2 1 Kreps Portius and Trick 2

Advanced Math

We now continue with Kreps Portius preferences.  For a look at the derivation of these preferences in discrete time, see Kreps and Portius paper.  For a treatment of these preferences in continuous time, see the Duffey and Epstein paper.  The important facts about Ψ is that it must be invertible; it can be either concave or convex.  Kreps-Portius preferences can only be written recursively; Von Neuman Morganstern preferences can either be written recursively or as they generally are. Note that if Ψ(V)=V, then Ψ is simply the identity matrix, and no more or less.

We begin where we ended last class:


ρV=Maxxt{Ut(Xt)+ 
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In order to be more careful regarding the partial order terms, we write V(K,t).  In addition, we are going to ignore the special element of the τ, and therefore write it as:


ρV=Maxxt{Ut(Xt)+ 
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s.t. dK=A(K,x,t)dt+σ(K,x,t)dZ

We use the chain rule and second order Taylor expansion to find:  


ρV=Maxxt{Ut(Xt)+ 
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for the dV term, we use a second order Taylor expansion:

dV(K,t)=VKdK+VKK
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Now use the constraint and Ito calculus:


dK=Adt+σdz

dK2=σ2dt

Plug both of these into the dV(K,t) to get:

dV(K,t)=VKAdt+VkσdZ+ VKK
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We are inside an expectation term, so the dZ term drops out—the expected movement of the random-walk process is zero.

Plugging all of this into the full Bellman-type equation, we find:

ρV=Maxxt{Ut(Xt)+ 
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We similarly substitute in for dV2.  Although we skip the skips here, it turns out that:


dV2=V2Kσ2.  

All other terms drop out.  Plug this in above, and we have:

ρV=Maxxt{Ut(Xt)+ 
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The dZ term will be zero, as mentioned above, and thus we get:

ρV=Maxxt{Ut(Xt)+ 
[image: image12.wmf]ú

û

ù

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

+

Y

Y

t

V

V

A

V

t

K

V

dt

E

t

K

V

KK

K

t

2

)

,

(

(

))

,

(

(

'

1

2

'

s





+
[image: image13.wmf]ú

û

ù

ê

ë

é

Y

Y

dt

t

K

V

t

K

V

dt

E

t

K

V

k

t

2

"

)

,

(

2

)

,

(

(

))

,

(

(

'

1

s

}

The next step will be to pull the Ψ’(V(K,T) that is in the denominator inside the expectation operator, and inside the equation:

ρV=Maxxt{Ut(Xt)+ 
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There is nothing to take expectations over as everything is now in present time.  Therefore, we can rewrite what is the Bellman equation for Kreps Portius Preferences as:

ρV=Maxxt{Ut(Xt)+ 
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which can be rewritten by moving the Vt term onto the LHS of the equation:

ρV-
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Note that the Ψ”/Ψ’ term looks like (and will act as) a risk aversion term.  Note also that, just as with utility functions, affine transformations of Ψ will not change anything: for example, from u(c)=c to u(c)=2c+1.  It is the curvature that counts.

Let’s stop for an aside for a moment.  In theory, there is no reason why people’s preferences should be different when we consider two points in time, than they are when they consider two different states at the same time.  However, the thought process is not quite the same.  Kimball and others have done some surveys that show that there is no detectable correlation between risk preference (preferences over gambles) and time preferences (preferences over different amounts over time.)

Now that we have developed the Bellman equation for Kreps Portius preferences, let’s do part of an example.  Because the algebra gets a bit messy, we skip the details.  In addition, it is a challenge to write out the maximization problem when there are Kreps-Portius preferences, so we just write down the elements.  The problem is, once again the portfolio split between risky and non-risky assets.  Here’s the outline:


U(c)-
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A(w,c,α)=rw+α(μ-r)-c


σ(w,c,α)=αs


Ψ(V)=
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Consider the following symmetry:


c→θc


α→θα

w→θw

Although we don’t show all of the details, we will see that this is a symmetry, and that


V→θ1-βV

And thus we plug in θ=1/w to show that 


V(w)=w1-βV(1).

The first step would be to show that the budget constraint is unaffected.  Once that step is completed, we could look at the V function itself.  We would find that:


Ψ(V)=constant
[image: image23.wmf]b

g

-

-

1

1

V


It is simple to find Ψ’(V) as we have a simple power term, and the same for Ψ”(V).  We find that:
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This denominator undoes V2 term that we find from VK2.  Last, we see that the VK2 also has:
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This is where we stop with the algebra, but it is fairly clear the answer will be as broadcast.

