F , G : C → D is
a natural transformation u : F → G such that uA is an isomorphism for every
A ∈ Ob(C); equivalently, there is another natural transformation v : G → F such
that v ◦ u = 1F and u ◦ v = 1G. In this case we also say that we have a functorial
isomorphism F (A) ' G(A) for all A ∈ Ob(C).

The following definition is important because it applies to many interesting
pairs of functors and it leads to useful properties of those functors.

Definition 9.30. Let C and D be two additive categories and F : C → D and
G : D → C be two additive functors. We say that (F,G) is an adjoint pair (or that
F is the left adjoint of G, or that G is the right adjoint of F ) if for every A ∈ Ob(C)
and B ∈ Ob(D), we have a group isomorphism

ηA,B : HomD
(
F (A), B

) '−→ HomC
(
A,G(B)

)
which is functorial with respect to both A and B, that is, for every morphisms
u : A′ → A in C and v : B → B′ in D, the following diagram is commutative:

HomD
(
F (A), B)

ϕ

��

ηA,B // HomC
(
A,G(B)

)
ψ

��
HomD

(
F (A′), B′)

ηA′,B′
// HomC

(
A′, G(B′)

)
,

where ϕ(f) = v ◦ f ◦ F (u) and ψ(g) = G(v) ◦ g ◦ u.
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Remark 9.31. One can show that if (F,G) and (F,G′) are adjoint pairs, then
G and G′ are isomorphic, and a similar assertion holds with respect to the first
component. However, we will not need this fact.

Exercise 9.32. Let C be a category. If f ∈ HomC(A,B), show that the fol-
lowing are equivalent:

i) f is an isomorphism.
ii) Hom(X, f) is an isomorphism for all X ∈ Ob(C).
iii) Hom(f,X) is an isomorphism for all X ∈ Ob(C).

9.1.3. The tensor product. We briefly review the definition and basic prop-
erties of the tensor product of R-modules. Let R be a not-necessarily commutative
ring.

Definition 9.33. Recall that ifM is a right R-module andN is a left R-module
and P is an Abelian group, then an R-balanced map ϕ : M ×N → P is a map that
is additive in each variable and such that ϕ(ua, v) = ϕ(u, av) for all u ∈M , v ∈ N ,
and a ∈ R. The tensor product M ⊗R N is an Abelian group, together with an
R-balanced map −⊗− : M ×N →M ⊗R N which is universal, that is, such that
for every Abelian group P and every R-balanced map ϕ : M ×N → P , there is a
unique group homomorphism ψ : M ⊗R N → P such that ψ(a ⊗R b) = ϕ(a, b) for
every a ∈M and b ∈ N .

Remark 9.34. With the above notation, it is clear that the tensor product is
unique up to a unique group isomorphism that commutes with the R-balanced map
M ×N →M ⊗N .

Remark 9.35. The existence of M ⊗R N is easy to prove, by taking the free
Z-module with basis {e(x,y) | (x, y) ∈M ×N}, modulo the relations that guarantee
that a map is R-balanced, namely:

i) e(x1+x2,y) − e(x1,y) − e(x2,y), for x1, x2 ∈M and y ∈ N ;
ii) e(x,y1+y2) − e(x,y1) − e(x,y2), for x ∈M and y1, y2 ∈ N ;
iii) e(xa,y) − e(x,ay), for x ∈M , y ∈ N , and a ∈ R,

and by taking a ⊗ b, for a ∈ M and b ∈ N to be the image of the basis element
e(a,b). A consequence of this description is that M ⊗R N is generated as a group
by {a⊗ b | a ∈M, b ∈ N} ⊆M ⊗R N .

Remark 9.36. For every R-module M , we get a functor

M ⊗R − : Mod`(R)→ Ab,

where Mod`(R) is the category of left R-modules, that takes an R-module N to
M ⊗R N and an R-linear map f : N → N ′ to the unique group homomorphism
g = M ⊗R f : M ⊗RN →M ⊗RN ′ such that g(a⊗ b) = a⊗ f(b) for all a ∈M and
b ∈ N . We similarly get a functor

−⊗RM : Modr(R)→ Ab,

from the category of right R-modules to the category of Abelian groups.

From now on, we assume that R is commutative. In particular, there is no
distinction between left and right R-modules.
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Remark 9.37. In this case M ⊗RN has a canonical structure of R-module, in
which multiplication by an element a ∈ R is given by M⊗Rβa = αa⊗RN , where αa
and βa are the multiplication maps by a on M and N , respectively (note that these
are R-linear maps since R is commutative). If P is an R-module, then for every
R-bilinear map ϕ : M×N → P , the unique group homomorphism ψ : M⊗RN → P
such that ψ(u⊗ v) = ϕ(u, v) for all u ∈M , v ∈ N is a morphism of R-modules. As
in Remark 9.36, we see that we get a functor

M ⊗R − : Mod(R)→Mod(R).

Similarly, we have a functor − ⊗R M : Mod(R) → Mod(R) and it is clear that
the two functors are isomorphic (this follows from the universal property in the
definition of M ⊗R N and the fact that giving an R-bilinear map M × N → P is
equivalent to giving an R-bilinear map N ×M → P ).

Remark 9.38. If the R-module M is generated by {xi | i ∈ I} and the R-
module N is generated by {yj | j ∈ J}, then the R-module M ⊗R N is generated
by {xi ⊗ yj | i ∈ I, j ∈ J}. This follows from the fact that M ⊗R N is generated as
an Abelian group by {x⊗ y | x ∈M,y ∈ N}. In particular, we see that if both M
and N are finitely generated R-modules, then so is M ⊗R N .

Remark 9.39. IfR is a ring andM is anR-module, then
(
−⊗RM,HomR(M,−)

)
form an adjoint pair of functors. Indeed, for every R-modules N and P , we have
an isomorphism of Abelian groups (in fact, of R-modules)

HomR

(
N ⊗RM,P ) ' HomR

(
N,HomR(M,P )

)
,

which is functorial with respect to both N and P . Indeed, this follows from the
universal property in Remark 9.37, by noting that giving an R-linear map N →
HomR(M,P ) is equivalent to giving an R-bilinear map M ×N → P .

Exercise 9.40. Show that if M , N , and P are R-modules, then we have a
functorial isomorphism of R-modules (in each of the 3 entries)

(M ⊗R N)⊗R P 'M ⊗R (N ⊗R P ), (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z).
Remark 9.41. Suppose that R and S are commutative rings, N is an R-

module, and M is an R-S-bimodule (this means that M has a structure of R-module
and a structure of S-module that are compatible in the sense that λ(µx) = µ(λx)
for all λ ∈ R, µ ∈ S, and x ∈ M). In this case N ⊗R M is an R-S-bimodule too,
where µ(a⊗b) = a⊗µb for every a ∈ N , b ∈M , and µ ∈ S. Indeed, for every µ ∈ S,
we have the R-linear map fµ : M → M given by fµ(x) = µx for all x ∈ M . We
thus have an induced R-linear map N⊗R fµ, which gives the multiplication by µ on
N ⊗RM . Checking that this makes N ⊗RM an R-S-bimodule is straightforward.
It is easy to see also that we get in this way functors N ⊗R − and − ⊗R M from
the category of R-S-bimodules (respectively R-modules) to the category of R-S-
bimodules.

Exercise 9.42. Suppose that M is an R-S bimodule. Note that in this case,
for every S-module P , the Abelian group HomS(M,P ) has a structure of R-module
induced by the R-module structure on M . Show that in this case the functor −⊗R
M : Mod(R)→Mod(S) is the left adjoint of the functor HomS(M,−) : Mod(S)→
Mod(R), that is, we have a functorial isomorphism of Abelian groups (in fact, of
R-S-bimodules)

HomS

(
N ⊗RM,P ) ' HomR

(
N,HomS(M,P )

)
.
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We now come to one of the main reasons why the tensor product is important:
as we have already discussed, in order to study properties of rings, it is important
to also study properties of modules over those rings In the presence of a ring ho-
momorphism, the tensor product provides one of the two functors allowing us to
relate the two categories of modules, as follows.

Remark 9.43. Let f : R → S be a ring homomorphism. In this case we
have a restriction of scalars functor G : Mod(S) →Mod(R) that associates to an
S-module M , the R-module with underlying Abelian group M , and scalar multi-
plication given by au = f(a)u for all a ∈ R and u ∈ M ; similarly, it associates to
an S-map the same map, which is clearly R-linear.

We also have an extension of scalars functor

F : −⊗RS : Mod(R)→Mod(S),

using the fact that S is an R-S-bimodule. Note that G is isomorphic to the functor
HomS(S,−), for which we use the R-S-bimodule structure of S, hence we deduce
from Exercise 9.42 that (F,G) is an adjoint pair of functors. Explicitly, this says
that for every R-module M and every S-module N , we have a functorial isomor-
phism (of S-modules):

HomS(M ⊗R S,N) ' HomR(M,N)

given by the composition with M →M ⊗R S, x 7→ x⊗ 1.

Exercise 9.44. Suppose that R is a commutative ring and f : R→ S = T−1R
is the canonical homomorphism, where T ⊆ R is a multiplicative system. Show
that for every R-module M , we have a functorial isomorphism

M ⊗R S ' T−1M.

Proposition 9.45. Given a family (Mi)i∈I of R-modules and an R-module
N , if αj : Mj →

⊕
i∈IMi are the canonical homomorphisms, then the induced

homomorphisms αj ⊗R N give an isomorphism of R-modules

α :
⊕
i∈I

(Mi ⊗N)→

(⊕
i∈I

Mi

)
⊗R N.

Proof. Indeed, by the universal property of direct sums, we get a unique
homomorphism α whose restriction to each Mi⊗N is αi⊗RN . On the other hand,
we have an R-bilinear map(⊕

i∈I
Mi

)
×N →

⊕
i∈I

(Mi ⊗R N),
(
(xi)i∈I , y

)
7→ (xi ⊗ y)i∈I

that corresponds by the universal property of the tensor product to a unique ho-
momorphism

β :

(⊕
i∈I

Mi

)
⊗R N →

⊕
i∈I

(Mi ⊗R N).

It is then straightforward to see that α and β are mutual inverses. �

Exercise 9.46. Show that, more generally, if (Mi, fi,j)i∈I is a direct system
of R-modules, then for every R-module N , we have a functorial isomorphism(

lim−→
i∈I

Mi

)
⊗R N ' lim−→

i∈I
(Mi ⊗R N).
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Remark 9.47. It is a general fact that if (F,G) is an adjoint pair, then F
commutes with arbitrary direct limits andG commutes with arbitrary inverse limits.

Remark 9.48. For every R-module M , an R-bilinear map ϕ : R ×M → P is
uniquely determined by the induced map ϕ(1,−) : M → P , which is R-linear. We
thus deduce from the universal property of the tensor product that the R-linear
map f : M → R⊗RM , given by f(x) = 1⊗ x, is an isomorphism. Its inverse map
R⊗RM →M maps a⊗ x to ax.

Using Proposition 9.45, we conclude that if N is a free module, with a basis
of cardinality I, then we have a functorial isomorphism N ⊗R M ' M (I) for all
R-modules M .

9.1.4. Exact sequences and exact functors. In this chapter we introduce
the first concepts of homological algebra. Let us fix a commutative ring R.

Definition 9.49. A complex of R-modules is given by a sequence

M• : . . .→Mn dn−→Mn+1 dn+1

−→ . . . ,

where each Mn is an R-module, each dn : Mn → Mn+1 is an R-linear map, and
dn+1 ◦ dn = 0 for all n ∈ Z. The maps dn are the differentials of the complex. We
sometimes write such a complex as

. . .→Mp →Mp−1 → . . .

and we follow the convention thatMp = M−p (and the maps are suitably identified).
It is also common to not write the terms that are 0.

Note that if M• is a complex as above and

Bn = Bn(M•) := Im(dn−1) and Zn = Zn(M•) := ker(dn),

then Bn ⊆ Zn for all n ∈ Z.

Definition 9.50. The nth cohomology module of M• is

Hn(M•) := Zn/Bn.

We say that the complex M• is exact at M i if Hi(M•) = 0 and we say that M• is
exact if it is exact everywhere.

Definition 9.51. If M• and N• are complexes of R-modules, then a morphism
of complexes f : M• → N• is given by a family (fn : Mn → Nn)n∈Z of R-linear
maps such that all squares in the diagram

. . . // Mn

fn

��

dn // Mn+1

fn+1

��

dn+1
// . . .

. . . // Nn dn // Nn+1 dn+1
// . . .

are commutative. It is clear that we can compose morphisms of complexes of
R-modules component-wise. In this way we get the category Com

(
Mod(R)

)
of

complexes of R-modules. This is an additive category (in fact, an Abelian category),
in which the definition of sum of morphisms is done component-wise and kernels,
cokernels, and direct sums can be constructed component-wise.
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Remark 9.52. It follows from the commutativity of the diagram in the above
definition that if f : M• → N• is a morphism of complexes, then each fn induces
a R-linear map Bn(M•) → Bn(N•) and Zn(M•) → Zn(N•). We thus get an
induced map

Hn(f) : Hn(M•)→ Hn(N•).

It is straightforward to see thatHn(−) gives an (additive) functor Com
(
Mod(R))→

Mod(R).

The following notion is very important for showing that two morphisms of
complexes induce the same map in cohomology. It will play an important role in
the construction of derived functors.

Definition 9.53. Two morphisms of complexes f , g : M• → N• are homotopic
if we have a sequence of R-linear maps θn : Mn → Nn−1 for n ∈ Z such that

fn − gn = dn−1
N ◦ θn + θn+1 ◦ dnM for all n ∈ Z.

Remark 9.54. With the notation in the above definition, note that if x ∈
Zn(M•), then fn(x) − gn(x) = dn−1

N

(
θn(x)

)
, hence f and g induce the same map

Hn(M•)→ Hn(N•).

Definition 9.55. Given a sequence of morphisms

A1
f1−→ A2

f2−→ . . .
fn−1−→ An,

we say that this is exact if Im(fi) = ker(fi+1) for 1 ≤ i ≤ n− 2.

Example 9.56. An important example is that of a short exact sequence: this
is an exact sequence of the form

0→M ′
i−→M

p−→M ′′ → 0.

Note that exactness at M ′ is equivalent to i being injective, exactness at M is
equivalent to i(M ′) = Ker(p), and exactness at M ′′ is equivalent to p being surjec-
tive (hence M ′′ = coker(i)). Therefore every short exact sequence is isomorphic (in
the obvious sense) to a short exact sequence of the form

0→M ′
i
↪→M

p−→M/M ′ → 0,

where i is the inclusion map of a submodule and p is the quotient map.

Exercise 9.57. Show that for a short exact sequence

0→M ′
i−→M

p−→M ′′ → 0,

the following are equivalent:

i) There is an R-linear map q : M →M ′ such that q ◦ i = 1M ′ .
ii) There is an R-linear map j : M ′′ →M such that p ◦ j = 1M ′′ .
iii) There is an R-submodule N of M such that M = i(M ′) ⊕ N (in which

case p induces an isomorphism N 'M ′′).
In this case we say that the short exact sequence is split.
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Exercise 9.58. Show that a sequence of R-modules

A1 → A2 → . . .→ An

is exact if and only if for all maximal (or prime) ideals m of R, the sequence

(A1)m → (A2)m → . . .→ (An)m

is exact.

We next discuss two useful results, both of which are proved via “diagram
chasing”. The first one is known as the 5-lemma.

Proposition 9.59. Consider the following commutative diagram in Mod(R):

A1

f1

��

u1 // A2

f2

��

u2 // A3

f3

��

u3 // A4

f4

��

u4 // A5

f5

��
B1 v1

// B2 v2
// B3 v3

// B4 v4
// B5,

with exact rows.

i) If f2 and f4 are surjective and f5 is injective, then f3 is surjective.
ii) If f2 and f4 are injective and f1 is surjective, then f3 is injective.
iii) If f1, f2, f4, and f5 are isomorphisms, then so is f3.

Proof. The assertion in iii) is a consequence of i) and ii). We only prove i),
the proof of ii) is similar. Suppose that y ∈ B3. The idea is to apply, at each step,
the map we can apply, using the exactness hypothesis and the other hypotheses
on the given maps. We begin by considering v3(y). Since f4 is surjective, there is
a ∈ A4 such that f4(a) = v3(y). Since

f5

(
u4(a)

)
= v4

(
f4(a)

)
= v4

(
v3(y)

)
= 0

and f5 is injective, it follows that u4(a) = 0. Since ker(u4) = Im(u3), it follows
that we can write a = u3(a′), hence v3(y) = f4

(
u3(a′)

)
= v3

(
f3(a′)

)
. Therefore

y − f3(a′) ∈ ker(v3) = Im(v2), hence we can write y − f3(a′) = v2(b). Since f2 is
surjective, we can write b = f2(a′′). We thus conclude that

y = f3(a′) + v2

(
f2(a′′)

)
= f3

(
a′ + u2(a′′)

)
.

Therefore f3 is surjective. �

Proposition 9.60. Let us consider a short exact sequence of complexes3 of
R-modules

0→ A•
f−→ B•

g−→ C• → 0.

In this case, for every n we have an R-linear map δ : Hn(C•) → Hn+1(A•) (the
connecting homomorphism) such that we have an exact complex (the long exact
sequence in cohomology)

. . .→ Hn(A•)
Hn(f)−→ Hn(B•)

Hn(g)−→ Hn(C•)
δ−→ Hn+1(A•)→ . . . .

3This means that for every n, we have a short exact sequence 0→ An → Bn → Cn → 0.
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Moreover, the connecting homomorphism is functorial with respect to morphisms
of short exact sequences: given a morphism of exact sequences

0 // A•

α
��

f // B•

β
��

g // C• //

γ

��

0

0 // A′•
f ′ // B′•

g′ // C ′• // 0

,

for every n ∈ Z, the diagram

Hn(C•)
δ //

Hn(γ)

��

Nn+1(A•)

Hn+1(α)

��
Hn(C ′

•
)

δ′ // Hn+1(A′
•
)

is commutative.

Proof. Let us begin by defining δ : Hn(C•)→ Hn+1(A•). In order to simplify
the notation, we write d for all the differential in all the 3 complexes. Let c ∈
Hn(C•), where c ∈ Cn is such that d(c) = 0. Since gn is surjective, there is b ∈ Bn
such that gn(b) = c. We have

gn+1
(
d(b)

)
= d
(
gn(b)

)
= 0,

hence by the exactness of the sequence of complexes, there is a unique a ∈ An+1

such that d(b) = fn+1(a). Moreover, we have

fn+2
(
d(a)

)
= d
(
fn+1(a)

)
= d
(
d(b)

)
= 0,

hence using the injectivity of fn+2, we conclude that a ∈ Zn+1(A•). We put
δ(c) = a ∈ Hn+1(A•).

We first need to show that δ(c) does not depend of any choices. Suppose that
c′ = c + d(w), for some w ∈ Cn−1, let b′ ∈ Bn be such that gn(b′) = c′, and let
a′ ∈ An+1 be such that fn+1(a′) = d(b′). We may write w = gn−1(v), for some
v ∈ Bn−1, in which case we have

gn(b′ − b) = d
(
gn−1(v)

)
= gn−1

(
d(v)

)
,

hence b′ − b− d(v) = fn(u), for some u ∈ An. We thus have

fn+1(a′ − a) = d(b′ − b) = d
(
d(v) + fn(u)

)
= d
(
fn(u)

)
= fn+1

(
d(u)

)
,

and the injectivity of fn+1 implies that a′ = a + d(u) has the same class as a in
Hn+1(A•). Therefore δ is well-defined and it is straightforward to check that it is
R-linear and that it is functorial with respect to morphisms of short exact sequences
of complexes.

Let us prove that the following sequence is exact:

(9.1) Hn(B•)
Hn(g)−→ Hn(C•)

δ−→ Hn+1(A•).

Let’s show first that δ ◦Hn(g) = 0. Indeed, if b ∈ Zn(B•) and c = gn(b), then in
the definition of δ(c), we can use this b. Since d(b) = 0, it follows that δ(c) = 0.

Let’s show now that ker(δ) ⊆ Im
(
Hn(g)

)
. If δ(c) = 0 and b ∈ Bn is such that

gn(b) = c, then we know that d(b) = fn+1
(
d(a′)

)
for some a′ ∈ An. Therefore

d(b) = d
(
fn(a′)

)
, hence b′ := b − fn(a′) ∈ Zn(B•) and thus c = Hn(g)(b′). This
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completes the proof of the exactness of (9.1). We leave the proof of the other two
exactness statements as an exercise. �

Exercise 9.61. Consider the following diagram of R-modules

M1

f

��

i // M2

g

��

p // M3

h

��

// 0

0 // N1
j // N2

q // N3

in which the squares are commutative and the rows are exact. Show that there is
a morphism δ : ker(h)→ coker(f) such that we have an exact sequence

ker(f)→ ker(g)→ ker(h)
δ−→ coker(f)→ coker(g)→ coker(h).

We end this section with the key definition of exact functors and by discussing
the main examples of interest for us.

