2 22 Single crossing

Advanced Math

Elements covered:

1. What the (dual) diffidence theorem gives you exactly

2. Highlight that f(•) being concave is a necessary condition for use of the (dual) diffidence theorem

3. Prove DARA functions are a convex set

4. Discuss the possibility of dense sets of extremals

5. Define single crossing

6. Use single crossing and the diffidence theorem to derive the monotone likelihood ratio

1.  Before beginning the lecture, there are a few notes to make.  The first is that the diffidence and dual diffidence theorems give you an equation and nothing more.  In the problems that we were concerned with for the diffidence theorem, there are ‘cranking’ methods

1. to solve explicitly for the m

2. (sometimes) to find a simple necessary condition

However, we note from the problem in the last lecture that it is not always possible to solve explicitly for the separating hyperplane, m.  For the problem in the last lecture, the fact that we found something else that was useful.  In particular, we could ‘add and subtract weights on the origin without changing the underlying problem, but making the problem look like another, solvable problem.’

For the homework problem 8, a different trick is in the offing.  In particular, once again the m is not explicitly solvable.  However, even simpler than the problem in the last lecture, the ‘added term’ drops out completely.  Therefore, it is possible to find an explicit solution for the non-predicated version of the problem.

Today we use a different method after having plugged in the dual diffidence theorem.  Specifically, we will again not be able to solve explicitly for the separating hyperplane, m.  However, we will be able to use the existence of such a hyperplane to fully characterize the object of interest—the monotone comparative static.

2.  Before beginning the discussion of monotone comparative statics, we go back one more time to review an (almost) forgotten necessary condition for the diffidence and dual diffidence theorems.  Remember the graph we had last lecture:
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One thing that we forgot to highlight last time is that the set below the separating hyperplane must be a convex set.  In order for the set to be convex, it is necessary for the set of functions being discussed to be a convex set.

Let’s look at some functions that are convex sets.  Begin with the example:


For all fεF, if Ef(X1º)≤f(0), then Ef(X2º)≤f(0)

To satisfy the requirements of the (dual) diffidence theorem (i.e. satisfy the separating hyperplane requirements), the set of functions F must be a convex set.  

All sets of functions that you define by their derivatives (for example, increasing, convex set, etc.) are convex sets.  These sets of functions are all convex as multiplying them by a positive number leaves them in the set.

3.  However, there are other convex sets of functions.  A common such set is the set of decreasing absolute risk averse functions.  We now consider the proof that this set is converse.  In order to get some of the intuition, we begin with the version of the proof which assumes as much differentiability as you could shake a stick at.  After this, we will discuss a bit about how to do the proof for non-differentiable functions.

We would like to prove that a linear combination of two DARA utility functions is also DARA.  Denote the original DARA functions V1 and V2.  Of course, we do know that multiplying a DARA function by a constant leaves it DARA, and thus all we need to do is check that U is DARA where U is defined as:


U≡V1+V2
DARA is defined by the fact that:



[image: image10.bmp] is decreasing in x.

Write out the equivalent for the function U using:


U=V1+V2

U’=V1’+V2’


U”=V1”+V2”

This directly leads to (after minimal algebra):
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Because V1 and V2 are DARA functions, the elements in the parenthesis are decreasing in X.  However, there is another element to consider.  The proof is finished at this point if both V1 and V2 are characterized by the same risk aversion.  However, without loss of generality, assume that V2 is more risk averse at all points than is V1:
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As we change X, we need to make sure that the weighting on risk aversion does not increase too much on the less risk averse Vi.  If it did, then U would not be DARA.  

However, not to worry, U is DARA as the weighting increases on the more risk averse Vi.  We know directly from the comparison of the risk aversion of V2 versus V1 that:
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is decreasing in X.  Therefore, looking back at the original measure of risk aversion for U:
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This means that the weighting on the more risk averse function increases with X.  Thus, we are finished with the proof.

Let’s consider for a minute how we could prove that the set of DARA functions is convex for less smooth functions.  If the first derivative goes to ∞ at any point, then the only way the function can have DARA is for the first derivative to be ∞ at all points after it.  In other words, we need smoothness in the first derivative.