The next step, also, we do not do all of the steps.  However, we do the first few steps in finding the FOC for α in the time-invariant case.  The FOC of the Bellman equation wrt α:


maxα,cVw(w)(μ-r)α+
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 EMBED Equation.3  [image: image27.wmf]ú
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As always, we substitute in V(w)=V(1)w1-β:


Vw=V(1)w1-β

Vww=-βV(1)w-β-1
From here, the method is the same as for the ‘simple’ stochastic case.  We don’t waste time writing in the algebra here.  However, that is the main point—this is just algebra.  By adding in the added sophistication to the problem, we have not added a huge degree of sophistication.  Rather, all we have done is added a bit more algebra.

Just to give a bit of intuition, the result is about as you might have surmised:


α=
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In other words, the holding of the risky asset as a portion of the total portfolio depends on the risk aversion—not the time preference.  The time preference term, β, will affect consumption out of the portfolio, but not how it is split up.

New technique: This technique will also be usable with preferences that are as exotic as Kreps-Portius preferences.  This is the term that we discussed last lecture—this deals with the variables for which you can not find symmetries to simplify.  Essentially, we do the following:

1. take care of as many symmetries as we can

2. take a limit of the variable for which we can solve explicitly using symmetries or other elements, 

3. take a second order Taylor expansion to look at what is going on ‘in that vicinity’

In the paper (Miles Kimball and Gregory Mankiew’s paper, “Precautionary Savings and the Timing of Taxes” ), the limit was the steady state.  It was fairly straightforward to solve the problem in the paper without stochastic processes.  The authors used this as a limit from which they then allowed stochastic processes to enter the picture.

You can always read that paper.  Therefore, we instead consider a different type of problem.  A few lectures ago, we solved the precautionary savings problem with constant absolute risk aversion.  However, constant absolute risk aversion is not a very nice assumption: it assumes that poor and wealthy put the exact same amount of their wealth into the risky asset.  Therefore, if you give someone a million dollars (and they save it all), they will put all of that money into treasury bonds.  This is not plausible from either an intuitive situation or from looking at data.

Thus, we now look at the problem using constant absolute risk aversion instead.  While it makes the problem more interesting, it also makes the problem more challenging.    Specifically, you are no longer able to concern yourself with symmetry.

Here’s the set-up of the new risk-based savings consideration.  Peoples’ income is either low or high (Y1 or  or Y2.)  There is a Markov process that fully describes this (see Math semester II for more on Markov processes.)  For simplicity, we assume that the probability within any given time period is the same for moving from each state to the other.  For example, this probability could be there is a 10% of a switch within one year.  It is actually a Wiener process, but with such a low probability, the instantaneous probability is approximately 0.  We will take it to be 0 in order to come up with a tractable problem.

Graphically, the Marko process looks like:



Note that we could also do this for other ‘jump’ items like stock bubbles. 

If there were no state switching, then we would have the standard utility function:


∫0∞e-ρtu(c)dt s.t. dw=(rw+y-c)dt

This is the key that we are going to use to come to a (localized) solution (i.e. approximation around p=0.)

The first step is to write out the problem allowing for positive P.  Since there are two very different, discrete situations in the world, we must have a V for each state:


V(w,1)


V(w,2)

Writing the valuation problems for each initial state gives us:


ρV(w,1)=p[V(w,2)-V(w,1)]+maxc{U(c)+Vw(w,1)(rw+y1-c)}


ρV(w,2)=p[V(w,1)-V(w,2)]+maxc{U(c)+Vw(w,2)(rw+y2-c)}

Note that, within the maximization portion, there should also be a p(y2-y1).  However, this term is so small that we do not need to consider it.

Consider for a second the p[V(w,2)-V(w,1)] term.  The p is a rate of some percent per year, say.  The difference in values is a stock term.  As always, a rate times a stock is a flow.  This flow times stock is the dV/dt term.  The rest of the right hand side is the ‘number of utils per year.’

We would like to replace p with θ=1/p.  The first step is to divide by P:
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ρV(w,1)=[V(w,2)-V(w,1)]+ 
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ρV(w,2)=[V(w,1)-V(w,2)]+ 
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Now replace the 1/P with θ’s:


θρV(w,1)=[V(w,2)-V(w,1)]+ θmaxc{U(c)+Vw(w,1)(rw+y1-c)}


θρV(w,2)=[V(w,1)-V(w,2)]+ θmaxc{U(c)+Vw(w,2)(rw+y2-c)}

Now that we have the problem set up using the θ’s, we are going to solve it explicitly for some case that we know, and then do a Taylor expansion around it.  Essentially, this is the same as doing the Taylor expansion over the steady state—using information that we know about the saddle path.  Because we will be using the saddle path so strongly, it is very advantageous to know as much about the saddle path as possible (although we won’t get to this portion of the solution until next lecture.  The saddle path for the one state variable case (K) is VK.  Thus, the slope of the saddle path is VKK.  (Graph on next page.)