Definition 9.62. Let F : Mod(R)→Mod(S) be an additive functor.

i) The functor F is exact if for every short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the sequence

0→ F (M ′)→ F (M)→ F (M ′′)→ 0

is exact.
ii) The functor F is left exact if for every exact sequence

0→M ′ →M →M ′′

in Mod(R), the sequence

0→ F (M ′)→ F (M)→ F (M ′′)

is exact.
iii) We say that F is right exact if for every exact sequence

M ′ →M →M ′′ → 0

in Mod(R), the sequence

F (M ′)→ F (M)→ F (M ′′)→ 0

is exact.
iv) If G : Mod(R)→Mod(S) is a contravariant functor, then G is a left exact

functor if it is left exact as a functor Mod(R)◦ → Mod(S). Explicitly,
for every exact sequence

M ′ →M →M ′′ → 0

in Mod(R), the sequence

0→ G(M ′′)→ G(M)→ G(M ′)

is exact.

Example 9.63. If S is a multiplicative system inR, then the functorMod(R)→
Mod(S−1R) that takes M to S−1M is exact. Indeed, this follows from Exer-
cise 2.30.
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Remark 9.64. For every additive functor F : Mod(R)→Mod(S), if

0→M ′ →M →M ′′ → 0

is a split short exact sequence of R-modules, the corresponding sequence

0→ F (M ′)→ F (M)→ F (M ′′)→ 0

is split exact. This follows from the fact that F commutes with finite direct sums
(see Proposition 9.27).

Remark 9.65. If F : Mod(R)→Mod(S) is an exact functor and

(9.2) A1
f1−→ A2

f2−→ . . .
fn−1−→ An

is an exact sequence of R-modules, then the corresponding sequence of S-modules

F (A1)
F (f1)−→ F (A2)

F (f2)−→ . . .
F (fn−1−→ F (An)

is exact. Indeed, by the exactness of (9.2), we have submodules Bi ⊆ Ai for
1 ≤ i ≤ n such that

Bi = ker(fi) for 1 ≤ i ≤ n− 1 and Bi = Im(fi−1) for 2 ≤ i ≤ n.
The short exact sequence

0→ Bi → Ai → Bi+1 → 0

for 1 ≤ i ≤ n− 1 implies, by the exactness of F , a short exact sequence

0→ F (Bi)→ F (Ai)→ F (Bi+1)→ 0.

This implies that for 1 ≤ i ≤ n− 1, the morphism of S-modules F (fi) factors as a
composition

F (Ai)→ F (Bi+1)→ F (Ai+1),

with the second map being injective and the first one surjective, with kernal the
image of F (Bi)→ F (Ai). We thus have

Im
(
F (fi)

)
= ker

(
F (fi+1)

)
for 1 ≤ i ≤ n− 1,

giving our assertion.

The following proposition contains the examples of interest for us:

Proposition 9.66. The following properties hold:

i) The sequence

(9.3) 0→M ′
u−→M

v−→M ′′

is exact if and only if for every R-module N , the sequence

(9.4) 0→ HomR(N,M ′)→ HomR(N,M)→ HomR(N,M ′′)

is exact. In particular, the functor HomR(N,−) is left exact for every
R-module N .

ii) The sequence
M ′ →M →M ′′ → 0

is exact if and only if the sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)

is exact for all R-modules N . In particular, the contravariant functor
HomR(−, N) is left exact for all R-modules N .
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iii) The functor M ⊗R − is right exact for all R-modules M .

Proof. Note that the sequence (9.3) is exact if and only if M ′
u−→ M is the

kernel of M
v−→ M ′′. If this is the case, then (9.4) is exact for every N by the

universal property of the kernel. Conversely, if (9.4) is exact for all N , then by
taking N = M ′ and by considering the effect of the composition of the two maps
on 1M ′ , we see that v ◦ u = 0. The exactness of (9.4) implies that u satisfies the
universal property of the kernel, so (9.3) is exact.

The argument for ii) is similar, using the definition of the cokernel. Let us
prove iii). Given an exact sequence

N ′ → N → N ′′ → 0,

we need to show that the induced sequence

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

is exact. By ii), this is the case if and only if for every P , the induced sequence

0→ HomR

(
M ⊗R N ′′, P )→ HomR(M ⊗R N,P )→ HomR(M ⊗R N ′, P )

is exact. However, by adjointness (see Remark 9.39) this is isomorphic to the
sequence

0→ HomR

(
N ′′,HomR(M,P )

)
→ HomR

(
N,HomR(M,P )

)
→ HomR

(
N ′,HomR(M,P )

)
,

and this is exact by ii). This completes the proof of iii). �

Corollary 9.67. If R is a Noetherian ring and M and N are finitely generated
R-modules, then HomR(M,N) is a finitely generated R-module.

Proof. Since M is finitely generated, there is a surjective morphism of R-
modules p : R⊕n → M . The left exactness of HomR(−, N) implies that we get an
injective morphism of R-modules

HomR(M,N) ↪→ HomR(R⊕n, N) ' N⊕n.

SinceN is finitely generated, so isN⊕n, and sinceR is Noetherian, so is HomR(M,N).
�

Example 9.68. Given an ideal I in R and an R-module M , if we tensor the
exact sequence

0→ I → R→ R/I → 0

by M , it follows from Proposition 9.66 that we have an exact sequence

I ⊗RM →M → R/I ⊗RM → 0,

where we use the isomorphism M ' R ⊗RM (see Remark 9.48). Since the image
of I ⊗RM →M is IM , we conclude that we have an isomorphism

R/I ⊗RM 'M/IM.

The functors HomR(M,−), HomR(−,M), and M ⊗R− are not, in general, ex-
act. This is what motivates the construction of derived functors. In the next section
we will discuss for which R-modules M the functors HomR(M,−), HomR(−,M)
are exact. The following chapter will be devoted to those R-modules M such that
M ⊗R − is an exact functor.
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9.2. Projective and injective modules

Let R be a commutative ring.

Definition 9.69. An R-module P is projective if HomR(P,−) is an exact
functor. Dually, an R-module I is injective if HomR(−, I) is an exact functor.

Remark 9.70. It follows from Proposition 9.66i) that the functor HomR(P,−)
is always left exact, hence P is a projective R-module if and only if it takes surjective
maps to surjective maps, that is, for every surjective R-linear map p : U → V and
every morphism f : P → V , there is a morphism g : P → U such that f = p ◦ g.

Similarly, since the contravariant functor HomR(−, I) is always left exact by
Proposition 9.66ii), it follows that I is an injective module if and only if it takes
injective maps to surjective maps, that is, for every injective R-linear map i : A→ B
and every R-linear map f : A → I, there is an R-linear map g : B → I such that
g ◦ i = f .

Proposition 9.71. Given a short exact sequence of R-modules

0→ A
i−→ B

p−→ C → 0,

if A is an injective module or if C is a projective module, then the sequence is split.

Proof. If A is injective, then applying the description of injective morphisms
in Remark 9.70, we see that there is a morphism g : B → A such that g ◦ i = 1A,
hence the sequence is split. The case when C is a projective module is similar. �

The following proposition gives a very useful description of projective modules:

Proposition 9.72. The R-module P is projective if and only if there are R-
modules F and Q, with F free, such that F ' P ⊕Q.

Proof. Let’s show first that if F is a free R-module, then F is projective. Let
(ei)i∈Λ be a basis of F . Given a surjective R-linear map p : U → V and a morphism
f : F → V , for every i ∈ Λ, there is ui ∈ U such that p(ui) = f(ei). Let g : F → U
be the unique R-linear map g : F → U such that g(ei) = ui for all i ∈ Λ. We thus
have f = p ◦ g since the two R-linear maps take the same values on each ei.

Suppose now that F ' P ⊕Q. Since

HomR(F,M) ' HomR(P,M)⊕HomR(Q,M)

for every R-module M , it is clear that the exactness of HomR(F,−) implies the
exactness of HomR(P,−).

Conversely, suppose that P is a projective module. Let us consider a surjective
morphism ϕ : A → P , where A is a free R-module (for example, we may choose a
system of generators (xi)i∈I of P , let A be a free R-module with basis (ei)i∈I , and
let ϕ be the unique R-linear map such that ϕ(ei) = xi for all i ∈ I). We thus have
a short exact sequence

0 −→ ker(ϕ) −→ A
ϕ−→ P −→ 0.

Since P is projective, this is split by Proposition 9.71, hence A ' P ⊕ ker(ϕ). �

Remark 9.73. One consequence of the above proposition is that the category
Mod(R) has enough projectives: this means that for every R-module M , there is
a surjective R-linear map f : P → M , where P is a projective R-module. Indeed,
we can find such a morphism with P free.
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The following result gives an important characterization of projective finitely
generated modules over Noetherian rings.

Theorem 9.74. Let P be a finitely generated module over a Noetherian ring
R. Then P is projective if and only if Pm is a free Rm-module for every maximal
(or prime) ideal m of R.

Before giving the proof of the theorem, we need a result about the behavior of
Hom modules under localization, which is useful also in other situations. Its proof
in turn will make use of the following notion:

Definition 9.75. Given an R-module M , a finite free presentation of M is an
exact sequence of the form

F1 → F0 →M → 0,

where F1 and F0 are finitely generated modules.

Remark 9.76. Such a presentation always exists if M is finitely generated and
R is Noetherian: indeed, after choosing finitely many generators u1, . . . , un of M ,
we get a surjective morphism p : R⊕n →M that maps ei to ui for 1 ≤ i ≤ n. Since
R is Noetherian, the R-module ker(p) is finitely generated, and thus proceeding as
above, we get a surjective morphism R⊕m → ker(p). We thus obtain a finite free
presentation

R⊕m → R⊕n →M → 0.

Lemma 9.77. If S is a multiplicative system in a Noetherian ring R, then
for every R-modules M and N , with M finitely generated, we have a functorial
isomorphism of S−1R-modules

S−1HomR(M,N)→ HomS−1R(S−1M,S−1N).

Proof. The argument we give below applies in many other instances: once
we construct a functorial transformation, in the presence of a suitable exactness
property, we can reduce to the case M = A, which is straightforward. Note that
we have a morphism of R-modules

HomR(M,N)→ HomS−1R(S−1M,S−1N), ϕ 7→ S−1ϕ.

Since the right-hand side is an S−1R-module, we get an induced morphism of
S−1R-modules

τM,N : S−1HomR(M,N)→ HomS−1R(S−1M,S−1N)

(see Remark 9.43). It is straightforward to see that this is functorial with respect
to M (and also with N). Let us choose a finite free presentation

F1 → F0 →M → 0.

It follows from Proposition 9.66 and Example 9.63 that in the commutative diagram

0 // S−1HomR(M,N)

τM,N

��

// S−1HomR(F0, N)

τF0,N

��

// S−1HomR(F1, N)

τF1,N

��
0 // HomS−1R(S−1M,S−1N) // HomS−1R(S−1F0, S

−1N) // HomS−1R(S−1F1, S
−1N)

the rows are exact. We then deduce from the 5-lemma (see Proposition 9.59) that
it is enough to show that τF0,N and τF1,N are isomorphisms. Since we deal with
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additive functors and since it is clear that τM1⊕M2,N = τM1,N ⊕ τM2,N for every R-
modules M1 and M2, we see that it is enough to show that τR,N is an isomorphism,
but this is clear, using the canonical isomorphisms

HomR(R,N) ' N and HomS−1R(S−1R,S−1N) ' S−1N.

This completes the proof of the lemma. �

We can now prove the characterization of finitely generated projective modules.

Proof of Theorem 9.74. We first show that P is projective if and only if
Pm is projective for every maximal (or prime) ideal of R. Indeed, note first that if
P is projective, then it follows from Proposition 9.72 that there are R-modules F
and Q, with F free, such that F ' P ⊕Q. If m is a prime ideal of R, then we get
an isomorphism Fm ' Pm ⊕Qm. Since Fm is a free Rm-module, it follows that Pm

is a projective Rm-module by Proposition 9.72.
Conversely, suppose that Rm is a projective R-module for all maximal ideals m

of R. Given a surjective morphism of R-modules p : A→ B, we need to show that
the induced morphism

(9.5) HomR(M,A)→ HomR(M,B)

is surjective. By Exercise 9.58, it is enough to show that for every maximal ideal
m of R, the induced map

HomR(M,A)m → HomR(M,B)m

is surjective. Since M is a finitely generated module over a Noetherian ring,
Lemma 9.77 implies that it is enough to show that the map

HomRm
(Mm, Am)→ HomRm

(Mm, Bm)

is surjective. This follows from the fact that Mm is projective and Am → Bm is
surjective.

In order to complete the proof of the theorem it is thus enough to show that if
(R,m) is a local Noetherian ring and M is a finitely generated R-module, then M
is projective if and only if M is free. The “if” part follows from Proposition 9.72.
Suppose now that M is projective. Let u1, . . . , un ∈ M be such that u1, . . . , un ∈
M/mM give a basis over R/m. It follows from Nakayama’s lemma that u1, . . . , un
generateM , hence we have a surjective morphism p : R⊕n →M such that p(ei) = ui
for 1 ≤ i ≤ n. If K = ker(p), then we have a short exact sequence

0 −→ K −→ R⊕n
p−→M −→ 0.

Since M is projective, this sequence is split by Proposition 9.71, hence tensoring
with R/m, gives an exact sequence

0→ K/mK → (R/m)⊕n
p−→M/m→ 0.

By construction, p is an isomorphism, hence K/mK = 0. Since R is Noetherian, K
is finitely generated, hence another application of Nakayama’s lemma gives K = 0.
Therefore M ' R⊕n is free. This completes the proof of the theorem. �

Our next goal is to show that for every ring R, the category Mod(R) has
enough injectives:

Theorem 9.78. For every R-module M , there is an injective morphism M ↪→
Q, where Q is an injective R-module.
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The proof proceeds by first treating the case when R = Z. In this case, the key
fact is the characterization of injective Z-modules as divisible groups. This in turn
follows from the following criterion for a module to be injective:

Proposition 9.79. (Baer) An R-module Q is injective if and only if for every
left ideal I in R, the induced morphism of Abelian groups

Q = HomR(R,Q)→ HomR(I,Q)

is surjective.

Proof. Of course, we only need to prove the “if” part. Suppose that M is
an R-module and M ′ is a submodule. We need to show that for every morphism
ϕ′ : M ′ → Q, there is a morphism ϕ : M → Q such that ϕ|M ′ = ϕ′. We consider
the setM of all pairs (M1, ϕ1), where M1 is a submodule of M containing M ′ and
ϕ1 : M1 → Q is a morphism such that ϕ1|M ′ = ϕ′. We order this set by putting
(M1, ϕ1) ≤ (M2, ϕ2) if M1 ⊆M2 and ϕ2|M1 = ϕ1.

Since we have (M ′, ϕ′) ∈ M, we see that M is non-empty. Moreover, given
a family (Mi, ϕi)i∈I of elements of M, any two of them comparable, we can take
M ′′ =

⋃
i∈IMi and ϕ′′ : M ′′ → Q such that ϕ′′|Mi

= ϕi for all i; in this case
(M ′′, ϕ′′) ∈M is the supremum of the family (Mi, ϕi)i∈I .

We can thus apply Zorn’s lemma to choose a maximal element (M0, ϕ0) inM.
We claim that M0 = M , which would complete the proof. Suppose that this is not
the case and let u ∈ M rM0. We will show that there is an extension of ϕ0 to a
morphism ϕ1 : M0 +Ru→ Q; this would contradict the maximality of (M0, ϕ0).

Let I = {a ∈ R | au ∈ M0}. Note that I is an ideal of R and we can define a
morphism ψ : I → Q by ψ(a) = ϕ0(au). By assumption, there is w ∈ Q such that
ψ(a) = aw for every a ∈ I. We define ϕ : M0 +Ru→ Q by

ϕ1(v + au) = ϕ0(v) + aw for v ∈M0, a ∈ R.
Note that ϕ1 is well-defined: if v + au = v′ + a′u, then (a − a′)u = v′ − v ∈ M0,
hence a− a′ ∈ I. We thus have

ϕ0(v′ − v) = ϕ0

(
(a− a′)u

)
= (a− a′)w,

hence ϕ0(v′)+a′w = ϕ0(v)+aw. It is now straightforward to see that ϕ1 is R-linear
and ϕ1|M0

= ϕ0. This completes the proof. �

Recall that an Abelian group A is divisible if for every positive integer n, the

multiplication map A
·n−→ A is surjective.

Corollary 9.80. A Z-module Q is injective if and only if it is a divisible
Abelian group.

Proof. Since every ideal of Z is of the form nZ, for some non-negative integer
n, it follows from the proposition that Q is injective if and only if for every such n,
the induced morphism of Abelian groups

Q→ HomZ(nZ, Q)

is surjective. This is clearly the case if n = 0. If n > 0, then this morphism gets
identified to the morphism Q→ Q given by multiplication by n, and we obtain the
assertion in the corollary. �

We can now prove the existence of embeddings in injective modules.
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Proof of Proposition 9.78. Suppose first that R = Z. In this case, by the
above corollary, we need to show that every Abelian group M can be embedded in a
divisible Abelian group A. WriteM ' F/G, where F ' Z(I) is a free Abelian group.
Since F is free, it has no torsion, and thus the canonical morphism F ↪→ F ⊗Z Q '
Q(I) is injective. We thus have an injective morphism M ↪→ A := (F ⊗Z Q)/G. It
is clear that F ⊗Z Q is divisible, and thus its image A is divisible, too.

Consider now the general case. By considering on M the underlying structure of
Z-module and applying what we have already proved, we get an injective morphism
of Z-modules j : M ↪→ A, where A is an injective Z-module. We claim that if we
consider on HomZ(R,A) the R-module structure induced by the one on R (that is,
we have

(λ · ϕ)(r) = ϕ(rλ) for all λ, r ∈ R,ϕ ∈ HomZ(R,A)),

then HomZ(R,A) is an injective R-module. In order to see this, it is enough to
note that since R ⊗R − is the left adjoint of HomZ(R,−) (see Remark 9.42), for
every R-module N , we have a canonical isomorphism

HomR

(
N,HomZ(R,A)

)
' HomZ(N ⊗R R,A) ' HomZ(N,A).

Since HomZ(−A) is an exact functor, it follows that HomR

(
−,HomZ(R,A)

)
is an

exact functor.
Finally, we note that we have an injective morphism of R-modules given by

M → HomZ(R,A), M 3 v 7→ ϕv, where ϕv(r) = j(rv).

This completes the proof. �

Remark 9.81. While projective and injective objects are dual categorical no-
tions, we have seen that their behavior in the category Mod(R) is quite different.
Given an R-module M , it is easy to find a surjective R-linear map P → M , with
P a projective module, and this can be carried out efficiently in practice. On the
other hand, while we will make use in the next section of the existence of an in-
jective R-linear map M → I, where I is an injective R-module, this is never done
explicitly in practice (part of the reason is that even if M is finitely generated over
a Noetherian ring R, the R-module I is almost never finitely generated).

9.3. Construction of derived functors

We begin by discussing the notions of injective and projective resolutions. Let
us fix a (commutative) ring R.

Definition 9.82. Given an R-module M , a projective resolution F•
ε→ M of

M is a complex F• (note the lower indexing) such that Fp is a projective R-module
for all p and Fp = 0 for p < 0, together with a morphism ε : F0 →M , such that the
resulting complex

. . .→ Fp → . . .→ F1 → F0 →M → 0

is exact. If the Fp are free, then F• →M is a free resolution.

An injective resolution M
ε−→ I• of M is a complex I• such that Ip is an

injective R-module for all p and Ip = 0 for p < 0, together with a morphism
M → I0 such that the resulting complex

0→M → I0 → I1 → . . .→ Ip → . . .

is exact
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Projective and injective resolutions are the main tools for constructing derived
functors. The following two results give the main properties of these notions. We
begin with injective resolutions.

Proposition 9.83. Let M and N be R-modules.

i) There is an injective resolution M
α−→ I• of M .

ii) Given a morphism of R-modules f : M → N and injective resolutions

M
α−→ I• and N

β−→ J•, there is a morphism of complexes u : I• → J•

such that also the diagram

M

f

��

α // I0

u0

��
N

β // J0

is commutative.
iii) If u and v both satisfy the conclusion in ii), then they are homotopic.

Proof. In order to prove i), we begin by using Proposition 9.78 to find an
injective R-module I0 and an injective morphism M ↪→ I0. If C is the cokernel
of this map, we use the same proposition to find an injective R-module I1 and an
injective homomorphism C ↪→ I1. We thus have an exact sequence

0→M → I0 → I1.

Continuing in this way we obtain the injective resolution I•.
For ii), we construct the morphisms ui : Ii → J i recursively, as follows. Since

the morphism M → I0 is injective and J0 is an injective R-module, we can find
u0 : I0 → J0 such that the diagram

M

f

��

α // I0

u0

��
N

β // J0

is commutative. Since I• is a resolution, the induced morphism coker(α) → I1 is
injective. On the other hand, u0 induces a morphism u0 : coker(α)→ coker(β), and
since J1 is injective, there is a morphism u1 : I1 → J1 such that the right square
in the diagram

I0

u0

��

// coker(α)

u0

��

// I1

u1

��
J0 // coker(β) // J1

is commutative as well. Iterating this argument, we obtain the assertion in ii).
Finally, suppose that u and v both satisfy the condition in ii). We construct

recursively morphisms θi : Ii → J i−1 for i ≥ 1 such that ui − vi = d ◦ θi + θi+1 ◦ d
for all i ≥ 0 (where θ0 = 0). The assumption implies that u0 and v0 agree on the
image of M → I0, hence u0 − v0 induces a morphism coker(α) → J0. Using the
fact that J0 is an injective R-module and the morphism coker(α) ↪→ I1 is injective,
we obtain a morphism θ1 : I1 → J0 such that u0 − v0 = θ1 ◦ d. Note now that

(u1 − v1 − d ◦ θ1) ◦ d = d ◦ (u0 − v0 − θ1 ◦ d) = 0,
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hence u1−v1−d◦θ1 induces a morphism γ : coker(I0 → I1)→ J1. Since H1(I•) =
0, the induced morphism coker(I0 → I1) ↪→ I2 is injective, hence γ has an extension
as a morphism θ2 : I2 → J1 by the injectivity of J2. We thus have θ2 ◦ d+ d ◦ θ1 =
u1 − v1. Iterating this argument, we get that u and v are homotopic. �

The following result gives the corresponding assertions for projective resolu-
tions.