With at least one derivative to deal with, it is possible to use the following definition of concavity which is based on comparison of a midpoint versus the end points:


lnVi’(X+2δ)-2lnVi’(X+δ)+lnVi(x)≥0

(Of course, this comes directly from:


Vi(X+2δ)Vi’(X)-Vi’(X+δ)2≥0)

Put that into matrix form, and we have that the following matrix id positive definite:
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Of course, the sum of such matrices will also be positive definite, and thus the linear combination of the elements is DARA.

Note that these proofs will not work for IARA.  In particular, you would have the off dimensional elements in the IARA case larger than the diagonal elements—a characteristic that does not hold for addition of matrices.  Therefore, the set of IARA functions is not a convex set—and therefore is not very easy to deal with.  In other words, it is a good thing that DARA is theoretically more interesting than IARA functions.

Now that we know that the set of DARA functions is convex, it is possible to use the diffidence theorem for them.  However, it would be nice if there was a simple set of extremals for DARA functions.  However, we will show that every DARA function is its own extremal.

4.  Before dealing directly with the DARA functions, let’s consider some geometric shapes first.  The extremals for a rectangle:


Are the four corners.  However, consider the circle:


The circle is a convex set, but the extremals includes an infinite number of points—each point on the radius.

The set of DARA functions is even worse—each and every DARA function is an extremal.  The terminology is that DARA functions are ‘dense’.

Without going into detail, the set of extremals of DARA functions is the set of step functions for risk aversion:



Of course, it is possible to approximate any decreasing function (DARA function) arbitrarily close with a step function.  As the limit of the size of the steps goes to 0, you get the entire function.  Thus, the entire set of DARA functions is the set of extremals—you don’t get much milage from consideration of ‘just the extremals’ when considering DARA functions.

Before going on too much, it is about time to clearly define an extremal:

An extremal is both in the convex set, and it is possible to create all points within the set from a linear combination of extremals.  (This will be used for a petty differentiation later on.)

We now begin consideration of monotone comparative statics.  The example we will use to illustrate the method is derivation of the maximum likelihood ratio.  It will become clear that the reason economists have so much interest in single-crossing properties is that they make comparative statics (including monotone comparative statics) possible.

Before beginning a careful discussion of single-crossing, let’s do a more informal discussion.  During this initial discussion, we will make two points:

1. The idea of single crossing is as simple as it sounds

2. Many very interesting economic problems are characterized by a particular type of function which is in the class of single-crossing functions.

We give more careful definitions of single crossing shortly, but just keep in mind that ‘single crossing’, in its most basic context simply means that the value of a function only crosses the origin one time:



Many very interesting economic problems can be characterized by single crossing properties.  In particular, consider the function:


Θ(t)=f(X2,t)-f(X1,t)

Where


t is a parameter of the player (e.g. their cost structure in an auction, or the slope of their 

indifference curve in a consumption model)


X1 is an element in that player’s choice set (e.g. a possible bid in an auction, or a possible



consumption bundle)


X2 is a different element in the player’s choice set

Θ(t) is a comparative valuation of the two choices available to the player.  If θ(t)>0, then choice X2 is preferred to X1, while choice X1 is preferred to X2 when θ(t)<0. 

If θ(•) satisfies the single crossing property, then you know the following:

· For t less than some critical value (the point at which θ(t) crosses the 0 point), option X1 is always preferred

· For t greater than that same critical value, option X2 is always preferred.

{This is the type of statement that you can make from a statement regarding locally single crossing.  However, this statement can be generalized to a statement regarding always preferring ‘greater Xi’ after the problem has been globalized.}  Once you have characteristics for global single crossing, comparative statics are generally quite straightforward.

To give more of an intuition of what ‘single crossing’ means, let’s look at what the Diamond Merlese condition means over consumption bundles.  ‘Centrally single crossing differences in consumption preferences’ is the topic of the Diamond Merles condition.  It considers two different preference functions through some initial point (the ‘central location’.)  Graphically, the Diamond Merles condition considers:




The circle is the ‘central location’.  The Diamond Merles condition states that a centrally single crossing change in consumption preferences requires the following:

· The elements of the preferred set in which X is at least as large as in the central location as for the dashed indifference curve contains all of the preferred set for the solid indifference curve.

· The elements o the preferred set in which X is at least as large as in the central location as for the dashed indifference curve contains some points that are not in the preferred set for the solid indifference curve.

