2 17 characterizing utility and risk comparing intro

Advanced Math

Today we cover (approximately) five topics:

1. Risk vulnerability: a continuation of the example we finished with last time 

2. Standard risk aversion: this is an example of how to deal with two risks.

3. Duality between utility functions and probability distribution functions

4. Dual diffidence theorem: how to use the diffidence theorem repeatedly

5. An introduction into monotone likelihood ratio order

1. Risk vulnerability example continued

This example is taken directly from “New methods… Characterizing utility functions”

We are interested in what happens to the equilibrium risk-free interest rate when a mean-zero risk is added.  (For a detailed explanation of the elements in the ‘then’ clause, see the paper.)  Of course, the ‘if’ clause will be ‘there exists a mean zero or less risk’:


If EXº≤0

The comparison of the risk-free rate will come from:


Then 
[image: image20.bmp]
Therefore, our g(x) is:


g(x)=
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As we did several times in the last lecture, we simply plug elements into the diffidence theorem, and find:
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Notice that if U1=U and U2=U’, then this is the same as the risk vulnerability problem that we did last time.  {That problem was characterized by:


g(x)=
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Therefore, the problem that we are looking at today is strictly more general than the problem we looked at during the last lecture.

Up until now we have been a bit loose on the necessary and sufficient condition.  We have only stated that it satisfies the equation with the m in it.  However, there really are two necessary and sufficient conditions.  The second condition is that m≥0.  In this problem, that condition leads to:
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i.e. that U2 is at least as risk averse.

Once again we skip the algebra as it so closely matches what we did in the last lecture, and find ‘the equivalent of the SOC’.  Note, once again that the following is a ‘locally necessary condition’:
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Unfortunately, no matter how much algebra you do, you can’t (or at least no one has yet) shown that this is equivalent to the necessary and sufficient condition.  

In fact, the best among known sufficient conditions comes from Pratt and Golier and states that:


U2”’(w)-
[image: image7.wmf])
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U1”(w) is increasing in w.

We will not do the proof: see the paper for details.

While this condition is strictly univariate, it still has a very important flaw.  Specifically, U1 is not separable from U2.  Therefore, it is not possible to index the two utility functions.  We earlier pointed out the importance of that requirement when we were looking at simple risk aversion:
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If you can not index the utility functions by something in the denominator, your comparison is fairly spurious as you are attempting to compare absolute values of a cardinal measure.  Even at worst, it usually is possible to find slightly stronger separable versions of these univariate necessary and sufficient conditions.  However, no one has done so for this problem so far.  Even so, the importance of this as an example is that there is no ‘cranking’ method of finding univariate necessary and sufficient conditions.

We now move to:

2. Definition of Standard risk aversion

For the next problem, we will have to use the diffidence theorem twice.  In general, the intuition that leads to this method should also be an option whenever the method of extremals is.

For this problem, we consider two constraints, but over two independent random variables.  (The independence is what allows us to use the diffidence method twice, rather than going back and deriving a new set of necessary and sufficient conditions ‘when there are two constraints.’

Here’s the set of conditions we would like to fully characterize: 

Presume some Xº and Yº that are independent.

If EU’(w+Xº)≥U’(w)

And EU’(w+Yº)≥U’(w)

Then E[U(w+Xº+Yº)-U(w+Xº)-U(w+Yº)+U(w)]≤0

In other words: the ‘If’ and ‘and’ clauses are saying that the two gambles (independently) are ‘good’ risks in the sense that they lead to increased consumption.  The ‘then’ clause says that there is a negative interaction between Xº and Yº.  Note that this is a very simple lattice, and thus we are trying to characterize the situation that corresponds to submodularity.  (Note that the corresponding problem with one ‘good’ and one ‘bad’ risk is also quite simple.  The problem with two ‘bad’ risks is much more difficult.)