Proposition 9.84. Let M and N be R-modules.

i) There is a projective (in fact, free) resolution P•
α−→M of M .

ii) Given a morphism of R-modules f : M → N and projective resolutions

P•
α−→ M and Q•

β−→ N , there is a morphism of complexes u : P• → Q•
such that also the diagram

P0

u0

��

α // M

f

��
Q0

β // N

is commutative.
iii) If u and v both satisfy the conclusion in ii), then they are homotopic.

Proof. The argument is entirely analogous to that in the proof of Proposi-
tion 9.83, so we omit it. We only note that the construction of a projective (even
free) resolution is due to the fact that every R-module M admits a surjective mor-
phism F →M , where F is a free (hence projective) R-module. �

We will also need the following lemma regarding the construction of resolutions
for the modules in a short exact sequence. This will allow us to apply Proposi-
tion 9.60 to get the long exact sequence for derived functors.

Lemma 9.85. Given an exact sequence of R-modules

0→M → N → P → 0

and injective resolutions M → I• and P → J•, we can find a commutative diagram
of complexes4

0 // M //

��

N //

��

P

��

// 0

0 // I•
u // Q•

v // J• // 0,

such that for every i, the sequence

0→ Ii → Qi → J i → 0

is (split) exact. In particular, the middle vertical arrow in the above commutative
diagram gives an injective resolution of N .

4We think of the top row as an exact sequence of complexes, with the only nontrivial entries
in degree 0.
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Proof. For every i ≥ 0, we put Qi = Ii ⊕ J i and take the maps ui : Ii → Qi

and vi : Qi → J i to be the canonical injection and surjection, respectively. We
will show that we can find morphisms N → Q0 and Qi → Qi+1 for i ≥ 0 such
that we have a commutative diagram of complexes as in the lemma. We define
(α, β) : N → Q0 = I0⊕J0, where β is the compositionN → P → J0 and α : N → I0

is an extension of the map M → I0 (we use here the fact that I0 is injective). We
thus obtain a commutative diagram

0 // M //

��

N //

��

P

��

// 0

0 // I0 // Q0 // J0 // 0,

and it follows easily (one could also use Proposition 9.60) that we get a short exact
sequence

0→ coker(M → I0)→ coker(N → Q0)→ coker(P → J0)→ 0.

We can now repeat the construction to obtain the commutative diagram of com-
plexes in the statement.

Finally, it is clear, by construction, that Qi is an injective R-module for every
i ≥ 0 (it is easy to see, using the definition, that the direct sum of two injective
modules is injective). The fact that N → Q• is an injective resolution follows from
Proposition 9.60. �

Of course, there is a similar statement for projective resolutions and we leave
formulating and proving that as an exercise for the reader. We now turn to the
definition of derived functors. We want to construct derived functors for 2 functors:
a left exact functor, namely HomR(M,−) and a right exact functor, namely M⊗R−
(we also have a left exact contravariant functor, namely HomR(−,M), but it will
turn out that this does not need separate treatment). In what follows, we explain
in detail the case of HomR(M,−) and only state the corresponding statements for
M ⊗R −.

Suppose that F : C → D is a left exact additive functor, where C = Mod(R)
and D =Mod(S), where R and S are fixed rings. In order to measure the failure
of F to be exact, we will extend it to a sequence of functors, as follows.

Definition 9.86. A cohomological δ-functor is a sequence of functors (F i)i≥0

from C to D, together with the following data: for every short exact sequence in C

(9.6) 0 −→ A′
u−→ A

v−→ A′′ −→ 0,

we have “connecting morphisms” δ : F i(A′′) → F i+1(A′) for i ≥ 0, such that the
complex

0→ F 0(A′)
F 0(u)−→ F 0(A)

F 0(v)−→ F 0(A′′)
δ−→ F 1(A′)

F 1(u)−→ F 1(A)→ . . .

is exact (this is the long exact sequence associated to (9.6)). Moreover, the con-
necting morphisms are required to be functorial: given a morphism of short exact
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sequences

0 // A′ //

��

A //

��

A′′

��

// 0

0 // B′ // B // B′′ // 0,

for every i ≥ 0 we have a commutative diagram

F i(A′′)
δ //

��

F i+1(A′)

��
F i(B′′)

δ // F i+1(B′).

Definition 9.87. Given two cohomological δ-functors (Fi)i≥0 and (Gi)i≥0 from
C to D, a morphism of cohomological δ-functors is given by natural transformations
(Fi → Gi)i≥0 such that for every short exact sequence in C

0→ A′ → A→ A′′ → 0,

we have a commutative diagram

F i(A′′)
δ //

��

F i+1(A′)

��
Gi(A′′)

δ // Gi+1(A′′).

Note that in this case, by the functoriality of the transformations F i → Gi, we
have a morphism of long exact sequences.

The following is the fundamental result in the construction of derived functors.

Theorem 9.88. If F : C → D is a left exact functor, then there is a cohomo-
logical δ-functor (RiF )i≥0 such that the following two conditions are satisfied:

i) We have a natural isomorphism R0F ' F , and
ii) RiF (I) = 0 for every injective object I ∈ C and every i ≥ 1.

Such a cohomological δ-functor is unique up to a unique isomorphism that corre-
sponds to the identity on R0F ' F . Moreover, if (Gi)i≥0 is any cohomological
δ-functor and we have a functorial transformation F → G0, then there is a unique
extension of this to a morphism of cohomological δ-functors (RiF )i≥0 → (Gi)i≥0.

Proof. For every object A in C, we choose an injective resolution A→ I• and
put

RiF (A) := Hi
(
F (I•)

)
.

Given a morphism f : A → B, if A → I• and B → J• are the chosen injective
resolutions, then it follows from Proposition 9.83 that there is a morphism u : I• →
J• such that we have a commutative diagram

A //

f

��

I•

u

��
B // J•.
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We put RiF (f) = Hi
(
F (u)

)
. Note that u is not unique, but if v is another such

morphism, then it follows from Proposition 9.83 that u and v are homotopic. In
this case it follows from the definition (and the fact that F is additive) that F (u)
and F (v) are homotopic, so they induce the same morphism in cohomology by
Remark 9.54). Using this, it is straightforward to see that as defined RiF is a
functor. This also shows that if A → I ′

•
is another injective resolution, then we

have a canonical isomorphism RiF (A) ' Hi
(
F (I ′

•
)
)
.

We now show that we can put on the sequence (RiF )i≥0 the structure of a
δ-functor. Suppose that we have an exact sequence

0→ A′ → A→ A′′ → 0

and that the chosen injective resolutions are A′ → I•, A → I•, and A′′ → I ′′
•
. It

follows from Lemma 9.85 that there is an injective resolution A→ Q• such that we
have a commutative diagram of complexes

0 // A′ //

��

A //

��

A′′

��

// 0

0 // I ′• // Q• // I ′′• // 0,

such that for every i, the sequence

0→ I ′
m → Qm → I ′′

m → 0

is split exact. Since applying F preserves split exact sequences (see Remark 9.64),
we obtain a short exact sequence of complexes

0→ F (I ′
•
)→ F (Q•)→ F (I ′′

•
)→ 0,

and Proposition 9.60 gives a long exact sequence

. . . −→ RiF (A′) −→ Hi
(
F (Q•)

)
−→ RiF (A′′)

δ−→ Ri+1F (A′) −→ . . . .

Since we have a canonical isomorphism RiF (A) ' Hi
(
F (Q•)

)
and since the con-

necting homomorphisms that we constructed are functorial with respect to mor-
phisms of short exact sequences, we see that (RiF )i≥0 form a δ-functor.

The fact that we have a functorial isomorphismR0F ' F follows from definition
and the fact that F is a left exact functor. In order to see that if Q is an injective
object in C, then RiF (Q) = 0 for i ≥ 1, we may consider the injective resolution
I• of Q such that Q → I0 is the identity and Ii = 0 for i ≥ 1. In this case, the
assertion is clear.

Note now that the uniqueness of the sequence (RiF )i≥0 follows if we show that
properties i) and ii) imply the last assertion in the theorem. Given an object A in
C, choose an exact sequence

(9.7) 0→ A→ I → B → 0,

where I is injective. The long exact sequence for (9.7) gives a commutative diagram

0 // F (A) //

��

F (I) //

��

F (B) //

��

R1F (A) // 0

0 // G0(A) // G0(I) // G0(B) // G1(A)
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and since the top row is exact (we use here that R1F (I) = 0), we obtain an induced
morphism R1F (A)→ G1(A) that makes the square commutative. It is easy to see,
arguing as before, that this is independent of the choice of I and gives a natural
transformation of functors.

We construct the natural transformations RiF → Gi by induction on i ≥ 1.
We have just treated the case i = 1. Suppose now that we have constructed this
transformation for some i ≥ 1. The long exact sequence for (9.7) also gives the
horizontal maps in

RiF (B)

��

// Ri+1F (A)

Gi(B) // Gi+1(A),

in which the vertical map is given by the inductive assumption. Since the top hori-
zontal map is an isomorphism (we use here the fact that RiF (I) = 0 = Ri+1F (I)),
it follows that we have a unique map Ri+1F (A)→ Gi+1(A) that makes the square
commutative. It is then not hard to see that the transformations (RiF → Gi)i≥0

constructed in this way give a morphism of δ-functors and that this is the unique
such morphism that extends F → G0. �

Definition 9.89. The functor RiF in the above theorem is the ith right derived
functor of F . If F = HomR(M,−), for an R-module M , then we write ExtiR(M,−)
for its ith derived functor.

Remark 9.90. Given a morphism of R-modules u : M →M ′, we get a natural
transformation of functors

HomR(M ′,−)→ HomR(M,−)

given by precomposing with u. Using the last assertion in Theorem 9.88, we see that
we get a unique extension between the corresponding δ-functors given by natural
transformations

ExtiR(M ′,−)→ ExtiR(M,−) for i ≥ 0.

We proceed similarly to construct the derived functors of M ⊗R −. We only
briefly mention how things have to be modified in this case.

Definition 9.91. A homological δ-functor is a sequence of functors (Fi)i≥0

from C to D, together with the following data: for every short exact sequence in C

0 −→ A′
u−→ A

v−→ A′′ −→ 0,

we have “connecting morphisms” δ : Fi(A
′′) → Fi−1(A′) for i ≥ 1, such that the

complex

. . .→ F1(A)
F1(v)−→ F1(A′′)

δ−→ F0(A′)
F0(u)−→ F0(A)

F0(v)−→ F0(A′′)→ 0

is exact. Moreover, the connecting morphisms are required to be functorial: given
a morphism of short exact sequences

0 // A′ //

��

A //

��

A′′

��

// 0

0 // B′ // B // B′′ // 0,
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for every i ≥ 1 we have a commutative diagram

Fi(A
′′)

δ //

��

Fi−1(A′)

��
Fi(B

′′)
δ // Fi−1(B′).

The notion of morphism of homological δ-functors is defined in the obvious way.

Theorem 9.92. If F : C → D is a right exact functor, then there is a homolog-
ical δ-functor (LiF )i≥0 such that the following two conditions are satisfied:

i) We have a natural isomorphism L0F ' F , and
ii) LiF (P ) = 0 for every projective object P ∈ C and every i ≥ 1.

Such a homological δ-functor is unique up to a unique isomorphism that corresponds
to the identity on L0F ' F . Moreover, if (Gi)i≥0 is any homological δ-functor and
we have a functorial transformation G0 → F , then there is a unique extension of
this to a morphism of homological δ-functors (Gi)i≥0 → (LiF )i≥0.

Proof. The proof is entirely analogous to that of Theorem 9.88, so we only
mention how LiF is defined: for every R-module M , we choose a projective res-
olution P• → M , and put LiF (M) := Hi

(
F (P•)

)
. The proof then proceeds as

before. �

Definition 9.93. The functor LiF in the above theorem is the ith left derived
functor of F . If F = M ⊗R −, for an R-module M , then we write TorRi (M,−) for
its ith left derived functor.

Remark 9.94. Given a morphism of R-modules u : M →M ′, we have a natural
transformation of functors

M ⊗R − →M ′ ⊗R −.
Using the last assertion in Theorem 9.92, we see that we get a unique extension
between the corresponding δ-functors given by natural transformations

TorRi (M,−)→ TorRi (M ′,−) for i ≥ 0.

The following result shows, in particular, that the R-modules ExtiR(M,N) can
also be computed using a projective resolution of M .

Proposition 9.95. Given an R-module M and a projective resolution P•
ε−→

M , the sequence of functors (
Hi(HomR(P•,−))

)
i≥0

admits a structure of cohomological δ-functor that is isomorphic to
(
ExtiR(M,−)

)
i≥0

.

Proof. For every R-module N , the complex C•(N) := HomR(P•, N) is given
by

0→ HomR(P0, N)→ HomR(P1, N)→ . . . .

It is clear that we get a functorMod(R)→ Com(Mod(R)). By taking cohomology,
we get a sequence of functors Gi = Hi

(
C•(−)

)
. Note that since HomR(−, N), is

left exact, it follows that we have an isomorphism of functors G0 ' HomR(M,−).
Suppose now that we have a short exact sequence

0→ N ′ → N → N ′′ → 0.
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Since HomR(Pi,−) is an exact functor for every i, we have a short exact sequence
of complexes

0→ HomR(P•, N
′)→ HomR(P•, N)→ HomR(P•, N

′′)→ 0.

In this case, it follows from Proposition 9.60 that for every i, we have a morphism
δ : Gi(N ′′)→ Gi+1(N ′) such that we have a long exact sequence

0→ G0(N ′)→ G0(N)→ G0(N ′′)→ G1(N ′)→ G1(N)→ . . . .

Moreover, it is easy to see that δ is functorial with respect to morphisms of exact
sequences. Therefore (Gi)i≥0 is a cohomological functor.

By the uniqueness assertion in Theorem 9.88, we see that the assertion in the
proposition follows if we show that Gi(N) = 0 for all i ≥ 1 if N is injective. This is
clear, by definition of projective resolutions, since the functor HomR(−, N) is exact
in this case. This completes the proof of the proposition. �

A similar argument shows the commutativity of Tor modules with respect to
the two variables.

Proposition 9.96. Given an R-module M and a projective resolution P•
ε−→

M , the sequence of functors (
Hi(P• ⊗R −)

)
i≥0

admits a structure of homological δ-functor that is isomorphic to
(
ToriR(M,−)

)
i≥0

.

In particular, we have functorial isomorphisms (with respect to both variables)

TorRi (M,N) ' TorRi (N,M) for all i ≥ 0.

Proof. The argument is similar to the one for Proposition 9.95, so we leave
it as an exercise. However, we need the exactness of the functor P ⊗R− when P is
a projective R-module. This is the content of the next lemma. �

Lemma 9.97. If P is a projective R-module, then the functor P ⊗R− is exact.

Proof. Since P is projective, it follows from Proposition 9.72 that there are
R-modules Q and F , with F free, such that P ⊕Q ' F . If F ' R(I) for some set
I, then for every R-module N we have a functorial isomorphism

(P ⊗R N)⊕ (Q⊗R N) ' N (I)

(this follows from the fact that the tensor product commutes with arbitrary direct
sums, see Proposition 9.45). Since it is clear that a direct sum of complexes is exact
if and only if each complex is exact, we obtain the exactness of P ⊗R −. �

Finally, we end this chapter with a result that shows that the Ext modules also
have a long exact sequence with respect to the first variable.

Proposition 9.98. For every R-module N and every short exact sequence of
R-modules

0→M ′ →M →M ′′ → 0,

there is a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)→ Ext1
R(M ′′, N)→ Ext1

R(M,N)→ . . . ,

which is functorial with respect to both N and the short exact sequence.
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Proof. If N → I• is an injective resolution, since each HomR(−, Ip) is an
exact functor, we get a short exact sequence of complexes

0→ HomR(M ′′, I•)→ HomR(M, I•)→ HomR(M ′, I•)→ 0.

The assertion in the proposition follows by taking the long exact sequence of coho-
mology (see Proposition 9.60). Functoriality is straightforward to check. �

Exercise 9.99. Let M and N be finitely generated modules over the Noether-
ian ring R.

i) Show that TorRi (M,N) is a finitely generated R-module for every i ≥ 0.
ii) Show that ExtiR(M,N) is a finitely generated R-module for every i ≥ 0.

We will often use the assertions in the following exercise:

Exercise 9.100. Let M and N be R-modules. For a given a ∈ R, let fa : M →
M and ga : N → N be the maps given by multiplication by a.

i) Show that for every i ≥ 0, multiplication by a on ExtiR(M,N) is equal to
both ExtiR(fa, N) and ExtiR(M, ga).

ii) Show that for every i ≥ 0, multiplication by a on TorRi (M,N) is equal to

both TorRi (fa, N) and TorRi (M, ga).

In particular, if aM = 0 or aN = 0, then a·ExtiR(M,N) = 0 and a·TorRi (M,N) = 0.





CHAPTER 10

Flatness

Let R be an arbitrary (commutative) ring.

Definition 10.1. An R-module M is flat if the functor M ⊗R − is exact. We
say that a ring homomorphism R→ S is flat (or that S is a flat R-algebra) if S is
flat as an R-module.

Remark 10.2. We have seen in Proposition 9.66 that the functor M ⊗R − is
always right exact, hence M is flat if and only if for every injective morphism of
R-modules N → N ′, the induced morphism

M ⊗R N →M ⊗R N ′

is injective.

Example 10.3. Since R⊗R − is isomorphic to the identity functor, it is clear
that R is a flat R-module. More generally, it follows Lemma 9.97 that every pro-
jective R-module is flat. We will see in Proposition 10.11 that the converse holds
if R is Noetherian and M is finitely generated.

Remark 10.4. If R is a domain and M is a flat R-module, then M has no
torsion (that is, every nonzero element of R is a non-zero-divisor on M). Indeed,

if a ∈ R is nonzero, then multiplication by a ∈ R, gives an injective map R
·a−→ R.

Tensoring with M gives the map M
·a−→ M , and this is injective since M is a flat

R-module.

Example 10.5. If S is a multiplicative system in R, then S−1R is a flat R-
module by Example 9.63.

Example 10.6. The polynomialR-algebraR[x1, . . . , xn] is flat sinceR[x1, . . . , xn]
is a free R-module.

We begin with some general formal properties of flatness that follow directly
from definition.

Proposition 10.7. Let M be an R-module.

i) If M is flat, then for every ring homomorphism R → T , the T -module
M ⊗R T is flat.

ii) If R0 → R is a flat ring homomorphism and M is flat as an R-module,
then M is flat as an R0-module.

iii) If S ⊆ R is a multiplicative system and M is an S−1R-module, then M
is flat as an R-module if and only if it is flat as an S−1R-module.

iv) M is a flat R-module if and only if for every maximal (or prime) ideal m
in R, the Rm-module Mm is flat.

95
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Proof. The assertion in i) follows from the fact that for every T -module N ,
we have canonical isomorphisms

(M ⊗R T )⊗T N 'M ⊗R (T ⊗T N) 'M ⊗R N
(the first isomorphism is a version of the associativity property in Exercise 9.40).

Similarly, the assertion in ii) follows from the fact that for every R0-module N ,
we have a canonical isomorphism

M ⊗R0
N 'M ⊗R (R⊗R0

N).

With the notation in iii), note that if M is a flat S−1R-module, since S−1R is
a flat R-algebra by Example 10.5, we conclude that M is flat over R by ii). The
converse follows from the fact that if N is an S−1R-module, then we have canonical
isomorphisms

M ⊗S−1R N ' (M ⊗R S−1R)⊗S−1R N 'M ⊗R (S−1R⊗R N) 'M ⊗R N
(we use here the fact that if Q is an S−1R-module, then the canonical morphism
of S−1R-modules Q⊗R S−1R→ Q is an isomorphism).

We now prove iv). If M is a flat R-module, then Mm ' M ⊗R Rm is a flat
Rm-module by i) for every prime ideal m in R. Conversely, suppose that Mm is a
flat Rm-module for all maximal ideals m in R. Given an injective map of R-modules
N ′ ↪→ N , we see that for every maximal ideal m, the induced map of Rm-modules
N ′m → Nm is injective, and thus the induced homomorphism

(M ⊗R N ′)m 'Mm ⊗Rm
N ′m →Mm ⊗Rm

Nm ' (M ⊗R N)m

is injective. This implies the injectivity of

M ⊗R N ′ →M ⊗R N
by Exercise 9.58. �

We next give a characterization of flatness in terms of Tor vanishing.

Proposition 10.8. Given an R-module M , the following are equivalent:

i) M is a flat R-module.

ii) We have TorRi (M,N) = 0 for all i ≥ 1 and all R-modules N .

iii) We have TorR1 (M,N) = 0 for all R-modules N .