Note that the above conditions are only enough for central single crossing.  In order to have ‘smooth, global single crossing as drawn in the graph, you need an additional condition: specifically, you need the above conditions to hold for all central locations.

5.  Now let’s consider some algebraic definitions of single crossing.  We will consider several versions of this property, but the simplest is the following.  WLOG, consider t2>t1.  A function θ(•) satisfies the single crossing property if the following two properties are met:


If θ(t1)≥0 then θ(t2)≥0


If θ(t1)>0 then θ(t2)>0

The picture of a θ function that satisfies this property is:




The function is strictly negative prior to some critical point and strictly positive from another critical point on.  It is possible, as in the picture above, for θ to be equal to zero for a range of points.  (note that we can also have bi-variate single crossing properties.  For example, we will consider functions that are single-crossing in (X,t) during the next lecture.  This means that for all t, the function is single-crossing in X, and vice versa.)

There are weaker versions (which we will consider a bit) that allow for the following type of situation:



Here is one of the ways of writing a weaker version of single crossing:


If θ(t2)≤0, then θ(t1)≤0

This type of single crossing allows several θ(•)=0 prior to the ‘big crossover’.

In addition to allowing various versions of the single crossing property, it is also possible to write them several different ways.  For example, the initial definition of single crossing:


If θ(t1)≥0 then θ(t2)≥0


If θ(t1)>0 then θ(t2)>0

Is equivalent to:


If θ(t2)≤0, then θ(t1)≤0

We can also rewrite a single crossing property by defining the point of ‘crossover’ as 0.  This leads to the following ‘single crossing at W’ definition:


Θ(t)≥0 for t≥W


Θ(t)≤0 for t≤W

And can be graphed:



The set of functions that are members of the single crossing at w (centrally single crossing) set is convex.   This is easy to see: you are adding a bunch of functions less than or equal to zero left of w; therefore the sum of the functions is less than or equal to zero left of w.  You are also adding a bunch of functions that are greater than or equal to zero right of zero; thus, their sum is also greater than or equal to zero.  

On the other hand, the set of functions that are single crossing, but possibly for different w is not a convex set.  For an example, consider the following two single crossing functions.  The sum of them (the dotted line) is not a single-crossing function





This observation that the characteristic we want (convexity) is true for a group of functions around a central point is useful despite the fact that it is not true for the more general context is important.  What it means is that we will do the proofs the following way:

1. Consider the set of conditions that must hold for some assumed starting point.

2. Generalize the set of conditions found in set one for what must be true no matter which starting point we use.  

This method of first considering the ‘centralized context’ only, and only later generalizing to the ‘global context’ proves quite useful for a wide range of problems.

Because the set of functions that pass the ‘single crossing property around point w’ is convex, we are going to be able always use the dual diffidence theorem for this set of problems.  It is this usage of the dual diffidence theorem which will allow us (next lecture) to do monotone comparative statics.

With a convex set of functions (single crossing at w), we can use the dual diffidence theorem.  However, in order to use the dual diffidence theorem, we need the set of extremals.  For most of the problem, we are not interested in the situation in which θ(•) goes to plus or minus infinity.  

For these finite portions of θ(•), the extremals are ‘xi functions.’  Xi functions are defined as:
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All points for t>w are characterized by positive Xi functions.  These are graphed:




All points t<w are characterized by negative Xi functions.  These are graphed:



In addition, however, we are going to need to consider situations in which θ(•) goes off to infinity.  The reason we need to consider these is because we are going to be dealing with PDF’s.  If there are any atomic masses of probability, there must be a corresponding point on the PDF that goes to infinity (there is a finite probability of that particular element being randomly chosen.)  However, we need the xi functions and these functions that go all the way to infinity to be normalized somehow.  The particular normalization we use is having the integral over the function equal to one.  That is exactly the characteristic of the Dyrac delta that we discussed in previous lecture.  (This result comes from real analysis.)  We write the Dyrac delta as:


δ(t)

Just as for the Xi function, we use a negative dyrac delta function for t<w: 


-δ(t)

It is clear these are the extremals as we can rewrite θ(•) as:


Θ(t)=∫w∞δ(τ)θ(τ)dτ+∫-∞w(-δ(τ))θ(τ)dτ
Now back to the problem: We will use a slightly different set of terminology to match Susan Athey’s.  She calls the set of functions that you need to test the ‘test functions’.  If the property that you are testing for holds for all of the ‘test functions’, then it holds for all functions within the set.  The difference between the test functions and the notion of extremals is often quite slight: a set of useful test functions is the set of extremals if the set is closed.  If the set is not closed, then a set of useful test functions is the extremals of the closures of the set.

