2 15 Utility rating examples

Advanced Math

There are two goals for today:

1. Find a simpler condition for the problems we solved last class.

2. Work out a couple more examples.

The portion of the problem that we solved for in the last lecture was completely general: we found bivariate conditions such that an if clause is true, then some other clause is true.  Given a specific example, we used the diffidence theorem to show that:
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Is the necessary and sufficient condition for:


If EU1(w+x)≤U1(w), then EU2(w+x)≤U2(w)

We did more than one example this way, and always found that (at least for the problems of the class for which the diffidence equivalence holds) we could simply plug into a very simple equation.  If we are only interested in the comparison around some given outside option 0, then there is no problem—we have plenty of information.

However, we would really prefer a univariate comparison as it is difficult to find much economic intuition from the bivariate distribution (for all x, and for all w).  Such a univariate distribution is the only way that we will be able to truly get some intuition for what the f and g functions need to ‘look like’ in order to come up with the surmised comparison.  Specifically, we are interested in how derivatives of the utility function with respect just to w compare to one another; i.e. something akin to


XU2’(w+x)≤
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But which is a function of w only rather than w and x.

In order to solve for the univariate characterization, we will use three tools (although they are relatively specific to the problems we solve.  The goal is solely to give some ideas about which tools have been useful for problems that are, perhaps, similar to the ones you’re interested in):

1. knowledge that the outside option leaves parties with any utility option indifferent, and that points ‘close’ to the outside option leave them no better off.  Thus, we can simply solve for a necessary condition around the outside option; this necessary condition is the equivalent of a SOC for maximization problems.  This ‘local necessary condition’ will sometimes be a necessary and sufficient condition for the comparison we would like.

2. knowledge about differential equations.  Differential equation tools will sometimes prove useful in finding the univariate comparison that we are looking for.

Begin with step 1: We know that at least locally around x=0, the derivative of both f and g can not be positive.  Algebraically, a comparison of this sort is found either by plugging in ξ”(0), or by taking the derivative of the necessary condition that has both x and w wrt w.  

In other words, we know that the comparison:

XU2’(w+x)≤
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Holds with equality at x=0, and that its derivative with respect to x at x=0 is not positive.  Taking the derivative wrt x and then substituting in x=0 leads to:
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The above is a necessary condition for the utility comparison, but is certainly not a sufficient condition for it to hold.  (Note that the proof of the problem does means that we do not need to check that the SOC holds; it necessarily will by construction.)

It turns out in this case that if the above condition holds for all w, then the comparison we want also holds.  In order to prove (check) that this is true is not, however, a follow the recipe proof.  Rather, we will follow the method that works in this particular instance (although it does work in other instances as well.)

The second method is the one that comes in handy here: using differential equations.  If you remember any differential equations, it is immediately clear that the above comparison is equivalent to:
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which is equivalent to:
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which directly leads to:
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Of course, ln is monotonic, and thus we know that:
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is a necessary condition for the comparison we want to hold.    We would like to know whether this, also is a sufficient condition for the comparison we want between U1 and U2 to hold.

The trick to show sufficiency is clearer if we draw the above necessary condition graphically:







The necessary condition is that the gap between the natural log of U1 and the natural log of U2 is strictly growing; this statement is stronger than a single crossing which states that they never ‘shrink enough to cross twice.’  

Noting that the difference between lnU1 and lnU2 can be either positive or negative (and we know they are the same at 0), we can break the general derivative relationship into two elements:
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From here, it is straightforward to show that, this is, in fact, a sufficient condition for 


If EU1(w+x)≤U1(w), then EU2(w+x)≤U2(w)

For this step, it is enough to realize that the expected value over a random variable is the expectation of the valuations over each possible outcome.  In other words (after moving terms in the above inequality), we have:
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gives the relative gain in utility for each realization x.  Take the expected utility over the various realizations of x, and you clearly see that the above condition is plenty to show:


If EU1(w+x)≤U1(w), then EU2(w+x)≤U2(w)

(Note the one tricky portion: if x>0, then integrating a bunch of numbers for which the required comparison holds.  However, for x<0, there are two sign changes.  1.  The sign of the relative changes in marginal utility, and 2. ∫0-2=-∫-20.

Another, more direct method is, rather than show the integrals are a sufficient condition directly of the relationship we want, is to attack the necessary and sufficient condition directly (and only the comparison we really want, indirectly.)  In other words, the integral above leads directly back to the condition that characterizes our inequality:
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In summary, we did the following:

1. Used a cookie cutter method to solve for a necessary and sufficient condition that is less pretty than we would like.

2. Used our knowledge of the necessary and sufficient condition to find a nice, pretty necessary condition that comes as a result of the necessary and sufficient condition.

3. Used algebraic (calculaic) tricks to show that the pretty necessary condition that results from the necessary and sufficient condition is, also, sufficient.

Before moving on, let’s look at the necessary condition one more time:
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Of course, this is identical to:
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which is the Arrow-Pratt measure of risk aversion is larger for utility function 2.

We now move onto a new example.  Specifically, we would like to know when the option of investing in a new risky asset changes savings behavior.  Assuming that we want to invest anything in the new asset, it must have positive mean value due to risk aversion.  Thus, there is certain to be an income effect pushing towards decreased savings.  However, there will also be a ‘precautionary savings’ effect that will increase savings.  We want to know the necessary and sufficient condition for one of these forces to necessarily overwhelm the other.

Remember from two lectures ago that:


EXºU’(w+Xº)=0

Is the FOC for optimal consumption of the risky asset when α (the optimal amount of the risk asset)=1.  Similarly, EU’(w+xº)≥U’(w) will be the condition for decreased savings: in other words, with the optimal amount of the asset, consumption on the margin will be necessarily higher.  