We are going to solve the problem in two stages: the first is to use the diffidence theorem maintaining Y fixed, then to do the same thing holding X fixed.  Therefore: begin by assuming that Yº is fixed in the problem.  The diffidence theorem leads to:


f(x)=U’(w)-U’(w+x)


g(x)=EYU(w+x+Yº)-U(w+x)-EyU(w+Yº)+U(w)

Crank this through the diffidence theorem and we get:


EYU(w+x+Yº)-U(w+x)- EyU(w+Yº)+U(w)≤m[U’(w)-U’(w+x)]

Do the second crank (m=derivative of the LHS/derivative of the RHS wrt x at x=0):


m=
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Note that there is still the one constraint of the original problem that we have not yet used.  Thus, let’s combine that condition with the equation we just solved.  We now want to characterize:

Assume Xº and Yº independent.

If EU’(w+Yº)≥U’(w)

Then EY[U(w+x+Yº)-U(w+x)-U(w+Yº)+U(w)]≤ 
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 [U’(w)-U’(w+x)]

Although the algebra is a bit messy, this problem is certainly solvable using the diffidence theorem:


f(y)= U’(w)-U’(w+y)


g(y)= U(w+x+y)-U(w+x)-U(w+y)+U(w)- 
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Plug into the diffidence theorem results, crank, and we see:

g(y)= U(w+x+y)-U(w+x)-U(w+y)+U(w)- 
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 [U’(w)-U’(w+x)]≤m{U’(w)-U’(w+y)}

For m, we again just crank, but we only go partway.  Specifically, we see that g’(0)=0:


g’(0)=U’(w+x)-U’(w)-
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Therefore, m=0.  In turn, because m=0, the entire RHS=0.  {Note the discussion of the opposite case when the denominator of m=0.  That problem is simply dealt with by multiplying both sides of the diffidence theorem by 1/m.  After this, what was the denominator becomes the numerator and no problem.  This trick does not disobey anything in the proof.}

In summary, we can summarize by stating the trivariate necessary and sufficient condition for our proposed statement holding is:


NSC: U(w+x+y)-U(w+x)-U(w+y)+U(w)- 
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As always, we would like the univariate version of this condition.  Luckily, this problem becomes one of the ‘simple’ ones where the necessary condition that comes as a result of the necessary and sufficient condition is also a sufficient condition.  

Once again, this necessary condition is the equivalent of the SOC: specifically, it states that the fourth derivative of the ξ function (twice with respect to x and twice with respect to y)≤0 at x=y=0.  The algebra is straightforward, so we write the solution:


U””(w)-
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Which is rewritten:
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(In terminology, this condition states that ‘temperance’ is at least as large as ‘prudence’.)  An identical way of stating it is that prudence is decreasing in w:
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We are not going to go through the proof that this is also the necessary and sufficient condition; see the ‘methods’ paper for the details.  The trick is to integrate the condition over x and then over y, then use the fact that ln(-U”) is convex in X.

We now move to:

3. The duality of the utility function and the pdf function of the variable.  

The reading for this is the (unfortunately rendered) NSF grant proposal.  The intuition here is that, 

for every statement we made about the utility function, 

there is a corresponding statement we can make about the distribution of the random variable.

Begin by writing out a statement equivalent to marginal utility:


MU=∫abU(w)dF(w)dw

We then normalize the function by stating that U(b)=0.  (This will help with the integration by parts.)

Then integrate by parts:



=U(w)F(w)]ab -∫abF(w)U’(w)dw



=-∫abF(w)U’(w)dw

Note the trend: we integrate the pdf once, and take the derivative of utility.  Let’s see that it continues when we integrate again.

Before integrating again, we note that we are going to need a bit more notation.  Specifically, denote:


F(i)≡F integrated i times

Now we are ready to integrate


=-∫abF(w)U’(w)dw

one more time by parts:



=∫abF(1)(w)U”(w)dw-F(1)(w)U’(w)]ab
It doesn’t seem quite so pretty a relationship.  However, in this case, also, we can make the ~]ab term go away.  The way to do this is to set b=∞ and to add an Inada condition (U’(∞)=0.)