However, it is only necessary to use extremals for iff clauses.  If you are only looking for a set of necessary conditions, then you can use the set of extremals corresponding to a convex set that includes the set of interest.  We can see this property from the following picture:



If the property of interest holds for the extremals of the set easier to work with, then it holds for all points within that set.  Therefore, the property of interest holds for all points within the set of interest.  An example of this method is that the set of all DARA functions is a subset of the functions with:


U’>0


U”<0


U”’>0

Thus, any characteristic that is true for utility with positive third derivatives is also true for all DARA functions.


6.  Now, let’s move on to the sample problem.  The following problem will lead to derivation of the monotone likelihood ratio.  Here it is:


What are the conditions such that:



If Eθ(t1º)≤0, then Eθ(t2º)≤0

In other words, if t1º is bad, then so is t2º.  In order to solve the problem, we begin by considering the set of functions where θ(•) is a member of the class of functions with single crossing at w.  {Later we will generalize to consider the characteristic that must hold for single crossing at any w.}

Now we have enough to use the dual diffidence theorem:

· θ is a convex set of functions

· the problem satisfies the correct form:

If Eθ(t1º)≤0, then Eθ(t2º)≤0

Just to see how closely we mirror the usage of the dual diffidence theorems, we draw the corresponding picture below:



From the dual diffidence theorem, we know that a separating hyperplane that can be fully described by the function m exists, and that the problem can be rewritten:


Eθ(t2º)≤mEθ(t1º)

The trick that we used in the last lecture (adding mass at 0) is not useful for this problem.  However, just like that problem and problem set 3, number 8, there is no benefit to explicitly solving for m.  Rather, we just leave it floating around, safe in the knowledge that it is always ≥ 0.

At this point, we need some notation for the distribution function of tiº.  We use:


tiº~Gi
(i.e. that Gi is the cumulative distribution function of random variable tiº.)  

Thus, we can rewrite:

Eθ(t2º)≤mEθ(t1º)

As:


∫-∞∞θ(t)dG2(t)≤m∫-∞∞θ(t)dG1(t)

Replace θ(•) with extremals, and we have:

We know that for a given w, there is a corresponding m for the entire class of functions.  However, all we know about m is that it is non-negative.  However, we also know that θ(•) is positive for all t>w, and θ(•) is negative for all t<w.  Combine these elements and we see that:
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Combining these two elements graphically gives us:



In other words, we have just derived the fact that g2 and mg1 must be characterized by a single crossing, where that crossing occurs at t=w.  However, the graph above is really too strong, as we know nothing about the value mg1-g2 takes at t=w.

Another way of writing this relationship is to write it in terms of:


g2(t)/g1(t)

The requirement is that a graph of this looks like:



Left of t=w, we have mg1-g2≤0, and the opposite for greater than w.  At any of these points, if g1=0, then g2 can be anything and still have the equality satisfied.   Right of t=w, we have the opposite.  However, if g1=0, then g2 must also be 0.  (If this characteristic was not satisfied, then g1 would not necessarily be preferred to g2.)

Similarly, we know that a way to write the constraint is through m≥g2/g1.  Graphically, this leaves:






In other words, the ratio is strictly lower than m only to the right of w.  We have now completely characterized the ratio g2/g1 for centrally single crossing functions.  However, we would like the characteristic to hold not just for single crossing problems around a single point, but for functions that only cross once no matter how you draw them—globally single crossing.

For this the single crossing property to hold for each w, it must be the case that g2/g1 is strictly decreasing—i.e. the monotone likelihood ratio has been derived.  The m’s don’t actually completely wash out of this problem. 

On the other hand, it is useful to consider how you might approach the problem of considering the range of m’s that correspond with different w’s.  If you remember the derivation of how to draw the m, we noted that it is the separating hyperplane.  Therefore, if the set of functions contains both negative and positive linear functions, then the m corresponding to those functions must be 1.  Next class we cover Milgrom and Shannon (January ’94) Econometrica 62(1) on monotone comparative statics, pp 157-180.
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