The reason that the slope of the saddle path is so important is that we need the slope around the saddle path as well.  

There are two types of possible ‘expansion sites’.  The first is one in which p is really, really, really low (r>p/ρ).  However, it does us no good to find an approximation around something that doesn’t occur.  Therefore, we go to the other extreme—considering what happens as p→∞ (θ→0).

We will also make the assumption that r=ρ.  Although we could solve this equation without making this assumption, we would have to solve a differential equation (which we would have to hope we could solve.)    Thus, for the lecture, we stick to this situation.

All of the results we get today well be, well, so what.  However, they will come in handy in the next class. As the state of the economy begins to tremble at an infinitely high rate, we see that income is going to be constant at 
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.  With our infinitely lived consumer and r=ρ, we know they perfectly smooth consumption:


C=rw+
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(This is where the differential equation would come in if we did not set r=ρ.)

Do not plug in 0 for θ until this step as you are likely to make errors when you go into the steps we do next lecture (taking the derivative of the value function wrt θ.)  Thus, we write down the valuation functions one more time:


θρV(w,1)=[V(w,2)-V(w,1)]+ θmaxc{U(c)+Vw(w,1)(rw+y1-c)}


θρV(w,2)=[V(w,1)-V(w,2)]+ θmaxc{U(c)+Vw(w,2)(rw+y2-c)}

To be particularly careful, we write V as a function of θ:


θρV(w,θ,1)=[V(w,θ,2)-V(w,θ,1)]+ θmaxc{U(c)+Vw(w,θ,1)(rw+y1-c)}


θρV(w,θ,2)=[V(w,θ,1)-V(w,θ,2)]+ θmaxc{U(c)+Vw(w,θ,2)(rw+y2-c)}

Explicitly write out V(w,0,1) and V(w,0,2).  We see that all terms drop out except:


V(w,0,1)=V(w,0,2)

In other words, when the economy is chattering at an infinite rate, we don’t care which state we begin in—we know the next instant is certain to bring another change anyway.  (Actually, the next instant will bring an infinite number of changes.)

Now that we have that wonderful piece of information, we need something to use it with.  Begin again with the general V functions of θ.  Let’s take the derivative of the valuation functions wrt θ:

ρV(w,θ,1)+θρVθ(w,θ,1)=

[Vθ(w,θ,2)-Vθ(w,θ,1)]+ maxc{U(c)+Vw(w,θ,1)(rw+y1-c)}+θVwθ(wθ,1)(rw+y1-c)

ρV(w,θ,2)+θρVθ(w,θ,2)=

[Vθ(w,θ,1)-Vθ(w,θ,2)]+ maxc{U(c)+Vw(w,θ,2)(rw+y1-c)}+θVwθ(wθ,2)(rw+y1-c)

Note that the partial of c with respect to w equals 0 by the envelope theorem.  Remember, we are dealing only with points along the utility maximization for this tool.  Therefore, we get rid of that term right away.

We once again set θ=0, we cross out the two terms that are multiplied by θ:

ρV(w,0,1)=[Vθ(w,0,2)-Vθ(w,0,1)]+ maxc{U(c)+Vw(w,0,1)(rw+y1-c)} 

ρV(w,0,2)=[Vθ(w,0,1)-Vθ(w,0,2)]+ maxc{U(c)+Vw(w,0,2)(rw+y1-c)} 

We could go back and take the average of the two valuations, then plug in the fact that consumption is the same for both initial states, then plug in the fact that consumption is the same for both initial state Y1 and Y2 (in this extreme case.)  Rather than that, we just write the following equation keeping that in mind:

ρ
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We are only going to deal with the Taylor approximation.  For this reason, it is reasonable to ignore the fact that Vw(w,0,2) is not quite the same as Vw(w,0,1). Cancel the 2’s, and allow this simplification, and we see:


ρV(w,0,•)=maxc(u(c)+Vw(rw+
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In other words, V(w,0,•)=u(c)/ρ.But wait, there’s more.  We can solve for this because of our assumption of r=ρ.  As always, this solves to:


C=rw+
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(Without the simplification, we would need to solve 
[image: image38.wmf]l
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=ρ-r.)  To check the answer, we could plug in and see that the Vw leads to everything equals 0. We will get more interesting results next lecture from the differential we took of the different value functions.
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