Let’s write this into a form that is useful for using the diffidence theorem:


If EXºU’(w+Xº)=0, then EU’(w+Xº)≥U’(w)

(We will maintain the assumption s that u’(w)>0 and u”(w)<0.)  {Note that the above comparison has the following sign: specifically, we are interested in g(x)≤g(0).  Therefore, we should really be multiplying by negative one to switch signs here.}

The first step is to crank the diffidence theorem and see that we have:


U’(w+x)-U’(x)≤m{XU’(w+x)}

{Note that, due to our sign error, we have the incorrect sign here.  However, we will allow it to show that it is possible to find this error later in the problem.  Great teaching technique!}

We now, once again, crank, to solve for the m using the diffidence theorem.  We will use:


f’(0)=U’(w+0)+0U”(w+0)=U’(0) 


g’(0)=2U”(w+0)+0U”’(W+0)=wU”(w)

Plugging in leads to our necessary and sufficient bivariate condition:

U’(w+x)-U’(w)≤
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{Again, note the incorrect sign.}  Because one of the sides of the problem has =0, rather than ≤, we can check if we did the problem correctly.  The easy way to check is to take the expected value of both sides: if it is correct, then we should get the desired inequality:


E[U’(W+Xº)-U’(W)]≤ 
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However, we are interested particularly in the case where E[XºU’(W+X)]=0, and thus:


EU’(W+Xº)≤U’(w)

Woops!  We made a sign error.  We wanted to find decreased savings, and the condition above will find the condition for increased savings.  Rather than switch the sign, let’s just change the problem.  Assume that we are interested in finding the case that will lead to increased savings.

Once again, we are interested in finding a more malleable univariate condition.   Just as in the last case, the first place is to find the derivative of the above condition around X=0 (which will be the equivalent of the SOC.)  Skipping the algebra, we find:


U”’(w)≤
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Which can be rewritten:


U”’(w)≤ 
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This is certainly a necessary condition as it must be true for the necessary and sufficient condition to be true.  However, it would be really nice if this condition also implied that the sufficient condition was true, and thus it would also be a sufficient condition.

Just as in the last problem, we again use our differential equations tools for help.  Begin by dividing the above inequality by U”(w) (which we note is less than zero and thus flips the sign):
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and use our simple differential equations:
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It is simple to recognize that |U”|=-U”, which is plugged in after doing the same tricks as in the last example:



[image: image21.wmf][

]

0

)

(

'

)

(

"

ln

2

³

-

dw

w

U

w

U

d


In other words, we know that a necessary result of the relationship we wanted holding is that:
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Although there is no reason for this to be true for all instances in this class of problems, it really would be great if this also implied the necessary and sufficient condition.  If so, then this nice, simple condition, itself, would be a necessary and sufficient condition.

The reason that we call this a ‘nice’ comparison, is that it could be rewritten in so many ways.  For example, it could be rewritten:
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i.e. that prudence was less than or equal to twice risk aversion.  This could, in turn be used to check if the condition holds for a particular utility function.  For example,:


U=
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(Constant relative risk aversion) Is the necessary and sufficient condition for adding a possible risky asset leading to increased saving.

However, we have not proved sufficiency yet.  Let’s get back to work and do that.  We’ve integrated once to get:
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(Note that we can take out the log as that is simply a monotonic change.)  If it seemed to work once, then let’s try it again!:
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Wow!  We see that U’ must be convex in w.

In order to get the DeNoumont (spelling) for this problem, let’s graph what this means:


Since we have convexity, all points for larger X are above the tangent at X=0.  Algebraically, this means that:
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In just a couple more simple algebra steps, we show that this implies the necessary and sufficient condition.   Begin by multiplying through by U’(w+x) and U’(w):


U’(w)≥U’(w+x)+(-U”(w))
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Since this is true for all X, then it must be true for the expectation of E(Xº) which is a convex combination of X’s.

In order to show that the above two examples really do not characterize the simplicity with which all problems can be addressed, we look at Multiple Risk Bearing (the information that is included in the Gollier and Pratt Risk Vulnerability Econometrica paper.)  Specifically, this example shows that the equivalent of the SOC is not going to lead to a sufficient condition in its own right.

The question is when the existence of a poor-outcome background risk leads to behavior that is characterized by more risk averse behavior.  Mathematically, this problem is written:


If EXº≤0, then E
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The reason for the economic meaning of the problem is that the then clause can be rewritten:
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Begin with the crank:
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Then the second crank:


m=
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 for all X and for all w

is the necessary and sufficient condition.

Unfortunately, it turns out that it really is not possible to get a nice, neat necessary and sufficient univariate condition.  We can certainly get a necessary condition (as always) from the SOC, but it will not be necessary.  The SOC states that:
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However, as opposed to the other two examples, this does not neatly integrate etc. and create the necessary and sufficient condition again.

On the other hand, it is possible to get part way to the nicer condition.  In particular, we have been stating that the ‘SOC type thing necessarily holds around X=0.’  This is true, but the fact that such a SOC style condition holds at all points where X is such that the necessary and sufficient condition holds with equality will also be a necessary and sufficient condition.  In other words, the completely bivariate condition is equivalent to the necessary and sufficient condition:

If 
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Then 
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This is not quite as sophisticated a proposition as the bivariate necessary and sufficient condition, and is therefore somewhat of an improvement.

Suggested homework problem:

Show the necessary and sufficient condition for Risks that are disliked being a strict subset of risks that lead to increased saving:




Algebraically, this is:


If EU(w+Xº)≤U(w)


Then EU’(w+Xº)≥U’(w)

Which can be rewritten to get into the form of g(•) as


Then -EU’(w+Xº)≤-U’(w)

As the negative multiplication switches the sign.
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