2 3 Method of Perturbations and risk aversion start

Advanced math

Before beginning today, we discuss a bit about the last technique we learned and the technique we are discussing today.  The simplest proofs using the symmetry method alone have primarily been done in the economics literature.  However, economists have only just begun using the perturbation method in theoretical papers.  Therefore, there is still some ‘low-hanging fruit’ to be had using these methods.

There are two goals for this perturbation method:

1. To find how valuation changes as a function of θ near the state we are approximating around.

2. To see how the choice variable (consumption) changes as a function of θ near the state we are approximating from.

While these goals are separate, we need one in order to find the other and vice versa.  Although the method seems quite chaotic at times, there are some elements to keep in mind:

a. We are going to need as much information as we can about the steady state around which we are approximating.  Therefore, always find out as much as you can about that state.  We do it for this exercise in the process of our approximation, but that is not necessary.  Another method would be to solve explicitly for the extreme case, and then take the perturbation as a completely separate set of algebra.

b. It is always possible to take the derivative of anything with respect to the state variable (in this case w.)  

To further summarize what we are doing, we are going to take the derivative of everything, plug in the values at θ=0, and go from there.

The paper we read using the method ‘perturbed’ around the steady state.  However, there are many elements that can be perturbed.  As mentioned earlier, we are perturbing here around the simple equilibrium in which wages are constant.  Another perturbation could be from the assumption that all consumers are symmetric.  Beginning here, then do some perturbations.  This method is very common in physics, but has not become so in economics. 

Now, let’s go back to our example.  We began the example deriving the following Bellman equations:

ρV(w,θ,1)+θρVθ(w,θ,1)=

[Vθ(w,θ,2)-Vθ(w,θ,1)]+ maxc{U(c)+Vw(w,θ,1)(rw+y1-c)}+θVwθ(wθ,1)(rw+y1-c)

ρV(w,θ,2)+θρVθ(w,θ,2)=

[Vθ(w,θ,1)-Vθ(w,θ,2)]+ maxc{U(c)+Vw(w,θ,2)(rw+y1-c)}+θVwθ(wθ,2)(rw+y1-c)

We then decided to perturbate around θ=0.  We therefore used the equations to find:


ρV(w,0,•)=maxc(u(c)+Vw(w,0,•)(rw+
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In addition, we noticed that (for r=ρ):


V(w,0,•)=
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As c is constant.  As long as we expand around r=ρ, this will not cause a problem.  Looking back at the last equation, we see that the valuations are the same, consumption is the same, and thus the other element in the equation, Vw is also the same.

For the next step, we use the Bellman equations we found last time for θ=0:

ρV(w,0,1)=[Vθ(w,0,2)-Vθ(w,0,1)]+ maxc{U(c)+Vw(w,0,1)(rw+y1-c)} 

ρV(w,0,2)=[Vθ(w,0,1)-Vθ(w,0,2)]+ maxc{U(c)+Vw(w,0,2)(rw+y1-c)}

Average these two (subtract one from the other and divide by two) noticing that c is the same (and therefore U(c) is the same) in both situations (noting from above that ρV is the same for 1 and for 2).  Note also that we cansimplify the rw+yi-c terms:


Vθ(w,0,1)-Vθ(w,0,2)=Vw(w,0,•)(
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Note that the above equation does not mean that Vθ is the same for 1 and for 2.  In fact, by increasing θ, we are decreasing the likelihood that there is a change in state during any instant, thereby changing the marginal valuation of wealth in each state.

We are going to be interested in not only how valuation changes over wealth, but also how value changes over wealth as a function of θ.  Thus, we write the general Bellman equation:

ρV(w,θ,i)+θρVθ(w,θ,i)=

[Vθ(w,θ,j)-Vθ(w,θ,i)]+ maxc{U(c)+Vw(w,θ,i)(rw+yi-c)}+θVwθ(w,θ,i)(rw+yi-c)

And take the derivative with respect to θ.  Note that we can use the envelope theorem is only useful for dealing with the term that has U’(c) in it.  For all other terms, we have to allow c to change.:

ρVθ(w,θ,i)+ρVθ(w,θ,i)+θρVθθ(w,θ,i)=

Vθθ(w,θ,j)-Vθθ(w,θ,i)+Vwθ(w,θ,i)(rw+yi-c)+Vwθ(w,θ,i)(rw+yi+c)+θVwθθ(w,θ,i)(rw+yi-c)




+θVwθ(w,θ,i)
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If we were going to do a ‘closer’ approximation (Taylor series expansion of more than one term), then we would need to take higher order derivatives of the Bellman equation.  However, we are only going to do a first order expansion and thus stop here.

Luckily, most of the above terms drop out when we set θ=0:

2ρVθ(w,0,i)=Vθθ(w,0,j)-Vθθ(w,0,i)+2Vwθ(w,0,i)(rw+yi-c)

Plug in fact that, at θ=0,


C=rw+
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Which gives us:

2ρVθ(w,0,i)=Vθθ(w,0,j)-Vθθ(w,0,i)+2Vwθ(w,0,i) 
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Plug in i=1 and 2 to get.  