Proof. Suppose first that M is flat over R. Given an R-module N , if F• is a
projective resolution of N , then

TorRi (M,N) ' Hi(M ⊗R F•) = 0 for all i ≥ 1

by the flatness of M . We thus have i)⇒ii).
Since ii)⇒iii) is trivial, in order to finish the proof, it is enough to show iii)⇒i).

Given a short exact sequence of R-modules,

0→ N ′ → N → N ′′ → 0,

the corresponding long exact sequence for Tor modules gives

. . .→ 0 = TorR1 (M,N ′′)→M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

This implies that M is flat over R. �

We use the above characterization of flat modules to prove some basic properties
of flat modules.
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Corollary 10.9. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the following hold:

i) If M ′ and M ′′ are flat, then M is flat.
ii) If M and M ′′ are flat, then M ′ is flat.

Proof. Given an R-module N , it follows from Proposition 9.96 that we have
an exact complex

TorR2 (M ′′, N)→ TorR1 (M ′, N)→ TorR1 (M,N)→ TorR1 (M ′′, N).

The assertions in the proposition now follow from the characterization of flatness
in Proposition 10.8. �

Corollary 10.10. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

with M ′′ flat, for every R-module N , the sequence

0→M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

is exact.

Proof. It follows from it follows from Proposition 9.96 that we have an exact
sequence

TorR1 (M ′′, N)→M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0.

Since M ′′ is flat, it follows from Proposition 10.8 that TorR1 (M ′′, N) = 0, and we
get the assertion in the corollary. �

Proposition 10.11. If M is a finitely generated module over the Noetherian
ring R, then M is flat if and only if it is projective.

Proof. By Theorem 9.74, we know that M is projective if and only if Mm is
a free Rm-module for every maximal ideal m of R. By Proposition 10.7, we know
that M is flat if and only if Mm is a flat Rm-module. Therefore it is enough to show
that if (R,m) is a local Noetherian ring, then M is flat if and only if it is free. By
Example 10.3, we only need to prove the “only if” part. The argument is entirely
similar to the one in the proof of Theorem 9.74. After choosing a basis of M/mM
over R/m, we get a surjective R-map p : F = R⊕n → M . If K = ker(p), then we
have a short exact sequence

0→ K → F →M → 0.

Since M is a flat R-module, it follows from Corollary 10.10 that the induced se-
quence

0→ K/mK → (R/m)⊕n
p−→M/mM → 0

is exact. By construction, p is an isomorphism, hence K = mK, and thus K = 0
by Nakayama’s lemma. �

Our next goal is to show that flat ring homomorphisms satisfy the Going-Down
property. We begin with a lemma which is of independent interest: it shows that
for flat local homomorphisms of local rings, vanishing or exactness can be checked
after applying extension of scalars.
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Lemma 10.12. If ϕ : (R,m)→ (S, n) is a flat local homomorphism of local rings,
then the following hold:

i) For every R-module M , we have M = 0 if and only if M ⊗R S = 0.
ii) For every morphism of R-modules u : M → N , we have u = 0 if and only

if u⊗R idR = 0. In particular, ϕ is injective.
iii) Given two maps of R-modules

M ′
u−→M

v−→M ′′,

this is an exact sequence if and only if

M ′ ⊗R S
u⊗idB−−−−→M ⊗R S

v⊗idB−−−−→M ′′ ⊗R S

is an exact sequence.

Proof. In order to prove i), note that if u ∈M is nonzero and I = AnnR(u),
then I ⊆ m and Ru ' R/I. We thus have an inclusion R/I ↪→M and the flatness
assumption implies that the induced morphism S/IS ' R/I ⊗R S → M ⊗R S is
injective. Since IS ⊆ n, it follows that S/IS is nonzero, hence M ⊗R S is nonzero.

If u : M → N is a morphism of A-modules, since M is flat, we have

Im(u⊗R S) ' Im(u)⊗R S,

hence by i), Im(u ⊗R S) = 0 if and only if Im(u) = 0. We thus obtain the first
assertion in ii), and the second one follows by taking u to be the multiplication on
R with an element a ∈ R.

The “only if” part in iv) follows directly from flatness. For the “if” part, note
first that we get v ◦ u = 0 by ii). The fact that ker(v) = Im(u) follows from i) and
the fact that by flatness, we have

ker(v ⊗R S)/Im(u⊗R S) '
(

ker(v)/Im(u)
)
⊗R S.

�

Proposition 10.13 (Going-Down for flat homomorphisms). If ϕ : R→ S is a
flat ring homomorphism, then given prime ideals p1 ⊆ p2 in R and q2 in S such
that ϕ−1(q2) = p2, there is a prime ideal q1 ⊆ q2 in S such that ϕ−1(q1) = p1.

Proof. Note that the induced local ring homomorphism ψ : Rp2 → Sq2 is flat.
Indeed, this can be written as a composition

Rp2 → Sp2 → Sq2 .

The first homomorphism is flat since ϕ is flat, see Proposition 10.7i), and the second
one is flat by Example 10.5. Therefore the composition is flat by Proposition 10.7ii).

It is enough to show that there is a prime ideal q′1 in Sq2 such that ψ−1(q′1) =
p1Rp2

. Indeed, in this case we have q′1 = q1Sq2
, for some prime ideal q1 ⊆ q2

and by taking the inverse image in R we see that ϕ−1(q1) = p1. After replacing
ϕ by ψ, we may thus assume that (R, p2) and (S, q2) are local rings and ϕ is
a local homomorphism. In this case every prime ideal in S is contained in q2.
Since the prime ideals in S lying over p1 are in bijection with the prime ideals in
Sp1

/p1Sp1
' (Rp1

/p1Rp1
)⊗R S, it is enough to show that this ring is not the zero

ring. This is a consequence of Lemma 10.12i). �
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Proposition 10.14. If ϕ : R → S is a ring homomorphism that satisfies the
Going-Down property in the previous proposition, then for every prime ideal q, if
we put p = φ−1(q), then

dim(Sq/pSq) ≤ dim(Sq)− dim(Rp).

Proof. Let r = dim(Sq/pSq) and s = dim(Rp). We can choose prime ideals
ps ( . . . ( p0 = p in R and qr ( . . . ( q0 = q in S, with pS ⊆ qr. Applying the
Going-Down property successively, we obtain a sequence of prime ideals p′s ⊆ . . . ⊆
p′0 ⊆ qr such that ϕ−1(p′i) = pi for 0 ≤ i ≤ s. In particular, we have p′i 6= p′i+1 for
0 ≤ i ≤ s− 1 (however, we might have p′0 = qs). From the sequence of prime ideals
in S

p′s ( . . . ( p′1 ( qr ( . . . ( q0 = q,

we conclude that dim(Sq) ≥ r + s. �

The concept of flatness is particularly useful for ring homomorphisms R → S,
as it implies a certain uniform behavior of the fibers. The following result is an
instance of this phenomenon.

Corollary 10.15. If ϕ : R → S is a flat homomorphism of Noetherian rings,
then for every prime ideal q in S, if we put p = ϕ−1(q), then

dim(Sq) = dim(Rp) + dim(Sq/pSq).

Proof. The inequality “≥” follows from Propositions 10.13 and 10.14, while
the opposite inequality follows from Theorem 7.58. �

Exercise 10.16. Let (I,≤) be a filtered ordered set (filtered means that for
every i, j ∈ I, there is k ∈ I such that i ≤ k and j ≤ k). Given a ring R and a
direct system (Ni, fij) of R-modules over R, show that for every R-module M and
every n ∈ Z≥0, we have a functorial isomorphism

lim−→TorRn (M,Ni) ' TorRn (M, lim−→Ni).

Exercise 10.17. Let M be an R-module. Show that the following are equiva-
lent:

i) M is a flat module.

ii) For every ideal I in R, we have TorR1 (M,R/I) = 0.
iii) For every ideal I in R, the canonical morphism I ⊗RM →M is injective.
ib) For every finitely generated ideal I in R, the canonical morphism I ⊗R

M →M is injective.

Exercise 10.18. Show that if R is a Dedekind ring and M is an R-module,
then M is flat if and only if it has no torsion.

Exercise 10.19. Show that the following ring homomorphisms are not flat:

i) The inclusion k[t2, t3] ↪→ k[t].
ii) f : k[x, y]→ k[x, y] given by f(x) = x and f(y) = xy.
iii) The canonical surjection R → R/I, where R is a local Noetherian ring

and I is a nonzero ideal.





CHAPTER 11

Depth and Cohen-Macaulay rings and modules

In the first section we introduce the notion of regular sequences and depth of a
module. After dimension, the depth is the most important numerical invariant of
a module. In the second section we give an introduction to Cohen-Macaulay rings
and modules, key concepts in commutative algebra. Finally, in the last section we
discuss the Koszul complex and its connection with regular sequences and depth.

11.1. Regular sequences and depth

The following is a key notion for this chapter.

Definition 11.1. Given a module M over the ring R, a sequence of elements
x1, . . . , xn ∈ R is an M -regular sequence (or a regular sequence for M) if the
following conditions hold:

i) We have (x1, . . . , xn)M 6= M .
ii) For every i with 1 ≤ i ≤ n, the element xi is a non-zero-divisor on the

R-module M/(x1, . . . , xi−1)M .

If M = R, we simply say that x1, . . . , xn form a regular sequence.

Remark 11.2. If x1, . . . , xn is an M -regular sequence and S is a multiplicative
system in R such that S−1M/(x1, . . . , xn)S−1M 6= 0, then it is easy to see that
x1

1 , . . . ,
xn

1 ∈ S
−1R is an S−1M -regular sequence (this follows from the fact that a

non-zero-divisor on a module is also a non-zero-divisor on any localization of that
module). As we will see later, regular sequences tend to behave better when we
work in a local ring.

Remark 11.3. The order of the elements in a regular sequence is important:
for example, if R = k[x, y, z]/

(
(x − 1)z

)
, then x, (x − 1)y is a regular sequence,

but (x − 1)y, x is not a regular sequence: for the first assertion, note that R is
reduced, with minimal prime ideals (x − 1) and (z) and x is not in any of these,
hence it is a non-zero-divisor. Furthermore, R/(x) ' k[y, z]/(z) ' k[y] and the
image of (x− 1)y corresponds to y ∈ k[y], hence it is a non-zero-divisor. Note also
that R/

(
x, (x− 1)y) 6= 0, and thus x, (x− 1)y is a regular sequence. On the other

hand, (x− 1)y, x is not a regular sequence since (x− 1)y is a zero divisor: we have
(x− 1)yz = 0, but z 6= 0 in R.

We now show that this issue does not arise if R is a local ring.

Proposition 11.4. Let M be a finitely generated module over a local Noe-
therian ring (R,m). If x1, . . . , xn is an M -regular sequence, then any permutation
of this is a regular sequence.

Proof. Since every permutation is a composition of transpositions of the form
(i, i + 1), it is clear that it is enough to show that for every such module M ,

101
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if x, y is an M -regular sequence, then also y, x is an M -regular sequence. Since
(x, y)M 6= M , we have x, y ∈ m.

The key point is showing that y is a non-zero-divisor on M . Suppose that
u ∈ M is such that yu = 0, but u 6= 0. By Krull’s Intersection Theorem, there is
k ≥ 0 such that u ∈ xkM r xk+1M . If we write u = xkv, since yu = 0 and x is
a non-zero-divisor on M , it follows that yv = 0. Since y is a non-zero-divisor on
M/xM , it follows that v ∈ xM , hence u ∈ xk+1M , a contradiction.

Finally, we need to show that x is a non-zero-divisor on M/yM . This, in fact,
does not need the fact that R is local: if w1 ∈ M is such that xw1 = 0 in M/yM ,
then there is w2 ∈M such that xw1 = yw2. Since y is a non-zero-divisor on M/xM ,
it follows that there is w3 ∈M such that w2 = xw3, hence x(w1 − yw3) = 0. Since
x is a non-zero-divisor on M , we conclude that w1 = yw3, hence w1 = 0 in M/yM .
This completes the proof. �

Remark 11.5. Suppose that M is a finitely generated module over a Noether-
ian ring R. If x1, . . . , xn is an M -regular sequence, then

(x1)M ( (x1, x2)M ( . . . ( (x1, . . . , xn)M.

Indeed, if 1 ≤ i ≤ n is such that xiM ⊆ (x1, . . . , xi−1)M , since xi is a non-zero-
divisor on M/(x1, . . . , xi−1)M , it follows that (x1, . . . , xi−1)M = M contradicting
condition i) in the definition of an M -regular sequence.

Since M is a Noetherian module, it follows that given any ideal I in M , every
M -regular sequence of elements in I can be completed to a maximal such sequence.
We note that if IM 6= M , an M -regular sequence x1, . . . , xn of elements in I is
maximal among such sequences if and only if I is contained in the set of zero-
divisors of M/(x1, . . . , xn)M . By Remark 5.9, this is the case if and only if there
is u ∈M r (x1, . . . , xn)M such that I · u ⊆ (x1, . . . , xn)M .

Finally, we note that the condition IM 6= M is satisfied in two important
special cases: when M = R and I 6= R and when (R,m) is local, I ⊆ m, and
M 6= 0.

Definition 11.6. Let M be a finitely generated module over a Noetherian ring
R. If I is an ideal in R, we put

depth(I,M) := min{i ≥ 0 | ExtiR(R/I,M) 6= 0}.

Note that if the set on the right-hand side is empty, then we follow the convention
that depth(I,M) = ∞. If R is a local ring and m is the maximal ideal, then we
write depth(M) for depth(m,M) (we also write depthR(M) if the ring is not clear
from the context).

The following result makes the connection with regular sequences and motivates
the above definition.

Theorem 11.7. Let R be a Noetherian ring, M a finitely generated R-module,
and I an ideal in R.

i) If IM = M , then depth(I,M) =∞.
ii) If IM 6= M , then depth(I,M) is equal to the length of every maximal

M -regular sequence of elements of I.

We first give a lemma concerning the behavior of Ext modules under localiza-
tion.
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Lemma 11.8. If R is a Noetherian ring and M and N are R-modules, with M
finitely generated, then for every multiplicative system S in R, we have functorial
isomorphisms

S−1ExtiR(M,N) ' ExtiS−1R(S−1M,S−1N).

Proof. Since M is a finitely generated module over a Noetherian ring, we
can choose a projective resolution F• → M such that all Fi are finitely generated
free R-modules. Note that in this case S−1F• → S−1M is a free resolution of the
S−1R-module S−1M . The assertion in the lemma thus follows from the functorial
isomorphisms

S−1ExtiR(M,N) ' S−1Hi
(
HomR(F•, N)

)
' Hi

(
S−1HomR(F•, N)

)
' Hi

(
HomS−1R(S−1F•, S

−1N)
)
' ExtiS−1R(S−1M,S−1N).

Here the first and the last isomorphisms follow from Proposition 9.95, the sec-
ond one follows from the exactness of the localization functor, and the third one
follows from the fact that every Fi is isomorphic to some R⊕ni (see the proof of
Lemma 9.77). �

Proof of Theorem 11.7. Suppose first that IM = M . In order to show
that depth(I,M) = ∞ it is enough to show that for every prime ideal p in R, we
have ExtiR(R/I,M)p = 0 for all i ≥ 0. Note that by Lemma 11.8, we have

ExtiR(R/I,M)p ' ExtiRp
(Rp/IRp,Mp).

If I ⊆ p, then the hypothesis together with Nakayama’s lemma implies Mp = 0,

hence ExtiRp
(Rp/IRp,Mp) = 0. On the other hand, if I 6⊆ p, then Rp = IRp, and

again we have ExtiRp
(Rp/IRp,Mp) = 0. This completes the proof of i).

Suppose now that IM 6= M and let x1, . . . , xn be a maximal M -regular se-
quence in I. We show that depth(I,M) = n arguing by induction on n. If n = 0,
then there is no non-zero-divisor on M in I (we use here that IM 6= M). It follows
that we have u ∈ M r {0} such that I · u = 0, and thus a non-zero morphism
R/I → M that maps the image of 1 to u. This shows that Hom(R/I,M) 6= 0,
hence depth(I,M) = 0.

Suppose now that we know the assertion when we have a maximal M -regular
sequence of length n−1. Since x1 is a non-zero-divisor on M , we have a short exact
sequence

0→M
·x1−−→M →M/x1M → 0.

Note that multiplication by x1 on each ExtiR(R/I,M) is 0 since x1 ∈ I. The long
exact sequence for Ext modules thus breaks into short exact sequences

0→ ExtiR(R/I,M)→ ExtiR(R/I,M/x1M)→ Exti+1
R (R/I,M)→ 0.

This immediately implies that depth(I,M/x1M) = depth(I,M)− 1. On the other
hand, it is clear that x2, . . . , xn is a maximal M/x1M -regular sequence in I. Since
I · (M/x1M) 6= M/x1M , we conclude using the induction hypothesis that n− 1 =
depth(I,M)−1. This completes the proof of the induction step and thus the proof
of the theorem. �

Remark 11.9. It follows from the above proof that if J = rad(I), then

depth(J,M) = depth(I,M).
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Note first that we have IM = M if and only if JM = M . If this is not the case,
then it is enough to show that depth(J,M) is equal to the length of any maximal
M -regular sequence contained in I. The above proof carries through with one
modification: we need to note that if there is a non-zero u ∈M such that I ·u = 0,
then there is also a non-zero v ∈ M with J · v = 0 (indeed, if Jm ⊆ I, then there
is i ≤ m− 1 such that J iu 6= 0 and J i+1u = 0, and we can take v to be a nonzero
element in J iu). Therefore we have HomR(R/J,M) 6= 0.

Remark 11.10. It follows from the theorem that if a is an ideal in R such that
a ·M = 0, then depth(I,M) = depth

(
(I + a)/a,M

)
, where in the second depth, we

consider M as an R/a-module.

Corollary 11.11. If R, M , and I are as in the theorem, and x1, . . . , xr ∈ I
is an M -regular sequence, then

(11.1) depth
(
I,M/(x1, . . . , xr)M

)
= depth(I,M)− r.

Proof. Note first that I ·M/(x1, . . . , xr)M = M/(x1, . . . , xr)M if and only if
IM = M . We may assume that this is not the case. We have already shown the
equality in the statement, in the case r = 1, in the proof of Theorem 11.7. The
general case follows by induction on r. �

Corollary 11.12. If R, M , and I are as in the theorem and J is an ideal
containing I, then

depth(I,M) ≤ depth(J,M).

Proof. The follows immediately from the description via regular sequences in
the theorem. �

Corollary 11.13. If R, M , and I are as in the theorem, then

depth(I,M) = min{depth(Mp) | p ⊇ I},
where the minimum is over the prime ideals p containing I. In particular, if m is a
maximal ideal in R, then depth(m,M) = depth(Mm).

Proof. For every prime ideal p and every i, we have

ExtiR(R/I,M)p ' ExtiRp
(Rp/IRp,Mp)

by Lemma 11.8. We thus obtain

depth(I,M) ≤ depth(IRp,Mp) ≤ depth(Mp),

where the second inequality follows from Corollary 11.12.
If IM = M , then we are done. Suppose now that IM 6= M and let x1, . . . , xn

be a maximal M -regular sequence contained in I. Since every element of I is a zero-
divisor on M/(x1, . . . , xn)M , it follows that there is p ∈ AssR

(
M/(x1, . . . , xn)M

)
such that I ⊆ p (see Remark 5.9). Since pRp ∈ AssRp

(
Mp/(x1, . . . , xn)Mp

)
, it

follows that x1

1 , . . . ,
xn

1 is a maximal Mp-regular sequence in pRp, and thus

depth(I,M) = depth(Mp).

�

Proposition 11.14. Given a short exact sequence

0→M ′ →M →M ′′ → 0

of finitely generated modules over the Noetherian ring R, the following hold:
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i) depth(I,M) ≥ min{depth(I,M ′),depth(I,M ′′)}.
ii) depth(I,M ′) ≥ min{depth(I,M),depth(I,M ′′) + 1}.

iii) depth(I,M ′′) ≥ min{depth(I,M),depth(I,M ′)− 1}.

Proof. All assertions follows directly from definition and the long exact se-
quence for the Ext modules:

. . .→ Exti−1
R (R/I,M ′′)→ ExtiR(R/I,M ′)→ ExtiR(R/I,M)

→ ExtiR(R/I,M ′′)→ Exti+1
R (R/I,M ′)→ . . . .

�

Proposition 11.15. If M is a finitely generated module over a Noetherian
local ring (R,m), then for every p ∈ AssR(M), we have

depth(M) ≤ dim(R/p).

In particular, if M 6= 0, then depth(M) ≤ dim(M).

Proof. Let p ∈ AssR(M). In particular, we see that M 6= 0, and thus mM 6=
M by Nakayama’s lemma. We argue by induction on n = depth(M). If n = 0,
then there is nothing to prove. Otherwise, let x ∈ m be a non-zero-divisor on
M . By Corollary 11.11, we have depth(M/xM) = n − 1. On the other hand,
by hypothesis, there is u ∈ M such that p = AnnR(u). By Krull’s Intersection
theorem (see Theorem 4.22), we have

⋂
j≥0 x

jM = 0, hence there is ` ≥ 0 such

that u = x`v and v 6∈ xM . Since x is a non-zero-divisor on M , it follows that
p = AnnR(v) and thus p annihilates the non-zero element v ∈ M/xM . It follows
from Remark 5.9 that there is q ∈ AssR(M/xM) such that p ⊆ q. Note that
x ∈ AnnR(M/xM) ⊆ q, while x 6∈ p, since x is a non-zero-divisor on M . We thus
have dim(R/p) ≥ dim(R/q) + 1 and we conclude using the induction hypothesis.