This is clearly enough to see the general pattern.  Suppose there is something in the literature connecting au utility function and some characteristics of the distribution of random variables.  Then, as we see from this exercise, there will be a corresponding relationship one more derivative of the utility function and the distribution of the random variable.  Solving for this relationship should be relatively straightforward.  

In addition, as mentioned above, every condition regarding utility functions has a corresponding statement regarding the distribution of random variables.  For example, ordering utility based on risk aversion has its equivalent being ordering gambles based on the ‘Monotone likelihood ratio.’  Note that a person with utility function u(x) is more risk averse than a person with utility function v(x) is stating that:
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{Note that we are going to change notation here.  Rather than naming the random variable Xº, we are going to be explicitly characterizing the distribution of the outcomes of the random variable.  Thus, we characterize random variables directly by their distributions.}  Here is the explanation of the monotone likelihood ratio.  Suppose the we have two random variables characterized by density functions f(x) and g(x).  

If 
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 is increasing in x, then g MLR dominates f.  Note how strong an ordering this is.  However, it is good enough to guarantee that gamble g is strictly preferred to gamble f for all people with increasing utility functions.  Note how strong a statement this is.  

There are many problems that can be approached in this manner.  We will come back to this type of problem in the next lecture.  (For examples of this type, see Susan Athey’s work.  She does quite a bit of it.)

We now move on to:

4. Dual diffidence theorem (yet unpublished Kimball paper)
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This condition will be very similar to the diffidence theorem.  However, in the same theme of duality between utility and random variables, will be for changes in the random variable rather than in the utility function.  Let’s look at this graphically to get the intuition.  Remember how we described the original diffidence theorem:

The set below the line with slope m is the set of gambles that satisfies the constraint, and is a convex set.  The first quadrant is the set of points that would make the proposed relationship we are characterizing as untrue, and is therefore also a convex set.  The two convex sets overlap only at a single point, and thus the line with slope m is the hyperplane that separates the two convex hulls.

We can draw the exact same picture, simply replacing the axes:



It is clear (although we will not bother proving it) that we could do the exact same steps to characterize an identical ‘dual diffidence theorem’.  The only difference between this dual diffidence and the original is in how we ‘process’ the algebraic portions.

Several lectures ago, we considered the ‘non-predicated risk comparison’:


Ef(X2º)≤Ef(X1º) for all fεF

We used extremals and found a fairly straightforward means of characterizing the distribution functions.

However, we would really like to characterize something with a bit more economic meaning.  Specifically, we would like to characterize the ‘predicated risk comparison’:

For all fεF,


If Ef(X1º)≤f(0)


Then Ef(X2º)≤f(0)

In other words, we would like to characterize risks in a way that ‘if person with utility f dislikes risk one, then they will necessarily dislike risk 2.’  (note the similarity to problem 8 on problem set 3.)

Of course, we solve this using the dual diffidence theorem.  The first ‘crank’ in implementing this theorem is the same as with the diffidence theorem:


Ef(X2º)-f(0)≤m[Ef(X1º)-f(0)]

As always, we know that m≥0.  In addition, we can solve explicitly for a function of m from the derivative of the left hand side and of the right hand side.  It is from here on out that we will ‘process’ the problem differently than we did the earlier diffidence problems.

Specifically, we split the problem into two pieces:


1. mε[0,1]


2. m>1

1.  When mε[0,1], we write the necessary and sufficient condition as:


Ef(X2º)-f(0)≤mEf(X1º)+(1-m)f(0)

However, this equation is a non-predicated comparison between X2º and a mix of X1º and 0!  Therefore, it is equivalent to solving for the un-predicated condition in which X2º≺ the following gamble:


2. When m>1, we rewrite the equation as (1/m)Ef(X2º)+(1-(1/m))f(0)≤Ef(X1º)-f(0)

Similarly, this is equivalent to solving for the un-predicted condition in which X1º≻ the following gamble:



Algebraically, we are adding a mass to the probability at 0 to one or the other gamble.  However, because of indifference between 0 and 0, that does not change the relative preference of the gamble.  However, because we have changed the problem into one we know how to solve, we have made the problem easy.
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