2ρVθ(w,0,1)=Vθθ(w,0,2)-Vθθ(w,0,1)+2Vwθ(w,0,1) 
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2ρVθ(w,0,2)=Vθθ(w,0,1)-Vθθ(w,0,2)+2Vwθ(w,0,2) 
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Then take the average of these two expressions to find:

2ρ(Vθ(w,0,1)+Vθ(w,0,2))=2[Vwθ(w,0,1) 
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+Vwθ(w,0,2) 
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Cross out the 2’s, and you have:

ρ(Vθ(w,0,1)+Vθ(w,0,2))=[Vwθ(w,θ,1) 
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+Vwθ(w,θ,2) 
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Of course, 
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.  Therefore, we can make the equation:


ρ(Vθ(w,0,1)+Vθ(w,0,2))=[Vwθ(w,θ,1) -Vwθ(w,θ,2)]
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We would like to simplify this equation further, but have run a bit low on algebra.  Therefore, we are going to work from the simplification form:


Vθ(w,0,1)-Vθ(w,0,2)=Vw(w,0,•)(
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Because the value function is everywhere continuous, we can always take the derivative of anything and everything with respect to w:


Vw,θ(w,0,1)-Vw,θ(w,0,2)=Vww(w,0,•) 
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Plug this into the LHS of the previous equation, and we have:


ρ(Vθ(w,0,1)+Vθ(w,0,2))=[ Vww(w,0,•) 
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and thus:


ρ(Vθ(w,0,1)+Vθ(w,0,2))=Vww(w,0,•) 
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Divide through by the ρ:


Vθ(w,0,1)+Vθ(w,0,2)=Vww(w,0,•) 
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Add and subtract a Vθ(w,0,2) to the equation:


(Vθ(w,0,1)-Vθ(w,0,2))+Vθ(w,0,2)+Vθ(w,0,2) =Vww(w,0,•) 
[image: image22.wmf](
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and substitute in from:


Vθ(w,0,1)-Vθ(w,0,2)=Vw(w,0,•)(
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To get:


Vθ(w,0,2)+Vθ(w,0,2) =Vww(w,0,•) 
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- Vw(w,0,•)(
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Divide both sides of the equation by 2 and note that we could have done this for either i to get:


Vθ(w,0,i) =Vww(w,0,•) 
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- Vw(w,0,•)(
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Now we have almost all of the information that we need for the Taylor expansion:


V(w,θ,i)≈V(w,0,1)+θVθ(w,0,i)

Specifically, we have the most complicated portion, the Vθ part.  Before moving on, let’s substitute in the Vθ we just finished deriving:


V(w,θ,i)≈V(w,0,1)+θ{ Vww(w,0,•) 
[image: image28.wmf](
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- Vw(w,0,•)(
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Let’s also substitute in that:


V(w,0,i)=
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To get:


1.  V(w,θ,i)≈ 
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+θ{ Vww(w,0,•) 
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- Vw(w,0,•)(
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We did it! We now have value as a function of θ.  

Now let’s find a Taylor expansion for consumption for θ ‘near’ ∞.  The Taylor expansion is:


C(w,1/p, i)≈C(w,∞,i)+
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The general method is to find a good term for ∂c/∂P (or rather θ), and then substituting everything in.  All of the work that we did for V will come in quite handy.

A central element in the algebra will be the following relationship which we solved for in the last lecture:

ρV(w,0,•)=U(c)=U(ρW+
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2.  V(w,0,•)=[U(ρW+
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Note that this equation comes from the time invariance.

This relationship gives us (by taking the derivative with respect to w):


3.  VW(w,0,•)=U’(ρW+
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And


4.  Vww(w,0,•)=ρU”(ρW+
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And 


5.  Vwww(w,0,•)=ρ2U’”(ρW+
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We can do something else from equation 3:


U’(c(w,θ,i))=Vw(w,θ,i)

Take the derivative of both sides with respect to θ, and we have:


6. 
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In order to relate equation 6 with equations 3-5, we need a relationship between Vwθ and Vw,w,w,w,w….  For this, we use this equation that we solved for just a bit ago:


Vθ(w,0,i) =Vww(w,0,•) 
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Take the derivative with respect to w:


7.  Vw,θ(w,0,i) =Vwww(w,0,•) 
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Plug this equation (7) into equation 6, and we have:
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Substitute in equations 4 and 5:
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Cancel the ρ on the first term, cancel the u” in the second term, and replace C(•) with the actual value leads to:
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Now, simply plug this into the Taylor expansion, at the same time as θ is replaced by 1/P (While θ was very useful in making the algebra work out more nicely, we need to switch back to p in order to get economic meaning.):


C(w,1/p,i), ≈ρw+
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The higher order terms will be multiplied by 
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: i.e. they converge to zero, and thus do not cause a problem.  In other words, the approximation is a good one.

This can be used to find approximations.  For example, suppose p=.2/year, and that θ=.02/yr.  Another item that is nice is that everything is in terms of -
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 which is called ‘absolute prudence’.  This same term will show itself in the two period model.  From deriving this term from the infinite period model, we realize that the intuition from the two period model is useful even for infinite length models.