The last assertion in the proposition follows from the fact that if M 6= 0, then
dim(M) is the maximum of all dim(R/p), where p runs over the minimal primes in
V
(
AnnR(M)

)
, which lie in AssR(M) by Proposition 5.16. �

Remark 11.16. A related inequality says that if a ( R is an ideal in a Noe-
therian ring R, then

depth(a, R) ≤ codim(a).

Indeed, suppose that p ⊇ a is a prime ideal such that codim(p) = codim(a). In this
case we have

depth(a, R) ≤ depth(aRp, Rp) ≤ depth(Rp) ≤ dim(Rp) = codim(p) = codim(a),

where the first inequality follows from Remark 11.2, the second one from Corol-
lary 11.12, and the third one from Proposition 11.15. This gives our assertion.

Remark 11.17. It follows from the previous remark that if x1, . . . , xn is a reg-
ular sequence in a Noetherian ring R and a = (x1, . . . , xn), then n ≤ depth(a, R) ≤
codim(a). On the other hand, it follows from the general form of the Principal
Ideal theorem (see Corollary 7.35) that every minimal prime ideal containing a has
codimension ≤ n. We deduce that

codim(a) = depth(a, R) = n;

moreover, every minimal prime ideal containing a has codimension n.
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Example 11.18. If A is a (nonzero) Noetherian ring, R = A[x1, . . . , xn], and
I = (x1, . . . , xn), then depth(I,R) = n. Indeed, x1, . . . , xn is a regular sequence: for
every i, with 1 ≤ i ≤ n, xi is a non-zero-divisor in R/(x1, . . . , xi−1) ' A[xi, . . . , xn].
It is also clear that this is a maximal regular sequence in I, since I = (x1, . . . , xn).

Example 11.19. Let k be a field, R = k[x1, . . . , xn]/(x2
1, x1x2, . . . , x1xn), and

I = (x1, . . . , xn) ⊆ R. Note that Rred = R/(x1) ' k[x2, . . . , xn], hence dim(R) =
dim(Rred) = n−1. On the other hand, I ·x1 = 0 and x1 6= 0, hence depth(I,R) = 0.

Example 11.20. Let k be a field, R = k[x1, . . . , xn]/(x2
1 + . . . + x2

n), and
I = (x1, . . . , xn). Note that x1, . . . , xn−1 form a regular sequence: this is due to
the fact that

R/(x1, . . . , xi−1) ' k[xi, . . . , xn]/(x2
i + . . .+ x2

n)

and xi is a non-zero-divisor on k[xi, . . . , xn]/(x2
i +. . .+x2

n) for i ≤ n−1. In fact, it is
a maximal regular sequence, since I ·xn ⊆ (x1, . . . , xn−1), while xn 6∈ (x1, . . . , xn−1).
Therefore depth(I,R) = n− 1.

Exercise 11.21. Let (R,m) be a Noetherian local ring and M a finitely gen-
erated R-module. Show that if x1, . . . , xn is an M -regular sequence, then for every
positive integers a1, . . . , an, the sequence xa11 , . . . , xann is M -regular.

Exercise 11.22. Let f : (R,m) → (S, n) be a local homomorphism of Noe-
therian local rings and let M be a finitely generated S-module that is also finitely
generated as an R module. Show that if mS is n-primary, then

depthR(M) = depthS(M).

Exercise 11.23. Let R be a Noetherian ring, I and ideal in R, and M a
finitely generated R-module. Recall that we have defined depth(I,M) as min

{
i |

ExtiR(R/I,M) 6= 0}. Show that, more generally, if N is any finitely generated
R-module with Supp(N) = V (I), then

depth(I,M) = min
{
i | ExtiR(N,M) 6= 0

}
.

11.2. The Cohen-Macaulay condition

Using the notion of depth, we introduce Cohen-Macaulay rings and modules,
give some examples, and discuss some basic properties.

Definition 11.24. If R is a Noetherian local ring and M is a finitely generated,
nonzero R-module, then M is a Cohen-Macaulay module if depth(M) = dim(M).
If R is an arbitrary Noetherian ring and M is a finitely generated R-module then M
is a Cohen-Macaulay module if Mp is a Cohen-Macaulay Rp-module for all maximal
ideals p ∈ Supp(M) (thus, by convention, M = 0 is considered Cohen-Macaulay).
If M = R, we say instead that R is a Cohen-Macaulay ring.

Remark 11.25. It follows from Remark 11.10 that if M is a finitely generated
module over a Noetherian ring R and a is an ideal in R such that a ·M = 0, then M
is a Cohen-Macaulay module over R if and only if it is a Cohen-Macaulay module
over R/a.

In what follows we give some general properties of Cohen-Macaulay rings and
modules.
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Proposition 11.26. Let M be a finitely generated module over a Noetherian
ring R and x1, . . . , xn is an M -regular sequence. If M is Cohen-Macaulay, then
M/(x1, . . . , xn)M is Cohen-Macaulay, and the converse holds if R is a local ring.

Proof. Suppose first that R is a local ring. Arguing by induction on n, it is
clear that it is enough to treat the case n = 1. In this case, since x1 is a non-zero-
divisor on M , it follows from Exercise 7.47 that

dim(M/x1M) = dim(M)− 1,

while Corollary 11.11 gives

depth(M/x1M) = depth(M)− 1.

The assertion in the proposition now follows from the definition.
Suppose now that M is Cohen-Macaulay, but R is not necessarily local. In

order to deduce that M/(x1, . . . , xn)M is Cohen-Macaulay, it is enough to apply
what we have already proved after localization at any maximal ideal in the support
of M/(x1, . . . , xn)M . �

The following result gives a very useful property of Cohen-Macaulay modules.

Proposition 11.27. If M is a Cohen-Macaulay module over the Noetherian
ring R, then every associated prime of M is minimal in Supp(M). Moreover, if R is
local, then for every minimal prime p in Supp(M), we have dim(R/p) = dim(M).

Proof. If p ∈ AssR(M), then after localizing at some maximal ideal containing
p, we reduce to the case when R is a local ring. Since every associated prime of M
contains a minimal prime in Supp(M), both assertions in the proposition follow if
we show that for every associated prime p of M , we have dim(R/p) = dim(M).

Note that by Proposition 11.15, we have

depth(M) ≤ dim(R/p) ≤ dim(M).

Since M is a Cohen-Macaulay module, it follows that the above inequalities are
equalities. �

Proposition 11.28. If M is a Cohen-Macaulay module over the Noetherian
ring R, then for every prime ideal p in R, the Rp-module Mp is Cohen-Macaulay.

Proof. We may and will assume that p ∈ Supp(M), since otherwise the as-
sertion is trivial. Let m be a maximal ideal containing p. After replacing R and
M by Rm and Mm, respectively, we may and will assume that R is a local ring.
We need to show that depth(Mp) = dim(Mp). For this, we argue by induction
on r = depth(Mp). If r = 0, then p ∈ AssR(M). Since M is Cohen-Macaulay, it
follows from Proposition 11.27 that p is a minimal prime in Supp(M), and thus
dim(Mp) = 0.

Suppose now that r ≥ 1. In this case p 6∈ AssR(M), and since all primes in
AssR(M) are minimal in Supp(M) by Proposition 11.27, it follows that is h ∈ p
which is a non-zero-divisor on M . We then have depth(Mp/hMp) = r − 1 by
Corollary 11.11. SinceM/hM is a Cohen-Macaulay R-module by Proposition 11.26,
we can apply the inductive hypothesis to conclude that r − 1 = dim(Mp/hMp).
Since h is a non-zero-divisor on M , its image in Rp is also a non-zero-divisor on
Mp, hence Exercise 7.47 gives

dim(Mp) = dim(Mp/hMp) + 1 = r.
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This completes the proof of the induction step. �

Corollary 11.29. If M is a Cohen-Macaulay over the ring R and S ⊆ R is a
multiplicative system, then S−1M is a Cohen-Macaulay S−1R-module.

Proof. Any maximal ideal of S−1R is of the form S−1p, for some prime
ideal p in R with S ∩ p = ∅ and (S−1M)S−1p = Mp is Cohen-Macaulay by the
proposition. �

Proposition 11.30. A Noetherian ring R is Cohen-Macaulay if and only if for
every ideal a ( R, we have

depth(a, R) = codim(a).

Proof. Note that by Proposition 11.13, we have

depth(a, R) = min
p

depth(Rp),

where the minimum is over all prime ideals p containing a. If R is Cohen-Macaulay,
then every such Rp is a Cohen-Macaulay ring by Proposition 11.28, hence

min
p

depth(Rp) = min
p

dim(Rp) = codim(a).

Conversely, if depth(a, R) = codim(a) for all proper ideals a, then in particular
it holds for all maximal ideals m. On the other hand, for every such m, we have

depth(m, R) = depth(Rm) ≤ dim(Rm) = codim(m),

where the first equality follows from Proposition 11.13 and the inequality follows
from Proposition 11.15. We thus conclude that depth(Rm) = dim(Rm) for every
maximal ideal m, hence R is Cohen-Macaulay. �

Example 11.31. If R is a reduced, Noetherian ring with dim(R) = 1, then
R is Cohen-Macaulay. Indeed, it is enough to show that if a is not contained in
any minimal prime, then depth(a) ≥ 1. This follows from the fact that since R is
reduced, all associated primes of R are minimal, see Remark 5.19.

Example 11.32. If R is a normal Noetherian ring, with dim(R) = 2, then R
is Cohen-Macaulay. Indeed, after localizing at a maximal ideal, we may and will
assume that (R,m) is local and dim(R) = 2 (if dim(R) = 1, then we may apply
the previous example). In this case R is a domain and any a ∈ m is a non-zero-
divisor. Moreover, m 6∈ Ass

(
R/(a)

)
by Proposition 8.41, hence depth(R) ≥ 2. Since

dim(R) = 2, we conclude that R is Cohen-Macaulay.

The following result will provide us with interesting examples of Cohen-Macaulay
rings:

Theorem 11.33. If R is a Cohen-Macaulay ring, then S = R[x] is a Cohen-
Macaulay ring too.

We begin with a lemma concerning the behavior of regular sequences under flat
homomorphisms:

Lemma 11.34. If f : R→ S is a flat homomorphism and x1, . . . , xn ∈ R form a
regular sequence such that (x1, . . . , xn)S 6= S, then f(x1), . . . , f(xn) form a regular
sequence in S.
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Proof. It is enough to show that for 1 ≤ i ≤ n, f(xi) is a non-zero-divisor
on S/

(
f(x1), . . . , f(xi−1)

)
. This follows from the fact that R/(x1, . . . , xi−1) →

S/
(
f(x1), . . . , f(xi−1)

)
is a flat homomorphism by Proposition 10.7i), hence mul-

tiplication by xi on R/(x1, . . . , xi−1) being injective implies that multiplication by
f(xi) on S/

(
f(x1), . . . , f(xi−1)

)
is injective. �

Proof of Theorem 11.33. Let m be a maximal ideal of S and let p = m∩R.
Since R[x]m is a localization of Rp[x], it follows from Corollary 11.29 that it is
enough to show that Rp[x] is Cohen-Macaulay. Hence we may assume that (R, p)
is a local ring. Let n = dim(R) = codim(p). If k = R/p, then m/p[x] is a maximal
ideal in k[x], hence it is generated by some u, where u ∈ R[x] is a monic polynomial.
Since R is Cohen-Macaulay, we have depth(p, R) = n, and let a1, . . . , an ∈ p be
a regular sequence. Note that codim(a1, . . . , an) = n by Remark 11.17, hence
p is a minimal prime containing (a1, . . . , an). Therefore m is a minimal prime
containing (a1, . . . , an, u), and it follows that codim(m) ≤ n+ 1 by Corollary 7.35.
In order to complete the proof, it is enough to show that depth(m, S) ≥ n+ 1 (this
implies that depth(mSm, Sm) ≥ n + 1). Since S is flat over R, it follows from the
lemma that a1, . . . , an form a regular sequence in S. Moreover, u is a non-zero-
divisor on R[x]/(a1, . . . , an)R[x] = R/(a1, . . . , an)[x] since it is monic. Therefore
depth(m, S) ≥ n+ 1. �

Example 11.35. A field k is trivially Cohen-Macaulay, hence it follows from
Theorem 11.33, by induction on n, that every polynomial ring k[x1, . . . , xn] is
Cohen-Macaulay.

Example 11.36. Note that the ring Z is Cohen-Macaulay: this follows, for
example, from Example 11.31. We deduce from Theorem 11.33, by induction on n,
that every polynomial ring Z[x1, . . . , xn] is Cohen-Macaulay.

We end with two other properties that make Cohen-Macaulay rings very useful.

Theorem 11.37. If R is a local Cohen-Macaulay ring, then for every proper
ideal a of R, we have

codim(a) + dim(R/a) = dim(R).

Proof. We argue by induction on r = codim(a). If r = 0, then there is a min-
imal prime p in R such that a ⊆ p. Since dim(R/p) = dim(R) by Proposition 11.27,
we are done in this case.

Suppose now that r ≥ 1. Another application of Proposition 11.27 implies
that since a is not contained in any minimal prime of R, there is a non-zero-divisor
x ∈ a. Let R = R/(x) and a = a/(x). Note that R is Cohen-Macaulay by
Proposition 11.26 and dim(R) = dim(R) − 1 by Exercise 7.47. Since R/a ' R/a,
we are done by induction since

codim(a) = depth(a, R) = depth(a, R)− 1 = codim(a)− 1,

where the second equality follows from Remark 11.10 and Corollary 11.11, while
the other equalities follow from the fact that both R and R are Cohen-Macaulay
rings. �

Corollary 11.38. Every Cohen-Macaulay ring is catenary.
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Proof. Let R be a Cohen-Macaulay ring. In order to show that R is catenary,
it is enough to show that if p1 ( p2 are prime ideals such that there is no prime
ideal p′ with p1 ( p′ ( p2, then codim(p2) = codim(p1) + 1. After replacing R by
Rp2

, we may assume that R is local, with maximal ideal p2. It is then clear that
dim(R/p1) = 1, hence it follows from Theorem 11.37 that

codim(p2) = dim(R)− dim(R/p2) = dim(R)− dim(R/p1) + 1 = codim(p1) + 1.

�

Theorem 11.39. If (R,m) is a local Cohen-Macaulay ring and a = (x1, . . . , xr)
is a proper ideal in R, then codim(a) = r if and only if x1, . . . , xr form a regular
sequence.

Proof. If x1, . . . , xr is a regular sequence, we always have codim(a) = r by
Remark 11.17. In order to prove the converse, we may assume that r = n, where
n = dim(R) Indeed, since all prime ideals containing a have codimension ≥ r,
arguing as in the proof of Proposition 7.38, we can find xr+1, . . . , xn such that
codim(x1, . . . , xn) = n. Of course, it is enough to show that x1, . . . , xn is a regular
sequence.

We now prove the assertion by induction on n. Note that if p ∈ Ass(R), then
x1 6∈ p. Indeed, otherwise it follows from the general form of the Principal ideal
Theorem that codim(m/p) ≤ n − 1, contradicting the fact that dim(R/p) = n
by Proposition 11.27. Therefore x1 is a non-zero-divisor, hence R/(x1) is Cohen-
Macaulay by Proposition 11.26, of dimension n−1, and x2, . . . , xn generate an ideal
of codimension n− 1. We thus conclude, by induction, that x2, . . . , xn is a regular
sequence in R/(x1). Therefore x1, . . . , xn is a regular sequence in R. �

Exercise 11.40. Show that if R is a domain of finite type over a field k, then
for every prime ideal p in R, we have

dim(R) = dim(R/p) + codim(p).

Hint: reduce to the case when R = k[x1, . . . , xn] and then reduce to the fact that
if m is a maximal ideal in k[x1, . . . , xn], where k is the algebraic closure of k, then
codim(m) = n.

Exercise 11.41. Compute depth(R) ifR = k[x, y, z, w](x,y,z,w)/(xz, xw, yz, yw),
where k is a field. Is R Cohen-Macaulay?

Exercise 11.42. Let R be a Noetherian local ring and I and J two proper
ideals in R such that I ∩ J = (0). We assume that both R/I and R/J are Cohen-
Macaulay rings of dimension d and that R/(I + J) has dimension d− 1. Show that
R is a Cohen-Macaulay ring if and only if R/(I + J) is a Cohen-Macaulay ring.

11.3. The Koszul complex

In this section we discuss an important complex which can be used to resolve
ideals generated by regular sequences and which, over local rings, can be used to
compute the depth of any ideal.

Let R be a commutative ring and x = x1, . . . , xn a sequence of elements in R.
We define a complex K(x) = K(x1, . . . , xn):

0→ Kn → Kn−1 → . . .→ K1 → K0 → 0,
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as follows. For every p ∈ {0, . . . , n}, we take Kp to be a free R-module with basis
{eI | I ⊆ {1, . . . , n},#I = p}, so rank(Kp) =

(
n
p

)
. For 1 ≤ p ≤ n, we define

d : Kp → Kp−1, as follows: if I = {i1, . . . , ip} ⊆ {1, . . . , n}, with i1 < . . . < ip, we
put

d(eI) =

p∑
k=1

(−1)k−1xikeIr{ik}.

Lemma 11.43. We have d ◦ d = 0, hence K(x) is a complex.

Proof. Let p ≥ 2 and consider I = {i1, . . . , ip} ⊆ {1, . . . , n}, with i1 < . . . <
ip. By definition, we have

d ◦ d(eI) =

p∑
k=1

(−1)k−1xikd(eIr{ik}) =

p∑
k=1

∑
j<k

(−1)k+jxikxijeIr{ik,ij}

+

p∑
k=1

∑
j>k

(−1)j+k−1xikxijeIr{ik,ij} = 0.

�

Definition 11.44. The complex K(x) is the Koszul complex associated to the
sequence x. If M is an R-module, then we put K(x;M) := K(x)⊗RM . For every
i, with 0 ≤ i ≤ n, we write Hi(x;M) for Hi

(
K(x;M)

)
.

Example 11.45. If we have only one element x ∈ R, then the Koszul complex
K(x;M) consists of

0→M
·x−→M → 0.

If we have 2 elements x1, x2 ∈ R, then the Koszul complex K(x1, x2;M) is given
by

0→M
g−→M ⊕M f−→M → 0,

where g(u) = (−x2u, x1u) and f(v1, v2) = x1v1 + x2v2.

Remark 11.46. It is clear from the definition that for every R-module M , we
have

H0(x;M) 'M/(x1, . . . , xn)M.

Exercise 11.47. Show that if we permute the elements of the sequence, then
we obtain isomorphic Koszul complexes: more precisely, given a permutation σ
of {1, . . . , n}, we have an isomorphism of R-modules ϕp : Kp(xσ(1), . . . , xσ(n)) →
Kp(x1, . . . , xn) that maps eI to εIeσ(I), where if I = {i1, . . . , ip} ⊆ {1, . . . , n},
with i1 < . . . < ip, we denote by εI the signature of the permutation that orders in-
creasingly σ(i1), . . . , σ(ip). Show that (ϕi)0≤i≤n gives an isomorphism of complexes
K(xσ(1), . . . , xσ(n))→ K(x1, . . . , xn).

Exercise 11.48. Given x = x1, . . . , xn ∈ R, show that multiplication by a ∈
(x1, . . . , xn) on K(x) is homotopic to 0. In particular, if (x1, . . . , xn) = R, then for
every R-module M and every i ∈ Z, we have Hi(x;M) = 0. Hint: show that if
a =

∑n
i=1 aixi, then we get the desired homotopy by defining for every p ≥ 0 the

map θp : K(x)p → K(x)p+1 such that

θp(eI) =
∑
i 6∈I

aiε(i; I)eI∪{i},
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where if I = {i1, . . . , ip} ⊆ {1, . . . , n}, with i1 < . . . < ip, ε(i, I) = #{k | 1 ≤ k ≤
p, ik < i}.

The main results concerning the Koszul complex are proved by induction on
the length of the sequence. The next result provides the main ingredient for doing
this. For any complex F•, we denote by F•[1] the complex G• with Gn = Fn−1 for
all n ∈ Z and dG = dF .

Proposition 11.49. Given a sequence x = x1, . . . , xn of elements of R and an
R-module M , we have a short exact sequence of complexes

0→ K(x′;M)→ K(x;M)→ K(x′;M)[1]→ 0,

where x′ = x1, . . . , xn−1. Moreover, the corresponding long exact sequence of
cohomology is given by

. . .→ Hp(x
′;M)→ Hp(x;M)→ Hp−1(x′;M)

±xn−→ Hp−1(x′;M)→ . . . .

Proof. It is clear that if we define ip : Kp(x
′) → Kp(x) by in(eJ) = eJ for

every J ⊆ {1, . . . , n− 1} with #J = p, we get an injective morphism of complexes
i : K(x′) → K(x). If we define ϕp : Kp(x) → Kp−1(x′) such that for every J ⊆
{1, . . . , n} with #J = p we have ϕ(eJ) = 0 if n 6∈ J and ϕ(eJ) = eJr{n} if n ∈ J ,
we get a surjective morphism of complexes ϕ : K(x) → K(x′)[1]. Moreover, it is
clear that for every p, the sequence

0→ Kp(x
′)→ Kp(x)→ Kp−1(x′)→ 0

is split exact, hence after tensoring with M , we have a short exact sequence of
complexes

0→ K(x′;M)→ K(x;M)→ K(x′;M)[1]→ 0.

We need to show that the boundary map δ : Hp−1(x′;M)→ Hp−1(x′;M) in the
long exact sequence for cohomology is given by multiplication with ±xn. Recall
that this is defined as follows. Given u ∈ Kp−1(x′;M) such that d(u) = 0, we
write u = ϕp(v), for some v ∈ Kp(x;M), and if w ∈ Kp−1(x′;M) is such that
ip−1(w) = d(v), then δ(u) = w. If we have u =

∑
I eI ⊗ uI , with I running over

the subsets of {1, . . . , n − 1} of size p − 1, then we may take v =
∑
I eI∪{n} ⊗ uI ,

so d(v) = i(w), where w = (−1)p−1xn ·
∑
I eI ⊗ uI . This gives the formula in the

proposition. �

We next turn to the connection of the Koszul complex with regular sequences.

Theorem 11.50. Let M be an R-module and x = x1, . . . , xn a sequence of
elements of R.

i) If x is an M -regular sequence, then Hi(x;M) = 0 for i ≥ 1, while
H0(x;M) 'M/(x1, . . . , xn)M 6= 0.

ii) Conversely, if (R,m) is a local Noetherian ring, x1, . . . , xn ∈ m, and M 6=
0 is a finitely generated R-module such that Hi(x;M) = 0 for all i ≥ 1,
then x is an M -regular sequence.

Proof. We prove i) by induction on n. Note that the equality H0(x;M) =
M/(x1, . . . , xn)M holds for all x by Remark 11.46, and M/(x1, . . . , xn)M 6= 0 since
x is an M -regular sequence. If n = 1, then the complex K(x1)⊗RM consists of

0→M
x1−→M → 0.
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The map is injective since x1 is a non-zero-divisor on M , hence Hi(x1;M) = 0 for
i 6= 0.

Suppose now that n ≥ 2 and we know the assertion for n − 1. We have seen
that if x′ = x1, . . . , xn−1, then we have a long exact sequence

→ Hi(x
′;M)

±xn−−−→ Hi(x
′;M)→ Hi(x,M)→ Hi−1(x′;M)→ . . . .

By induction, we know that Hi(x
′;M) = 0 for i ≥ 1, which immediately implies

Hi(x;M) = 0 for i ≥ 2. Moreover, we have an exact sequence

0→ H1(x;M)→ H0(x′;M)
±xn−−−→ H0(x′;M).

Since H0(x′;M) ' M/(x1, . . . , xn−1)M and xn is a non-zero-divisor on the R-
module M/(x1, . . . , xn−1)M , we conclude that H1(x;M) = 0. This completes the
proof of i).

Suppose now that we are under the assumptions of ii). Note that by Nakayama’s
lemma, we have M/(x1, . . . , xn)M 6= 0, hence we only need to show that xi is a
non-zero-divisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ n. We argue again by induction
on n. If n = 1, then

0 = H1(x1;M) = ker
(
M

·x1−−→M
)
,

hence x1 is a non-zero-divisor on M .
For the induction step we use the following piece of the long exact sequence in

cohomology provided by Proposition 11.49:

Hi(x
′;M)

±xn−−−→ Hi(x
′;M)→ Hi(x;M) = 0,

where i ≥ 1 and x′ = x1, . . . , xn−1. SinceK(x′;M) is a complex of finitely generated
modules over the Noetherian ring R, Hi(x

′;M) is a finitely generated R-module,
and it follows from Nakayama’s lemma that Hi(x

′;M) = 0 for all i ≥ 1, hence
by induction x1, . . . , xn−1 is an M -regular sequence. Moreover, we have an exact
sequence

0 = H1(x;M)→ H0(x′;M)
±xn−−−→ H0(x′;M).

Therefore xn is a non-zero-divisor on H0(x′;M) ' M/(x1, . . . , xn−1)M , and thus
x1, . . . , xn is an M -regular sequence. �

Remark 11.51. Since the Koszul complex for a permutation of a sequence is
isomorphic to the Koszul complex for the original sequence (see Exercise 11.47),
using Theorem 11.50 we get another proof for the fact that if M is a finitely gener-
ated module over the Noetherian local ring (R,m) and x is an M -regular sequence,
then every permutation of x is still M -regular (cf. Proposition 11.4).

When the ring is local, we can use the Koszul complex to compute the depth, as
follows. The proof is similar to that of Theorem 11.50, see [Mat89, Theorem 16.8].

Theorem 11.52. If (R,m) is a Noetherian local ring, M is a nonzero finitely
generated R-module, and x1, . . . , xn generate an ideal a ⊆ m with r = depth(a,M),
then

Hi(x;M) = 0 for i > n− r, and Hn−r(x,M) 6= 0.

Exercise 11.53. Let R be a Noetherian ring, M a nonzero finitely generated
module, and let I = AnnR(M).
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i) Show that depth(I,R) ≤ pdR(M). The module M is perfect if this in-
equality is an equality.

ii) Show that if an ideal J in R is generated by a regular sequence, then R/J
is a perfect R-module.

iii) Show that if M is perfect and p ∈ Supp(M), then p ∈ Ass(M) if and only
if depth(Rp) = depth(I,R).



CHAPTER 12

Regular rings

Our goal in this chapter is to discuss regular rings, their basic properties, and
their homological characterization due to Auslander-Buchsbaum and Serre.

12.1. Definition and first properties

Let (R,m, k) be a local Noetherian ring.

Definition 12.1. A system of parameters of R is a sequence x1, . . . , xd ∈ m,
where d = dim(R), such that the ideal (x1, . . . , xd) is m-primary (or equivalently,
it has codimension d).

Remark 12.2. The existence of systems of parameters is guaranteed by Propo-
sition 7.38.

Definition 12.3. For a finitely generated R-module M , we denote by µ(M)
the minimal number of elements of a system of generators of M . Recall that by
Nakayama’s lemma, we have µ(M) = dimk(M/mM) (moreover, u1, . . . , un ∈M is
a minimal system of generators if and only if u1, . . . , un ∈ M/mM is a k-basis of
M/mM). The embedding dimension of R is embdim(R) := µ(m) = dimk(m/m2).

Remark 12.4. It follows from the general form of the Principal Ideal theorem
(see Corollary 7.35) that dim(R) ≤ µ(m).

We now come to the main definition in this chapter. This is the “best” class of
rings in commutative algebra.

Definition 12.5. A Noetherian local ring (R,m) is a regular ring if µ(m) =
dim(R). In this case, a regular system of parameters of R is a minimal system of
generators x1, . . . , xd of m (so d = dim(R)).

Example 12.6. A 0-dimensional Noetherian local ring is regular if and only if
it is a field.

We begin with two results concerning the behavior of regularity with respect
to quotients.

Proposition 12.7. If (R,m) is a regular local ring and x ∈ mrm2, then R/(x)
is a regular local ring, with dim

(
R/(x)

)
= dim(R)− 1.

Proof. Since x 6∈ m2, it follows that x can be completed to a regular system
of parameters x, x2, . . . , xd, where d = dim(R). Therefore embdim

(
R/(x)

)
≤ d− 1.

On the other hand, we have dim
(
R/(x)

)
≥ d − 1 (if y1, . . . , ye is a system of

parameters of R/(x), then it is clear that (x, y2, . . . , ye) is an m-primary ideal in R,
hence d ≤ e+ 1 by the general form of the Principal Ideal theorem). We thus have
embdim

(
R/(x)

)
≤ dim

(
R/(x)

)
and since the opposite inequality always holds, it

follows that R/(x) is regular, of dimension d− 1. �

115
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Proposition 12.8. If (R,m) is a local Noetherian ring and x ∈ m is a non-
zero-divisor such that R/(x) is regular, then R is regular.

Proof. Let d = dim(R). Since x is a non-zero-divisor, it follows from Exer-
cise 7.47 that dim

(
R/(x)

)
= d−1. Since R/(x) is regular, we can find x2, . . . , xd ∈

R such that m/(x) = (x1, . . . , xd−1). We clearly have m = (x, x2, . . . , xd), hence
embdim(R) ≤ d. Since the opposite inequality always holds, it follows that R is a
regular ring. �

Proposition 12.9. If R is a regular local ring, then R is a domain.

Proof. We argue by induction on d = dim(R). If d = 0, then R is a field, and
the assertion is clear. Suppose now that d ≥ 1. If p1, . . . , pr are the minimal primes
of R, then there is x ∈ mr (m2 ∪ p1 ∪ . . . pr) (this follows by Prime Avoidance, see
Lemma 5.1). In this case it follows from Proposition 12.7 that R/(x) is a regular
ring of dimension d−1, hence it is a domain by induction. Therefore (x) is a prime
ideal of R and by our choice of x, it is not minimal, hence it strictly contains one of
the minimal primes, say pi. Suppose now that y ∈ pir{0}. By Krull’s Intersection
theorem (see Corollary 4.22), there is N ≥ 0 such that y ∈ (xN ) r (xN+1). If we
write y = xNz, for some z ∈ R, since x 6∈ pi, it follows that z ∈ pi ⊆ (x), hence
y ∈ (xN+1), a contradiction. Therefore pi = (0), hence R is a domain. �

Example 12.10. A Noetherian local ring R of dimension 1 is regular if and only
if it is a DVR (the “if” part is clear and the “only if” part follows since R regular
implies that R is a domain, and we use the description of DVRs in Proposition 8.7.

Proposition 12.11. Every regular local ring is Cohen-Macaulay.

Proof. Let (R,m) be a regular local ring of dimension d. We argue by induc-
tion on d. If d = 0, then R is a field and the assertion is clear. Suppose now that
d ≥ 1 and let x ∈ m r m2. In this case R/(x) is a regular ring of dimension d − 1
by Proposition 12.7, hence Cohen-Macaulay by the inductive assumption. On the
other hand, R is a domain by Proposition 12.9, hence x is a non-zero-divisor in R,
and thus we conclude that R is Cohen-Macaulay by Proposition 11.26. �

Remark 12.12. If (R,m) is a regular local ring, then every regular system of
parameters in R is a regular sequence. More generally, if (R,m) is any Cohen-
Macaulay ring of dimension n and x1, . . . , xn is a system of parameters, then
x1, . . . , xn is a regular sequence. Indeed, we have codim(x1, . . . , xn) = n and since
R is Cohen-Macaulay, it follows from Proposition 11.39 that x1, . . . , xn is a regular
sequence.

Proposition 12.13. If (R,m, k) is a regular local ring and I ⊆ m is an ideal,
then R/I is a regular ring if and only if I is generated by part of a regular system
of parameters.

Proof. Let R = R/I and m = m/I. Note that x1, . . . , xr ∈ m form a part
of a regular system of parameters if and only if their images in m/m2 are linearly
independent. In this case, a successive application of Proposition 12.7 implies that
R/(x1, . . . , xr) is a regular local ring of dimension dim(R)− r. This gives the “if”
part of the proposition.

Conversely, suppose that R is a regular ring of dimension dim(R)− r. Since

m/m2 = (m/I)/(m2 + I/I) ' m/m2 + I
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and we have a short exact sequence of k-vector spaces

0→ I/m2 ∩ I ' (m2 + I)/m2 → m2/m2 → m/m2 + I → 0,

it follows that

µ(m) = dimk(m/m2 + I) = µ(m)− dimk(I/m2 ∩ I).

We can thus choose x1, . . . , xr ∈ I whose images in I/m2 ∩ I ↪→ m/m2 are linearly
independent. If S = R/(x1, . . . , xr), then by what we have already proved, S is
a regular ring of dimension dim(R) − r. In particular, it is a domain, hence if
J = I/(x1, . . . , xr) is nonzero, then we have

dim(R/I) = dim(S/J) < dim(R)− r,

a contradiction. We thus conclude that I = (x1, . . . , xr) and by construction
x1, . . . , xr are part of a regular system of parameters of R. This completes the
proof. �

One thing that is not clear at this point is that if R is a regular local ring and
p is a prime ideal in R, then Rp is again a regular local ring. We will prove this in
Section 12.4, after giving a homological characterization of regular local rings.

The notion of regular local ring that we discussed so far admits the following
global version:

Definition 12.14. A Noetherian ring R is regular if Rm is a regular local ring
for all maximal ideals m in R.

Remark 12.15. If R is a regular ring, then it follows from Proposition 12.9
that Rm is a domain for every maximal ideal m in R. In this case, arguing as in
the proof of Proposition 8.38, we see that R ' R1× . . .×Rn, where R1, . . . , Rn are
regular domains.

Exercise 12.16. Let (R,m) be a regular local ring. Recall that by Proposi-
tion 12.7, if x ∈ mrm2, then R/(x) is again a regular ring. Show that conversely,
if x ∈ mr {0} is such that R/(x) is regular, then x 6∈ m2.

Exercise 12.17. Let f ∈ k[x1, . . . , xn], where k is an algebraically closed field,
and let R = k[x1, . . . , xn]/(f). Show that if m is a maximal ideal in R corresponding
to the point P in the algebraic subset defined by f , then the ring Rm is a regular
ring if and only if ∂f

∂xi
(P ) 6= 0 for some i, with 1 ≤ i ≤ n.

Exercise 12.18. Suppose that R is a Noetherian local ring with the property
that there is some regular local ring S and a surjective homomorphism S → R (for
example, R could be the localization of an algebra of finite type over a field). Show
that the smallest dimension of such a ring S is precisely embdim(R) (this is the
reason for the name of embedding dimension, note that such a surjection induces
an “embedding” Spec(R) ↪→ Spec(S)).

12.2. Projective dimension and minimal free resolutions

We begin this section by discussing the notions of projective and injective
dimensions. Let R be an arbitrary (commutative) ring.
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Definition 12.19. If M is an R-module, then the projective dimension of M ,
denoted pdR(M), is the smallest n ≥ 0 such that there is a projective resolution of
M with n terms:

0→ Fn → . . .→ F0 →M → 0

(if there is no such finite resolution, then pdR(M) = ∞). Similarly, the injective
dimension of M , denoted idR(M), is the smallest n ≥ 0 such that there is an
injective resolution of M with n terms:

0→M → I0 → . . .→ In → 0

(again, if there is no such finite resolution, then idR(M) =∞).

Remark 12.20. Note that, by definition, we have pdR(M) = 0 if and only if
M is projective and we have idR(M) = 0 if and only if M is injective.

Proposition 12.21. For every R-module M , the following are equivalent:

i) pdR(M) ≤ n.
ii) ExtiR(M,N) = 0 for all i > n and all R-modules N .

iii) Extn+1
R (M,N) = 0 for all R-modules N .

Moreover, if R is Noetherian and M is finitely generated, then the above conditions
are also equivalent with

iv) Extn+1
R (M,N) = 0 for all finitely generated R-modules N .

Proof. In order to prove the implication i)⇒ii), note that if pdR(M) ≤ n,
then we have a projective resolution of M given by

0→ Fn → . . . F0 →M → 0.

By Proposition 9.95, ExtiR(M,N) is the i-th cohomology of the complex

0→ HomR(F0, N)→ . . .→ HomR(Fn, N)→ 0,

that only has nonzero entries in degrees 0, 1, . . . , n. Therefore it is clear that its
i-th cohomology is 0 for i > n.

The implication ii)⇒iii) is trivial, hence it is enough to show the implications
iii)⇒i) and, assuming that M is finitely generated and R is Noetherian, iv)⇒i).
Consider a surjective morphism p : F → M , with F a free module, and let K =
ker(p). Therefore we have an exact sequence:

(12.1) 0→ K → F →M → 0.

If R is Noetherian and M is a finitely generated R-module, we may choose F to be
finitely generated, so K is finitely generated as well.

We argue by induction on n ≥ 0 and first treat the case n = 0. The long exact
sequence for Ext modules associated to (12.1) gives

0→ HomR(M,K)→ HomR(M,F )→ HomR(M,M)→ Ext1
R(M,K) = 0.

Therefore there is a morphism f : M → F such that p ◦ f = 1M , hence the short
exact sequence (12.1) is split, so M ⊕ K ' F . Since F is free, it follows from
Proposition 9.72 that M is projective.

Suppose now that n ≥ 1. Note that it is enough to show that pdR(K) ≤ n− 1:
indeed, given a projective resolution

0→ Pn−1 → . . .→ P0 → K → 0
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of K, we obtain a projective resolution

0→ Pn−1 → . . .→ P0 → F →M → 0

of M . On the other hand, for every R-module N , the long exact sequence of Ext
modules associated to (12.1) gives an exact sequence

0 = ExtnR(F,N)→ ExtnR(K,N)→ Extn+1
R (M,N)

where the vanishing of the first term follows from the fact that F is projective
and the implication i)⇒ii), that we already proved. Therefore we conclude that
ExtnR(K,N) = 0 for all R-modules N (assumed to be finitely generated in the
setting of iv)). By induction, we conclude that pdR(K) ≤ n− 1, which as we have
seen implies pdR(M) ≤ n. �

Corollary 12.22. Let R be an arbitrary ring.

i) For any exact sequence

0→M ′ →M →M ′′ → 0,

we have pdR(M ′) ≤ max
{

pdR(M),pdR(M ′′)− 1
}

.
ii) Given an R-module M and an exact complex

0→ Pn → Pn−1 → . . .→ P1 → P0 →M → 0,

with P0, . . . , Pn−1 projective modules, we have pdR(M) ≤ n if and only
if Pn is a projective module.

Proof. The assertion in i) follows from the characterization of projective di-
mension in condition iii) of the proposition and the following piece of the long exact
sequence of Ext modules, where N is an arbitrary R-module:

Extn+1
R (M,N)→ ExtnR(M ′, N)→ Extn+1

R (M ′′, N).

The “if” part in ii) is clear from the definition of projective dimension. For the
converse, note that if Kj−1 = Im(Pj → Pj−1) for 1 ≤ j ≤ n, then we have short
exact sequences

0→ Kj → Pj → Kj−1 → 0

for 0 ≤ j ≤ n (where we put K−1 = M). Since pd(Pj) = 0 for 0 ≤ j ≤ n − 1,
using the assertion in i) and induction on j, with 0 ≤ j ≤ n− 1, we conclude that
pdR(Kj) ≤ max

{
0,pdR(M)− j− 1

}
. We thus conclude that if pdR(M) ≤ n, then

Kn−1 ' Pn is projective. �

Corollary 12.23. If M is a finitely generated module over a Noetherian local
ring R, we have

(12.2) pdR(M) = sup
{

pdRp
(Mp) | p ∈ Spec(R)

}
Proof. If F• →M is a projective resolution of M , then F• ⊗R Rp →Mp is a

projective resolution of Mp for every p ∈ Spec(R). Therefore we have the inequality
“≥” in (12.2).

Suppose now that pdRp
(Mp) ≤ n for all p ∈ Spec(R). Since M is a finitely

generated module over a Noetherian ring, there is an exact complex

0→ Pn → . . .→ P1 → P0 →M → 0,

with all Pi finitely generated R-modules and with Pi free for i ≤ n − 1. For
every prime ideal p, by tensoring with Rp and applying Corollary 12.22, we deduce
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that (Pn)p is a projective Rp-module. We conclude that Pn is projective using
Theorem 9.74. We thus have the inequality “≤” in (12.2) �

We next give a characterization of injective dimension:

Proposition 12.24. For every R-module M , the following are equivalent:

i) idR(M) ≤ n.
ii) ExtiR(N,M) = 0 for all i > n and all R-modules N .
iii) Extn+1

R (R/I,M) = 0 for all ideals I in R.

Proof. The proof is similar to that of Proposition 12.21, hence we omit it.
We only mention that for the proof of the implication iii)⇒i) in the case n = 0, we
use the fact that by Proposition 9.79, in order to prove that M is injective, it is
enough to show that for every ideal I in R, the first morphism in the exact sequence
below

HomR(R,M)→ HomR(I,R)→ Ext1
R(R/I,M)

is surjective. �

Proposition 12.25. For every ring R, the following invariants are equal:

i) sup{pdR(M) |M = R−module}.
ii) sup{pdR(R/I) | I = ideal in R}.
iii) sup{idR(M) |M = R−module}.

Proof. By Proposition 12.21, we have pdR(M) ≤ n for all R-modules M if
and only if Extn+1

R (M,N) for all R-modules M and N , which by Proposition 12.24
is equivalent to idR(N) ≤ n for all R-modules N . This proves the equality of the
supremums in i) and iii). Furthermore, by Proposition 12.24, we have idR(N) ≤ n
for all R-modules N if and only if Extn+1

R (R/I,N) for all R-modules N and all
ideals I in R, which by Proposition 12.21 is equivalent to pdR(R/I) ≤ n for all
ideals I in R. This gives the equality of the supremums in ii) and iii). �

Definition 12.26. The common value of the invariant in Proposition 12.25 is
the global (homological) dimension of R, denoted gl-dim(R).

In what follows we focus on the case of a local Noetherian ring (R,m, k) and
give a description of projective dimension of finitely generated R-modules via Tor
modules. We begin by discussing the important concept of minimal free resolution.

Let M be a finitely generated R-module. If u1, . . . , un ∈ M give a minimal
system of generators of M and if ϕ0 : F0 = R⊕n →M is given by ϕ0(ei) = ui, then
ker(ϕ0) ⊆ mF0 (this follows from the fact that u1, . . . , un ∈ M/mM are linearly
independent over k). If we choose a minimal system of generators of ker(ϕ0), we
obtain a morphism ϕ1 : F1 → F0 such that Im(ϕ1) = ker(ϕ0) ⊆ mF0. Continuing
in this way we obtain a free resolution

F• : . . .→ Fm
ϕm−−→ . . .