We here end discussion of the method of perturbation.

Here are a couple hints for the homework.  For the second problem, consider the symmetry:


y→y-θ

w→w+θ/R  (if r is constant, this will be w→w+θ/r)

A trick that is often useful for limited numbers is the following: the problem says: consider the problem as a function of (1-l) where l is labor and 1 is the time that people have.  A useful trick is to consider the problem as really stating consider the function of (L-l) where L just happens to be 1.  Then consider symmetry in which:


L→L +…

Note that symmetry is still a useful tool.  It is very useful to simplify away all of the terms that can be done this way so that you can concentrate on only the terms that you need to ‘perterb’.

Perterberations are useful in using a computer to come up with approximations. However, they are also particularly just to look at as you can use the actual equations to come up with insight into what is occurring.

Introduction to Utility theory

At this point, we move on to utility theory.  The introduction to expected utility theory is available in Maas, Colel and Green chapter 6.  The key to expected utility theory is the independence axiom: If you replace one item in a comparison with a good one that you are indifferent to in relation to the good replaced, then the comparison remains unchanged.  Algebraically, this statement is:


If A≺B and B~C, then A≺C


If A≺B and A~D, then D≺B

As long as the preferences you are interested in obey those statements, then it is relatively simple to work with expected utility.  If the preference function that you want to use does not follow this axiom, then you had better enjoy doing math…

Since we are going to want to use calculus, we had better have continuity in preferences as well.  If not, then you have games like auctions, and they certainly have their own nasty little surprises.

Before looking directly at risky elements, consider the following simple element that you find from independence: Consider people choosing between the following two gambles:



Where B≻C.  

Of course, by independence, people prefer the top to the bottom.  In other words, independence leads to:


If B≻C, then pA+(1-p)B≻pA+(1-p)C

Note that this is not as strong as stating that the following statement can not be true: ‘I prefer chicken to hot dogs unless I have ketchup.’  The reason that the statement follows independence is that you are changing the state in which the comparison is made.  

Another way to look at the same gamble that we have now looked at twice is to consider:
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Nature is going to play Left with likelihood P, and Right with probability 1-p.  Weak dominance leads to player playing up.

Kreps Portius preferences, despite their dependence on when people find out information, sill follow the axioms of expected utility.  Thus, while they do not describe the simplest rules followed by ‘intertemporal expected utility’, they are less difficult than non-expected utility preferences.   

Now let’s apply what we have been stating about independence and continuity to the n-dimensional simplex of gambles (the gambles with uncertainty in n dimensions.)  The limitation is, of course, that the sum of the probabilities over the different states is one.  For one dimension, you see that you have:




The same picture could be done in three dimensions, or n dimensions for that matter.  As long as the axiom of independence is satisfied, there is both a best and worst lottery, L, and 
[image: image53.wmf]L

.  (If you are indifferent between all points mixed over, then they will all be indifferent, but that is a dull point.)

The value of a lottery is just a number, and it is in the range of the best and the worst lotteries.  Therefore, you can rewrite the value of all possible lotteries as a linear function of the best and worst lotteries:


A~ p
[image: image54.wmf]L
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In other words, we can depict the utility of any gamble with one variable—p (and the value of the best and worst gambles).  Rewritten, we have;


p=U(A)

Just a preview of some of the neat tricks we are going to use:


B=qB+(1-q)B)≺qB+(1-q) 
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 (with equality iff B=
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The fact that utility is linear in gambles is going to be the key.  Remember all of the complications the fact that utility is concave can lead to.  However, despite the concavity of the underlying function, preference over the gambles is linear in p.  Thus, expected utility is a probability metric—and is (in many instances anyway) simpler to deal with than normal utility.  Said another way, EU(c) is cardinal in a way that u is not.

Let’s begin with the stripped down version of choosing a risky asset.  Suppose we are dealing with the following type of one period problem:


MaxαEU(w+αXº)

Where Xº is the risky asset.  (In other words, this is a fully stripped-down version of the  stock choice problem we did a few days ago.

The FOC of this problem is:


EXºU’(w+αXº)=0

Suppose the optimal α=2.  Then we know, by independence, that:


EU(w+β(2Xº))

Is optimal at β=1 as 


E2XºU’(w+β2Xº)=0 

At β=1.

Now consider the problem on page 73 of the course notes:


Max V(W-S)+EU(S+Xº)


W=initial wealth


w-s = first period consumption


Xº is the variable interest on the saving

(We could do this problem using a discount rate, but it is simpler to ignore it.)

The FOC is:


V’(w-s)=EU’(s+Xº)

In other words, the marginal utility of consumption is the same as the marginal utility of saving.

The graph is straightforward:

 

The curvature of the MUC curve comes from the third derivative of utility.  If Utility is 
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then the curvature is positive.  Now consider a simple change in Xº that maintains the mean.  Because of Jensen’s inequality, MUS shifts down (lower value of saving.)  Suggested readings for next class is the ‘New methods’ section of the course pack and the accompanying paper.
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