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→M → 0

of M , with all Fi finitely generated R-modules, such that ϕi(Fi) ⊆ mFi−1 for all
i ≥ 1. A free resolution with this property is called minimal.

Proposition 12.27. If F• →M is a minimal free resolution of M , then

rank(Fi) = dimk TorRi (k,M).
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Proof. Note first that since k is annihilated by m, it follows from Exer-
cise 9.100 that TorRi (k,M) is annihilated by m, hence TorRi (k,M) is indeed a
k-vector space. Since F• →M is a free resolution, we have

TorRi (k,M) ' Hi(k ⊗R F•).
On the other hand, with respect to suitable bases of Fi and Fi−1, the matrix of ϕi
has entries in m; therefore all maps in k ⊗R F• are 0, hence

TorRi (k,M) ' k ⊗R Fi.
This gives the assertion in the proposition. �

Remark 12.28. The above proposition shows that the ranks of the free mod-
ules in a minimal free resolution do not depend on the resolution. In fact, any
two minimal free resolutions of M are isomorphic (though the isomorphism is not
unique). Indeed, suppose that F• → M and G• → M are two minimal free reso-
lutions. In this case it follows from Proposition 9.84 that we have a morphism of
complexes F• → G• that lifts the identity on M . By tensoring with k, we see that
each morphism k ⊗R Fi → k ⊗R Gi is an isomorphism. Since R is local, it follows
that each map Fi → Gi is an isomorphism, proving our assertion. Because of this,
one often talks about the minimal free resolution of M .

Corollary 12.29. If M is a finitely generated module over the Noetherian
local ring (R,m, k) and q is a non-negative integer, then the following are equivalent:

i) pdR(M) ≤ q.
ii) TorRi (N,M) = 0 for all i ≥ q + 1 and all R-modules N .

iii) TorRq+1(k,M) = 0.
iv) If F• →M is the minimal free resolution of M , then Fq+1 = 0.

Proof. The implication i)⇒ii) follows from the fact that if G• → M is a
projective resolution of length ≤ q, then

TorRi (N,M) ' Hi(N ⊗R G•)
vanishes for i ≥ q + 1. The implication ii)⇒iii) is trivial, iii)⇒iv) follows from
Proposition 12.27, and iv)⇒i) is clear. �

Corollary 12.30. If (R,m, k) is a Noetherian local ring, then the global di-
mension of R is equal to pdR(k).

Proof. The fact that gl-dim(R) ≥ pdR(k) follows from the definition of global
dimension. On the other hand, if pdR(k) = n, then we deduce from Corollary 12.29

first that TorRi (N, k) for every i > n, and then that pdR(N) ≤ n if N is finitely
generated. By Proposition 12.25, this implies gl-dim(R) ≤ n. �

12.3. The Auslander-Buchsbaum formula

In this section we prove the following important result due to Auslander-
Buchsbaum, which relates depth and projective dimension for modules of finite
projective dimension.

Theorem 12.31 (Auslander-Buchsbaum). If (R,m) is a Noetherian local ring
and M is a non-zero R-module with pdR(M) <∞, then

(12.3) depth(R) = depth(M) + pdR(M).
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We first give the following

Lemma 12.32. Given an R-module M , if x ∈ R is a non-zero divisor on both
R and M , we have ToriR

(
M,R/(x)

)
= 0 for i ≥ 1.

Proof. Since x is a non-zero-divisor on R, we have the following free resolution
of R/(x):

0→ R
·x−→ R→ R/(x)→ 0.

It is then clear that TorRi
(
M,R/(x)

)
= 0 for i ≥ 2, while

TorR1
(
M,R/(x)

)
' ker

(
M

·x−→M
)

= 0.

�

Proof of Theorem 12.31. We argue by induction on depth(R) and treat
separately different cases. Since pdR(M) <∞, it follows from Corollary 12.29 that
the minimal free resolution of M is finite:

0→ Fn
ϕ−→ Fn−1 → . . .→ F0 →M → 0.

Case 1. Suppose first that depth(R) = 0. Therefore m ∈ Ass(R), hence there
is a non-zero u ∈ R such that m · u = 0. If n > 0, then ϕ(Fn) ⊆ mFn−1, hence
ϕ(u · Fn) = 0, contradicting the injectivity of ϕ. Therefore n = 0, that is, M is
free, in which case it is clear that depth(M) = depth(R) = 0. This proves (12.3) in
this case.
Case 2. Suppose now that depth(R) > 0 and depth(M) > 0. In this case, by Prime
Avoidance, there is x ∈ m which is a non-zero-divisor on both R and M . By the
lemma, this implies that ToriR

(
M,R/(x)

)
= 0 for i ≥ 1. Therefore F•⊗RR/(x) is an

exact complex, hence a minimal free resolution of M/xM . By Nakayama’s lemma,
we have Fi = 0 if and only if Fi/xFi = 0, and we deduce using Corollary 12.29 that
pdR/(x)(M/xM) = pdR(M). On the other hand, using Corollary 11.11, we have

depth(M/xM) = depth(M)− 1 and depth
(
R/(x)

)
= depth(R)− 1.

We deduce the equality in (12.3) from the induction hypothesis.
Case 3. Suppose that depth(R) > 0 and depth(M) = 0. Note that in this
case M can’t be free, hence N = ker(F0 → M) is non-zero. Note that pdR(N) =
pdR(M)−1 by Corollary 12.29. On the other hand, it follows from Proposition 11.14
that

depth(N) ≥ min
{

depth(F0),depth(M) + 1
}
≥ 1 and

0 = depth(M) ≥ min
{

depth(F0),depth(N)− 1
}
≥ min

{
1,depth(N)− 1

}
,

hence depth(N) = 1. We thus obtain the equality in (12.3) by applying Case 2 to
N . �

12.4. The homological characterization of regular local rings

The following result, due independently to Auslander-Buchsbaum and Serre,
was one of the first successes of homological techniques in commutative algebra.

Theorem 12.33. If (R,m, k) is a Noetherian local ring, then R is regular if
and only if gl-dim(R) <∞. Moreover, in this case we have gl-dim(R) = dim(R).
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Proof. If R is a regular local ring and x1, . . . , xn is a regular system of param-
eters, then x = x1, . . . , xn form a regular sequence by Remark 12.12. In this case,
it follows from Theorem 11.50 that the Koszul complex K(x) is a free resolution of
R/(x1, . . . , xn) = k. In particular, we have pdR(k) <∞, hence gl-dim(R) <∞ by
Corollary 12.30. In fact, it follows from the definition of the Koszul complex that
K(x) is a minimal free resolution, hence gl-dim(R) = pdR(k) = n = dim(R).

Conversely, suppose that gl-dim(R) < ∞. By Corollary 12.30, this is equiv-
alent to pdR(k) < ∞. We argue by induction on n = depth(R). If n = 0, then
it follows from Theorem 12.31 that pdR(k) = 0, hence k is a free R-module by
Proposition 9.74. In this case R = k is a field and we are done (note that a nonzero
element of R can’t annihilate a nonzero free R-module).

Suppose now that n ≥ 1. In particular, we have m 6= (0), so m 6= m2 by
Nakayama’s lemma. We deduce using Prime Avoidance (see Lemma 5.1) that
there is x ∈ m r m2, which is a non-zero-divisor. The ring R = R/(x) is a local
Noetherian ring, with maximal ideal m = m/(x). We have depth(R) = depth(R)−1
by Corollary 11.11. It follows that if we can show that pdR(k) < ∞, then R is
regular by the inductive hypothesis, hence R is regular by Proposition 12.8.

Note that if F• → m is a minimal free resolution of m, then F• → R → k is
a minimal free resolution of k. In particular, F• has finitely many nonzero terms.
Since x is a non-zero-divisor, it follows from Lemma 12.32 that TorRi (m, R) = 0
for all i ≥ 1. This implies that by tensoring F• with R, we obtain a finite free
resolution of m/xm over R. Therefore pdR(m/xm) <∞.

Since x 6∈ m2, we can find a minimal system of generators x, x2, . . . , xd of m.

Let a = (x2, . . . , xd). Note that (x) ∩ a ⊆ xm. Indeed, if a1x =
∑d
i=2 aixi, since

the classes of x, x2, . . . , xn in m/m2 are linearly independent over k, it follows that
a1 ∈ m, hence a1x ∈ xm. We thus have maps

m/(x) =
(
a + (x)

)
/(x) ' a/

(
(x) ∩ a

) f−→ m/xm
g−→ m/(x),

where g is the canonical projection and f is induced by the inclusion a ↪→ m. It
is clear that g ◦ f is the identity, hence m = m/(x) is a direct summand of m/xm.
Since pdR(m/xm) < ∞, it follows from the description of projective dimension in
Proposition 12.21 that pdR(m) < ∞, hence pdR(k) < ∞ (if G• is a projective

resolution of m over R, then G• → R is a projective resolution of k over R). This
completes the proof of the theorem. �

As an important corollary, we deduce the fact that the property of a local ring
to be regular is preserved under localization.

Corollary 12.34. If R is a regular ring, then for every prime ideal p in R,
the ring Rp is regular.

Proof. If m is a maximal ideal containing p, then Rm is regular and Rp is
the localization of Rm at pRm. Therefore we may and will assume that R is local.
Since R is a regular local ring, it follows from Theorem 12.33 that R/p has a finite
free resolution F•, which induces after tensoring with Rp the finite free resolution
F•⊗RRp of the residue fieldRp/pRp ofRp. By Corollary 12.30, the global dimension
of Rp is finite and another application of Theorem 12.33 gives that Rp is regular. �

Corollary 12.35. If R is any regular ring, then gl-dim(R) = dim(R).
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Proof. Let n = dim(R) (note that this may be infinite). For every prime
ideal p in R, we have

pdR(R/p) ≥ pdRp
(Rp/pRp) = codim(p),

where the inequality follows from Corollary 12.23 and the equality follows from
Theorem 12.33 and Corollary 12.30. We thus have gl-dim(R) ≥ n.

In order to prove the reverse inequality, it is enough to show that pdR(M) ≤ n
for all finitely generated R-modules M (see Proposition 12.25). Note that it follows
from Theorem 12.33 that pdRp

(Mp) ≤ n for every prime ideal p, and we conclude

that pdR(M) ≤ n by Corollary 12.23. This completes the proof. �

We can now prove a result that will provide us with many examples of regular
rings.

Proposition 12.36. If R is a regular ring, then so is R[x].

Proof. We need to show that for every maximal ideal m in R[x], the localiza-
tion R[x]m is regular. If p = m∩R, we may replace R by Rp to assume that (R, p)
is a local regular ring (note that we use here Corollary 12.34). Since R is regular,
we can write p = (y1, . . . , yn), where n = dim(R). Note that R[x]/p[x] ' (R/p)[x]
is a PID, hence m = p[x] + (f), for some polynomial f ∈ R[x]. Moreover, since
m is a maximal ideal we have codim

(
m/p[x]

)
= 1; since R → R[x] is a flat homo-

morphism, it follows from Corollary 10.15 that codim(m) = codim(p) + 1 = n+ 1.
Since m can be generated by n+ 1 elements, it follows that R[x]m is regular. �

Example 12.37. If k is a field, then it is a regular ring, and we deduce from
Proposition 12.36, by induction on n, that k[x1, . . . , xn] is a regular ring. Similarly,
if R is a Dedekind domain, then it is a regular ring, and we deduce again from
Proposition 12.36, by induction on n, that R[x1, . . . , xn] is a regular ring.

Proposition 12.38. If R is a regular ring, then R is normal.

Proof. It is enough to show that Rm is a normal ring for every maximal ideal
m in R, hence we may assume that R is local. Since we already know that R is a
domain by Proposition 12.9, in order to check that R is normal, we may use the
criterion in Proposition 8.41. First, we need to show that Rp is a DVR for every
prime ideal p in R of codimension 1: this follows from the fact that Rp is again
a regular local ring by Corollary 12.34, and having dimension 1, it is a DVR (see
Example 12.10).

The second property we need to check is that for every nonzero a ∈ R, and
every p ∈ AssR

(
R/(a)

)
, we have codim(p) = 1. Note that the condition on p implies

that depth(p, R) = 1. Since R is Cohen-Macaulay by Proposition 12.11, we see that
indeed codim(p) = 1 (see Proposition 11.30). This completes the proof. �

Remark 12.39. It is an important theorem of Auslander-Buchsbaum that,
in fact, every regular local ring is a UFD. For a proof, see for example [Eis95,
Theorem 19.19].

Exercise 12.40. Let f : (R,m) → (S, n) be a flat, local homomorphism of
Noetherian local rings.

i) Show that if R and S/mS are regular, then S is regular.
ii) Show that if S is regular, then R is regular.



12.4. THE HOMOLOGICAL CHARACTERIZATION OF REGULAR LOCAL RINGS 125

iii) Give an example to show that if S is regular, it does not imply that S/mS
is regular.

Exercise 12.41. Let (A,m) ↪→ (B, n) be an injective, finite, local ring ho-
momorphism of Noetherian local rings, with A regular. Show that B is a Cohen-
Macaulay ring if and only if it is a free A-module.





CHAPTER 13

Graded modules

13.1. Basic properties of graded modules

Definition 13.1. A graded ring is a (commutative) ring R, together with a
direct sum decomposition

R =
⊕
i∈Z

Ri,

as Abelian groups, such that if a ∈ Ri and b ∈ Rj , then ab ∈ Ri+j . An element
of Ri is homogeneous of degree i. We will mostly be interested in N-graded rings,
that is, graded rings such that Ri = 0 for i < 0.

Remark 13.2. It follows from the above definition that if R =
⊕

i∈ZRi is a
graded ring, then R0 ⊆ R is a subring and every Ri is an R0-submodule of R.

Example 13.3. If A is any ring, then the polynomial ring R = A[x1, . . . , xn]
can be viewed as an N-graded ring, with Ri generated over A by the monomials of
degree i. We will refer to this as the standard grading of the polynomial ring.

Definition 13.4. If R and S are graded rings, a homomorphism of graded
rings f : R→ S is a ring homomorphism such that f(Ri) ⊆ Si for all i ∈ Z.

Remark 13.5. It is clear that a composition of homomorphisms of graded rings
is a homomorphism of graded rings, hence graded rings form a category.

Example 13.6. If R is a graded ring and S ⊆ R is a multiplicative system that
consists of homogeneous elements, then S−1R is naturally a graded ring such that
the canonical homomorphism R → S−1R is a homomorphism of graded rings: if
u ∈ Rm and s ∈ S ∩Rq, then u

s ∈ S
−1Rm−q. Note that even if R is N-graded, its

localization S−1R is typically not N-graded.

Example 13.7. The analogue of a field in the graded setting is a graded ring R
with the property that every nonzero homogeneous element is invertible. In this case
R0 is clearly a field. If R 6= R0 and t is a nonzero homogeneous element of smallest
positive degree, then we have a homomorphism of R0-algebras f : R0[x, x−1] → R
given by f(x) = t. We leave as an exercise checking that if we consider on R0[x, x−1]
the grading such that deg(x) = deg(t), then f is an isomorphism of graded rings.

Definition 13.8. Let R =
⊕

i∈ZRi be a graded ring. A graded R-module is
an R-module M , together with a decomposition M =

⊕
i∈ZMi as Abelian groups,

such that if a ∈ Ri and u ∈ Mj , then au ∈ Mi+j . The elements of Mi are
homogeneous of degree i (note that by assumption, every u ∈ M can be uniquely
written as u =

∑
i ui, with ui ∈ Mi for all i ∈ Z, and all but finitely many of the

ui being 0).

127
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Remark 13.9. With the notation in the above definition, note that each Mi

is an R0-submodule of M .

Remark 13.10. Often, when considering a graded R-module M , we consider
a system of homogeneous generators of M . In fact, given any system (uα)α∈Λ of
generators of M , if we write uα =

∑
i uα,i, with uα,i ∈ Mi, then the nonzero uα,i

give a system of homogeneous generators of M (note that this is a finite set if the
original system of generators was finite).

Definition 13.11. If R =
⊕

i∈ZRi is a graded ring and M =
⊕

i∈ZMi

and N =
⊕

i∈ZNi are graded R-modules, then a morphism of graded R-modules
f : M → N is an R-linear map such that f(Mi) ⊆ Ni for all i ∈ Z. It is clear that
a composition of morphisms of graded R-modules is again a morphism of graded
R-modules. Therefore graded R-modules form a category and it is straightforward
to check that this is, in fact, an additive category.

Example 13.12. We have seen that if I is an ideal in a ring A, then we have
considered in Section 4.3 the Rees algebra R(I, A) =

⊕
n≥0 I

n, which is a graded

ring. Moreover, if M is an A-module, then R(I,M) =
⊕

n≥0 I
nM is a graded

R(I, A)-module.

Example 13.13. If M is a graded R-module and a ∈ Z, then M(a) is the
graded module with the same underlying R-module, but with the grading such
that M(a)i = Ma+i.

Definition 13.14. If M is a graded module over the graded ring R, then a
graded submodule of M is a submodule N of M , which is a graded R-module,
such that the inclusion map N ↪→ M is a homomorphism of graded modules;
equivalently, we have N =

⊕
i∈Z(N ∩Mi). This applies in particular if M = R, in

which case we talk about graded (also called homogeneous) ideals.

Remark 13.15. Note that if M is a graded module over the graded ring R,
then a submodule N of M is a graded submodule if and only if for every u ∈ N , if
we write u =

∑
i ui, with ui ∈Mi, then ui ∈ N for all i. This is further equivalent

to the fact that N is generated as an Abelian group by homogeneous elements of
M (note also that if it is generated as an R-module by homogeneous elements of
M , it is also generated as an Abelian group by homogeneous elements). In what
follows we will freely use these two characterizations of homogeneous submodules.

Remark 13.16. It is clear that if N is a graded submodule of the graded R-
module M , then the quotient M/N has an induced structure of graded module
given by M/N =

⊕
i∈Z

(
Mi/(Mi ∩N)

)
and the canonical projection M →M/N is

a morphism of graded modules. Similarly, if I is a homogeneous ideal in the graded
ring R, then R/I has a natural structure of graded ring such that the canonical
projection R→ R/I is a graded ring homomorphism.

Remark 13.17. It is straightforward to see that if f : R → S is a homo-
morphism of graded rings, then ker(f) is a homogeneous ideal of R. Similarly, if
ϕ : M → N is a morphism of graded modules over a graded ring R, then ker(f) is
a graded submodule of M (and as such it is the kernel in the category of graded
R-modules) and Im(f) is a graded submodule of N , hence coker(f) has a canoni-
cal structure of graded module (and as such, it is the cokernel in the category of
graded R-modules). It is then straightforward to check that the category of graded
R-modules is an Abelian category.
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The next result shows that when dealing with graded modules, various basic
constructions still live in the graded category.

Proposition 13.18. Let M =
⊕

i∈ZMi be a graded module over a graded
ring R =

⊕
i∈ZRi.

i) If (Nα)α∈Λ is a family of graded submodules of M , then
∑
α∈ΛNα and⋂

α∈ΛNα are graded submodules of M .
ii) If I is a homogeneous ideal of R, then IM is a graded submodule of M .
iii) If u ∈M is homogeneous, then AnnR(u) is a homogeneous ideal.
iv) AnnR(M) is a homogeneous ideal.

Proof. For the first assertion in i), note that since each Nα is generated
by homogeneous elements of M , the same holds for

∑
α∈ΛNα, hence this is a

graded submodule of M . The second assertion in i) follows from the fact that if
u ∈

⋂
α∈ΛNα and we write u =

∑
i ui, with ui ∈ Mi for all i, then ui ∈ Nα for all

i and all α, since Nα is a graded submodule; therefore ui ∈
⋂
α∈ΛNα for all i ∈ Z.

This implies that
⋂
α∈ΛNα is a graded submodule of M .

The assertion in ii) follows from the fact that if (aj)j∈J are homogeneous gen-
erators of I and (uk)k∈K are homogeneous generators of M , then IM is generated
by the homogeneous elements ajuk, for j ∈ J and k ∈ K, hence IM is a graded
submodule.

For the assertion in iii), note that if a ∈ AnnR(u) and a =
∑
i ai is the decompo-

sition of a in homogeneous components, we have 0 = au =
∑
i(aiu), hence aiu = 0

for all i. Therefore ai ∈ AnnR(u) for all i and thus AnnR(u) is a homogeneous
ideal.

If (uj)j∈J is a system of homogeneous generators of M as an R-module, then
AnnR(M) =

⋂
j∈J AnnR(uj) is a homogeneous ideal by iii) and i). �

For any ideal I in a graded ring R, we denote by I∗ the ideal generated by all
homogeneous elements of I (hence I∗ is the largest homogeneous ideal contained in
I).

Proposition 13.19. Let I be a homogeneous ideal of a graded ring R.

i) Show that I is a prime ideal if and only if for every homogeneous x, y ∈ R,
with xy ∈ I, we have x ∈ I or y ∈ I.

ii) Show that I is a reduced ideal if and only if for every homogeneous x ∈ R
such that xn ∈ I for some positive integer n, we have x ∈ I.

iii) For every prime ideal p in R, the ideal p∗ is a prime ideal.
iv) Every minimal prime ideal containing I is homogeneous. In particular,

rad(I) is homogeneous, and it is an intersection of homogeneous prime
ideals.

Proof. Suppose first that we know that if xy ∈ I and x, y are homogeneous,
then x ∈ I or y ∈ I. Suppose now that a, b ∈ R r I are such that ab ∈ I. Let
us write a =

∑
i ai and b =

∑
i bi, with ai, bi ∈ Ri. Let i1 = min{i | ai 6∈ I}

and i2 = min{i | bi 6∈ I}. Since ab ∈ I and I is homogeneous, by looking at the
homogeneous term of degree i1 + i2 in ab, we see that

∑
j ai1+jbi2−j ∈ I. If j > 0,

then bi2−j ∈ I and if j < 0, then ai1+j ∈ I. We thus conclude that ai1bi2 ∈ I, a
contradiction. This proves i) and the proof of ii) is similar, so we leave it as an
exercise.
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By definition, p∗ is a homogeneous ideal. By i), in order to show that p∗ is
prime, it is enough to show that if x, y ∈ R are homogeneous elements and xy ∈ p∗,
then x ∈ p∗ or y ∈ p∗. This is clear, since p is prime, hence x ∈ p or y ∈ p, and a
homogeneous element lies in p if and only if it lies in p∗.

If p is a minimal prime containing I, we clearly have I ⊆ p∗. Since p∗ is a
prime ideal by iii), it follows that p = p∗, hence p is a homogeneous ideal. The
other assertions are clear, since rad(I) is the intersection of the minimal prime
ideals containing I. �

Proposition 13.20. If M is a graded module over the graded ring R and
p ∈ Ass(M), then p is a homogeneous ideal. Moreover, there is a homogeneous
element u ∈M such that p = AnnR(u).

Proof. By hypothesis, there is x ∈M such that p = AnnR(x). Let a ∈ p and
consider the decomposition into homogeneous terms

a = am + am+1 + . . .+ am+r and x = xn + xn+1 + . . .+ xn+s.

In order to prove the first assertion, we need to show that aix = 0 for all i. In fact,
it is enough to show that for every such a, we have amx = 0 (then replace a by
a− am, and repeat the argument). We know that

amxn+i + am+1xn+i−1 + . . .+ am+ixn = 0 for all 0 ≤ i ≤ s.

We easily see by induction on i that ai+1
m xn+i = 0 for 0 ≤ i ≤ s. Therefore as+1

m ∈ p
and since p is prime, we conclude that am ∈ p. We conclude that p is prime.

If b ∈ p is homogeneous, it is clear that bxi = 0 for all i. Since p is generated by
homogeneous elements, it follows that p ⊆

⋂s
i=0 AnnR(xn+i). On the other hand,

the reverse inclusion is clear, hence p =
⋂s
i=0 AnnR(xn+i). Since p is a prime ideal,

it follows that there is i, with 0 ≤ i ≤ s such that p = AnnR(xn+i), completing the
proof. �

It is a useful fact that any prime ideal in a graded ring is “close to” a homoge-
neous prime ideal. This is the content of the next lemma.

Lemma 13.21. If p is a prime ideal in a graded ring R and p is not homogeneous,
then codim(p/p∗) = 1.

Proof. After replacing R by R/p∗, we may assume that p∗ = (0) and after
localizing at the set of all homogeneous elements in R r p, we may assume that
every nonzero homogeneous element of R is invertible. In this case, it follows from
Example 13.7 that R0 is a field and R ' R0[x, x−1] hence dim(R) = 1. This implies
the assertion in the proposition. �

The next proposition relates the codimension of a prime ideal in a Noetherian
graded ring to chains of homogeneous ideals.

Proposition 13.22. Let R be a Noetherian graded ring and p a prime ideal
in R.

i) If p is homogeneous and r = codim(p), then there is a chain of homoge-
neous prime ideals

(13.1) p0 ( p1 ( . . . ( pr = p.

ii) If p is not homogeneous, then codim(p) = codim(p∗) + 1.
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Proof. Both assertions follow if we show that if codim(p) = r, then we can
find a chain of prime ideals as in (13.1), with p0, . . . , pr−1 homogeneous. Indeed,
in the setting of ii), we have pr−1 ⊆ p∗, hence codim(p∗) ≥ r − 1, and the opposite
inequality is obvious.

We argue by induction on r. The assertion is trivial if r = 0 and in the case
r = 1 it follows from the fact that every minimal prime ideal contained in p is
homogeneous by Proposition 13.19iv). Suppose now that r ≥ 2 and we know the
assertion for r − 1. Starting with an arbitrary chain of prime ideals as in (13.1),
and applying the inductive hypothesis to pr−1, we see that we may assume that
p0, . . . , pr−2 are homogeneous.

If p is not homogeneous, then pr−2 ⊆ p∗ ( p and the first inclusion is strict
since codim(p/p∗) = 1 by Lemma 13.21. Therefore we can replace pr−1 by p∗ and
we are done in this case. Suppose now that p is homogeneous. In this case there is
a ∈ p homogeneous that does not lie in pr−1. If q ⊆ p is a minimal prime ideal that
contains pr−2 + (a), then q is homogeneous by Proposition 13.19iv). Since q 6= p
by the Principal Ideal theorem, we may replace pr−1 by q to complete the proof of
the induction step. �

We end with a proposition describing when graded rings are Noetherian. For
the sake of simplicity, we only consider the N-graded case, which is the one we will
be interested in.

Proposition 13.23. Let R =
⊕

i≥0Ri be an N-graded ring.

i) R is a Noetherian ring if and only if R0 is a Noetherian ring and R is a
finitely generated R0-algebra.

ii) If the condition in i) holds and M =
⊕

i∈ZMi is a finitely generated
graded R-module, then Mj is a finitely generated R0-module for all j ∈ Z.

Proof. The “if” part in i) is a consequence of the fact that every algebra of
finite type over a Noetherian ring is Noetherian (see Corollary 4.16). Suppose now
that R is Noetherian. Since R0 is isomorphic to the quotient of R by the ideal
I =

⊕
i>0Ri, it follows that R0 is Noetherian. Furthermore, since I is a finitely

generated homogeneous ideal, we may choose a system of homogeneous generators
x1, . . . , xn of I. Let di = deg(xi) > 0. We will show that R is generated as an
R0-algebra by x1, . . . , xn. Clearly, it is enough to show that for every m ≥ 0,
any f ∈ Rm lies in the R0-submodule generated by the monomials xi11 · · ·xinn with∑n
k=1 ikdk = m. We argue by induction on m, with the case m = 0 being clear.

By assumption, given any f ∈ Rm, we can write f =
∑n
i=1 fixi and after only

keeping the term in each fi that is homogeneous of degree m− di, we may assume
that fi ∈ Rm−di (in particular, we have fi = 0 if m > di). By the inductive

assumption, each fi lies in the R0-submodule generated by the monomials xi11 · · ·xinn
with

∑n
k=1 ikdk = m− di, which immediately implies the assertion about f .

Suppose now that the assertion in i) holds, x1, . . . , xn are as above, and M is
a finitely generated graded R-module. We may choose a system of homogeneous
generators u1, . . . , uN of M , with deg(uj) = aj for 1 ≤ j ≤ N . For every j ∈ Z

and every u ∈ Mj , we may thus write u =
∑N
i=1 giui, where gi ∈ R, and we may

clearly assume that gi is homogeneous of degree j − ai. As we have seen, Rj−ai is

generated as an R0-module by the monomials xi11 · · ·xinn , with
∑n
k=1 ikdk = j − ai.

This implies that Mj is generated as an R0-module by the elements xi11 · · ·xinn ui,
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with 1 ≤ i ≤ N and
∑n
k=1 ikdk = j − ai. In particular, M is a finitely generated

R0-module. �

13.2. Hilbert series and Hilbert polynomial

Consider an N-graded ring R =
⊕

i≥0Ri such that (R0,m0, k) is a local ring.

Note that the homogeneous ideal m = m0 ⊕
⊕

i>0Ri is a maximal ideal (since
R/m ' k) and every proper homogeneous ideal of R is contained in m: this is due
to the fact that every homogeneous element in R r m is invertible. From many
points of view, graded modules over such a ring behave like modules over a local
ring. We will discuss this in more detail in the next section, but we now give a
result that allows us to reduce to the local case when considering the dimension of
a module.

Proposition 13.24. Let R be a Noetherian N-graded ring such that (R0,m0)
is a local ring and let m = m0 ⊕

⊕
i>0Ri. For every nonzero finitely generated

R-module M , we have
dim(M) = dim(Mm).

Proof. Recall that I = AnnR(M) is a homogeneous ideal by Proposition 13.18,
hence it is contained in m. We need to show that for every prime ideal p in Supp(M),
we have codim(p/I) ≤ codim(m/I). This is clear if p is homogeneous. Otherwise,
since m is a maximal ideal we have p∗ ( m and thus

codim(p/I) = 1 + codim(p∗/I) ≤ codim(m/I),

where the first equality follows by applying Proposition 13.22 in R/I. This com-
pletes the proof. �

From now on, in this section we assume that R is a Noetherian N-graded
ring, with R0 local and 0-dimensional (note that R0 is automatically Noetherian
by Proposition 13.23). If M is a finitely generated graded R-module, then it fol-
lows from Proposition 13.23 that all Mi are finitely generated R0-modules. Since
dim(R0) = 0, we have `R0

(Mi) <∞ for all i by Proposition 7.23.
We now introduce a very important invariant of finitely generated graded mod-

ules:

Definition 13.25. For a finitely generated R-module M , we put H(M, i) =
`R0

(Mi) for i ∈ Z, and the Hilbert series of M is the series

HM (t) :=
∑
i∈Z

H(M, i)ti.

Remark 13.26. Note that HM (t) is a Laurent power series, that is, we have
`R0

(Mi) = 0 for i � 0. Indeed, if M is generated by the homogeneous elements
u1, . . . , uN , with deg(ui) = di, since R is N-graded, it follows that Mi = 0 if
i < min{dj | 1 ≤ j ≤ N}.

Example 13.27. Note that for every R-module M and every a ∈ Z, we have
H
(
M(a), i

)
= H(M,a+ i), hence HM(a)(t) = t−a ·HM (t).

Proposition 13.28. Given a short exact sequence of finitely generated R-
modules

0→M ′ →M →M ′′ → 0,

we have HM (t) = HM ′(t) +HM ′′(t).
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Proof. The assertion follows from the additivity of length in short exact se-
quences. �

Corollary 13.29. If M is a finitely generated R-module and f ∈ Rd is a
non-zero-divisor on M , then

HM/fM (t) = (1− td) ·HM (t).

Proof. Since f is a non-zero-divisor on M , multiplication by f gives a short
exact sequence of graded R-modules

0→M(−d)
·f−→M −→M/fM → 0.

The assertion then follows from the proposition, together with Example 13.27. �

Example 13.30. Let R = R0[x1, . . . , xn], with the standard grading. Since
x1, . . . , xn is a regular sequence in R, applying Corollary 13.29 n times and using
the fact that HR0(t) = `(R0), we conclude that

HR(t) = `(R0) · 1

(1− t)n
.

The formula
1

(1− t)
=
∑
k≥0

tk

gives after differentiating (n− 1) times

1

(1− t)n
=
∑
k≥0

(
k + n− 1

n− 1

)
tk.

We thus conclude that the number N(n, k) of monomials of degree k in n variables

is
(
k+n−1
n−1

)
.

Note that since R is Noetherian, it follows from Proposition 13.23 that R
is a finitely generated R0-algebra. From now on, for the sake of simplicity, we
may one more assumption: we assume that R is generated over R0 by finitely
many elements of degree 1. Equivalently, R is isomorphic, as a graded ring, to a
quotient of some R0[x1, . . . , xn], where we consider R0[x1, . . . , xn] with the standard
grading. We note that for a finitely generated R-module M , the Hilbert series is
the same whether we consider M as an R-module or as an R0[x1, . . . , xn]-module.
The following is the main result of this section.

Theorem 13.31. Let R be an N-graded ring, generated over R0 by finitely
many elements of degree 1, with R0 local, Noetherian, and 0-dimensional. If M
is a graded nonzero R-module, then there is a polynomial PM ∈ Q[x] of degree1

dim(M)− 1 such that HM (i) = PM (i) for i� 0.

The polynomial PM in the theorem is the Hilbert polynomial of M .

Proof of Theorem 13.31. We argue by induction on dim(M) = d. Let us
first show that we get the assertion for M if we know it for all quotients R/p, where
p is a prime ideal with dim(R/p) ≤ d. Indeed, we have seen in Proposition 13.20
that if p1 is an associated prime of M , then p1 is a homogeneous ideal and there
is u ∈ M homogeneous such that p1 = AnnR(u). If d1 = deg(u), then we have an

1We make the convention here that the degree of the zero polynomial is equal to −1.
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injective graded homomorphism R/p1(−d1) ↪→ M that maps the class of 1 to u.
Iterating this observation and using the fact that M is Noetherian as in the proof
of Theorem 5.5, we get a sequence of graded submodules

0 (M1 ( . . . (Mr = M

such that Mj/Mj−1 ' R/pj(−dj) for 1 ≤ j ≤ r, where pj is a homogeneous prime
ideal and dj ∈ Z. By Proposition 13.28, we have

H(M,n) =

r∑
j=1

H(Mj/Mj−1, n) =

r∑
j=1

H(R/pj , n− dj) for all n ∈ Z.

Note that dim(M) = max
{

dim(R/pj) | 1 ≤ j ≤ r
}

since we have

Supp(M) =

r⋃
j=1

Supp(R/pj)

by Exercise 5.12. It follows that if we know the assertion in the theorem for each
R/pj , then we get the assertion for M (note that each PR/pj

has positive leading

term since PR/pj
(i) ≥ 0 for i � 0, hence the degree of

∑r
j=1 PR/pj

(m − dj) is

max
{

deg(Pj) | 1 ≤ j ≤ r
}

).
In order to prove the case d = 0, it is thus enough to consider a homogeneous

prime ideal p in R with dim(R/p) = 0, so p is a maximal ideal. Since p ⊆ m =
m0 ⊕

⊕
i>0Ri, it follows that p = m. In this case we have H(R/p, i) = 0 for i ≥ 1,

hence PR/pj
= 0.

Suppose now that we know the assertion in the theorem for modules of dimen-
sion < d and let us consider a homogeneous prime ideal p in R, with dim(R/p) =
d > 0. Since R is generated as an R0-algebra by R1 and p 6= m, it follows that
there is f ∈ R1 r p. In this case we have a short exact sequence

0→ R/p(−1)
·f−→ R/p→ N → 0,

where N = R/(p +Rx). Note that it follows from Proposition 13.28 that

H(R/p, i)−H(R/p, i− 1) = H(N, i) for all i ∈ Z.

Moreover, we have dim(N) = dim(R/p)− 1 (this follows by applying Exercise 7.47
for the corresponding localizations at m and using Proposition 13.24). The assertion
in the proposition now follows from the following elementary fact: if f : Z → Z is
a function and P is a polynomial of degree d− 1 such that f(i)− f(i− 1) = P (i)
for all i� 0, then there is a polynomial P of degree d such that f(i) = P (i) for all
i� 0. �

Remark 13.32. It is elementary to deduce from the theorem that if R and M
are as in the statement of the theorem, then the Hilbert series HM (t) is a rational
function. However, by arguing as in the proof of the theorem, we can be more

precise: if d = dim(M), then we can write HM (t) = Q(t)
(1−t)d , for some Laurent

polynomial Q ∈ Z[t, t−1].

13.3. Graded free resolutions

We begin by discussing in more detail the case of an N-graded ring R =⊕
i≥0Ri such that (R0,m0, k) is a local ring. Let m = m0 ⊕

⊕
i>0Ri. We first
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show that for graded modules, we don’t lose information by localizing at m (we
have already seen an instance of this in Proposition 13.24).

Proposition 13.33. With the above notation, if M is a graded R-module,
then M = 0 if and only if Mm = 0.

Proof. It is enough to prove the ‘if” part. If Mm = 0, it follows that for
every homogeneous element u ∈ M , we have AnnR(u) 6⊆ m Since AnnR(u) is a
homogeneous ideal, it follows that AnnR(u) = R, hence u = 0. Using the fact that
M is generated by homogeneous elements, we conclude that M = 0. �

Corollary 13.34 (Graded Nakayama’s lemma). Let M be a finitely generated
graded R-module and N a graded submodule. If M = N + mM , then M = N .

Proof. After replacing M by M/N , we see that we may assume N = 0. The
hypothesis and Nakayama’s lemma implies that Mm = 0, hence M = 0 by the
proposition. �

Remark 13.35. It is a consequence of the above corollary that if u1, . . . , un ∈
M are homogeneous elements, then u1, . . . , un generate M if and only if their classes
in M/mM generate this module over R/m ' k. In particular, a minimal system of
homogeneous generators corresponds to a k-basis of M/mM .

Corollary 13.36. A sequence of graded modules

M ′
f−→M

g−→M ′′,

is exact if and only the corresponding sequence of Rm-modules

M ′m →Mm →M ′′m

is exact.

Proof. It is enough to show that if A and B are two submodules of M such
that Am ⊆ Bm, then A ⊆ B (apply this with A and B being ker(g) and Im(f) and
vice versa). This follows by applying Proposition 13.34 with M = (A+B)/B. �

Definition 13.37. A free graded R-module is a graded module M that has
a basis given by homogeneous elements; equivalently, M is isomorphic to a direct
sum of graded modules of the form R(a), with a ∈ Z.

Suppose now that R is also Noetherian. Given any finitely generated R-module
M , if u1, . . . , un is a system of homogeneous generators of M , with deg(ui) = di,
then we get a surjective morphism of graded R-modules p : F =

⊕n
i=1R(−di)→M ,

that maps the standard generators ei of R(−di) to ui. Note that if u1, . . . , un
is a minimal system of homogeneous generators, then ker(p) ⊆ mF . Since R is
Noetherian, ker(p) is a finitely generated graded R-module and we can iterate this
construction to get an exact complex

. . .→ Fn
dn−→ Fn−1 → . . .→ F1

d1−→ F0 →M → 0,

such that each Fn is a finitely generated free graded R-module and dn(Fn) ⊆ mFn−1

for all n ≥ 1. Such a complex is a minimal graded free resolution of M . Note that
F• ⊗R Rm is a minimal free resolution of Mm.
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Remark 13.38. As in the local case, such a minimal graded free resolution
is unique, up to a non-canonical isomorphism. Indeed, given two such minimal
resolutions, it follows from Proposition 9.84 that there is a morphism of complexes
ϕ : F• → G• that induces the identity on M . Moreover, it is easy to see, from
the construction of ϕ, that we may assume that each ϕm is a morphism of graded
modules. It follows from Remark 12.28 that ϕ ⊗R Rm is an isomorphism between
the corresponding minimal free resolutions of Mm, and thus ϕ is an isomorphism
by Corollary 13.36.

In particular, this implies that each graded free R-module Fi in the minimal
free resolution of M is uniquely determined, up to isomorphism. If we write

Fi '
⊕
j∈Z

R(−j)bi,j(M),

then the numbers bi,j(M) are the graded Betti numbers ofM and they are important
invariants of M (note that bi,j(M) = dimk(Fi/mFi)j , hence it is independent of
any choices).

Proposition 13.39. Let R =
⊕

i≥0Ri be a Noetherian N-graded ring, with

(R0,m0) a local ring, and let m = m0 ⊕
⊕

i>0Ri. For every finitely generated
graded R-module M and every n ∈ Z≥0, the following are equivalent:

i) pdR(M) ≤ n.
ii) pdRm

(Mm) ≤ n.
iii) If F• is the minimal graded free resolution of M , then Fn+1 = 0.

Proof. The implication i)⇒ii) is a general fact (see Corollary 12.23). The
implication ii)⇒iii) follows from Corollary 12.29, since F• ⊗R Rm is a minimal free
resolution of Mm over Rm. We use here that Fi ⊗R Rm = 0 if an only if Fi = 0 (we
don’t even need Proposition 13.33 since each Fi is a free R-module). Finally, the
implication iii)⇒i) is clear. �

Remark 13.40. A special case of the above proposition is that if M is a finitely
generated graded R-module, then M is projective if and only if it is a free graded
module.

The following result is Hilbert’s Syzygy Theorem.

Theorem 13.41. If k is a field, R = k[x1, . . . , xn] is a polynomial ring with
the standard grading2, and M is a finitely generated R-module, then M has a finite
graded free resolution

0→ Fn → . . .→ F0 →M → 0.

Proof. We know that R is a regular ring (see Example 12.37) and dim(R) = n,
hence gl-dim(R) = n by Corollary 12.34. In particular, we have pdR(M) ≤ n, so if
F• is the graded free resolution of M , we have Fn+1 = 0 by Proposition 13.39, and
we get the assertion in the theorem. �

Remark 13.42. If M is a finitely generated graded R-module, where R =
k[x1, . . . , xn], with the standard grading, then the graded Betti numbers of M give

2In fact, we may consider on R any grading such that R0 = k.
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a more refined information than the Hilbert series HM (t). Indeed, suppose that F•
is the minimal graded free resolution of M . If we write

Fi =
⊕
j

R(−j)bi,j(M) for 0 ≤ i ≤ n,

then it follows from Proposition 13.28 that

HM (t) =

n∑
i=0

(−1)iHFi
(t) =

1

(1− t)n
·
n∑
i=0

∑
j∈Z

(−1)ibi,j(M)tj .

In particular, we get another proof of the rationality of the Hilbert function of M
in this case.
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