1-11 Deriving Dynamic Programming

Advanced Math

This lecture really should have come before the last lecture as it holds the proofs, but here it is second.  We are going to change notation from the last class.  The general problem is:



[image: image38.bmp]
where T can be either finite or infinite.

Whereas before we used x as a state variable, we now use K as the state variable.  X is now the control variable.  Both x and K are not limited to being single variables, but rather may be vectors as well.
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Note, of course, that it is possible to have additional constraints.   For example, it is quite possible that x is a vector =, (x1,x2) which is limited to being in some area like the one below:
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This problem comes from the fact that, to optimally measure how well our economy is doing, we would like to measure not only how much we are consuming now, but also how well we are prepared for the future.  This is the reason that we use GDP as the measure of a country’s economic welfare rather than consumption.  However, GDP has its own problems.  

This idea of present and future corresponds to the critical element that we will use today: the Classic Lagrangian.  This terminology comes from physics, but leads to simpler discussion of the derivations we do today.  The classic Lagrangian is:


L(K,x,t;λ)=U(K,x,t)+λ(t)A(K,x,t)+
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Note that the first two items, U(K,x,t)+λ(t)A(K,x,t), is the Hamiltonian.  However, this fuller, Classic Lagrangian is more descriptive. 

This can be thought of as a measure of how well the economy is doing.  Intuition for this can comes as follows:

The first term is the present utility consumption.

The second is the marginal utility of capital (future benefits of capital).

The third term is the capital gains on presently existing capital.

The last term is the loss from having capital sit there rather than being consumed today.

We are going to solve for the optimal λ, and this will serve the function of being the marginal utility of capital.  However, many economic questions are asked in terms of distorted economies, which means that λ will not have that meaning.  In addition to distorted economies, we will need the following lemma for proofs:

Lemma: for any function λ(t),
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Proof: From the definition of L, we have:



U(K,x,t)= L(K,x,t;λ)+λ(t)A(K,x,t)+
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Integrating both sides leads to:
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 U(K,x,t)dt=
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 L(K,x,t;λ)dt +
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[ λ(t)A(K,x,t)+
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(t)K(t)-ρλK]dt

The only thing remaining is to make the second term on the RHS match the second two terms of the lemma.  Substituting in from the constraint leads to:
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[ λ(t)A(K,x,t)+
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[image: image11.wmf]ò

-

T

t

e

0

r

[ λ(t)
[image: image12.wmf]·
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(t)K(t)-ρλK]dt

Solving the simple differential leads to:
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[ λ(t)
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(t)K(t)-ρλK]dt=
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=λ(t)K(0)-e-ρTλ(T)K(T)
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From the lemma, we see that there are only three terms that we need to concentrate on in order to find the optimal control:

1) the integral of the Classic Lagrangian

2) the value of λ(0)K(0) which is unaffected by different choices of X

3) the value of e-ρTλ(T)K(T)

The third term could cause us significant trouble unless it is zero.  Of course, it is the present value of something, and thus, at least for infinite length problems, all we need to worry about is that λ(t) remains finite.  The condition that leads us to the third term causing no problem is termed the transversality condition:


Finite time: e-ρTλ(T)=0

Infinite time: 
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The transversality condition assumes that you always have a finite amount of stuff; i.e. that you have an economic problem.  (It also makes the problem hugely easier.)

We begin by looking for sufficient conditions to solve the problem Max L
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which is what we have simplified the general problem down to.

For the next sections, we will discuss ‘feasible paths’ of K(t) and x(t).  Of course, by choosing one, you are implicitly setting the other.  Therefore, this terminology is really no different than setting the decision rule for the control variable.

The first set of sufficient conditions is the following: If

1. The Tranversality condition is satisfied

2. There is a feasible path (satisfies all constraints), K*(t),x*(t) such that 

L*≡L(K*(t),x*(t))≥L(K(t),x(t)) for all other feasible paths.

Then the feasible path K*(t),x*(t) is the optimal path.

Proof: WTS 
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U(K*(t),x*(t),t)dt≥
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U(K(t),x(t),t)dt for the other feasible path pairs, (K(t),x(t))
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U(K*(t),x*(t),t)dt=
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L(K*(t),x*(t),t)dt+λ(0)K(0)-e-ρTλ(T)K*(T)





≥ 
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L(K(t),x(t),t)dt+λ(0)K(0)-e-ρTλ(T)K*(T)

By the second condition.
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L(K(t),x(t),t)dt+λ(0)K(0)

By the transversality condition.
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U(K(t),x(t),t)dt=
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L(K(t),x(t),t)dt+λ(0)K(0)-e-ρTλ(T)K(T)
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L(K(t),x(t),t)dt+λ(0)K(0)
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That is a very pretty transversality condition.  However, we would prefer something that is usable.  For this usable condition, we will draw analogy to one dimensional maximization:  If:

1. f(x) is concave in x

2. f’(x)=0 at x* 

then x* is the maximum.

The analagous condition for optimal control is the following:

1. LK(K*(t),x*(t),t;λ)=0 for all t ε[0,T]

2. Lx(K*(t),x*(t),t;λ)= 0 for all t ε[0,T]

3. L(K(t),x(t),t) is jointly concave in K and x

4. λ(t) ≥0 for all t

Then L(K*(t),x*(t),t)≥L(K,x,t) for all feasible K,x, and is thus an optimal.

Proof outline: Jointly concave with FOC satisfied at the * terms leads to (by expansion)


L(K,x,t)≤L(K*(t)x*(t),t) +LK(K*,x*,t)(K-K*)+Lx(K*,x*,t)(x-x*)

Remember by definition that:


L(K,x,t;λ)=U(K,x,t)+λ(t)A(K,x,t)+
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Thus, sufficient condition for L to be jointly concave in K and x, is:


U to be jointly concave in K and x


A to be jointly concave in K and x


λ to be ≥0.

The last two terms in the definition do not play a role because they do not figure into joint concavity (no second derivatives.)

We have now done two sets of sufficient condition.  Now we will look at a set of necessary conditions.  These are the ones that are commonly used.

1. Transversality Condition: NPV of λ(T)=0

2. Optimality Condition:  LK=0 along entire path K*,x*
We will do an outline of this proof as there are a number of technical details not worth spending a lot of time on.  Suppose that this did not hold.  Specifically, suppose that on some interval, tε(t0,t0+ε)


L(K(t),x(t),t)>L(K*(t),x*(t),t) + δ  , 

Note that the δ is to give the difference atomic size.

Because the time interval, ε, is quite short, the continuation value of K(t0+ε) will be essentially the same as it was under the K*,x* pathway.  Thus, the only difference between the proposed ‘optimal’ path and the alternative path will be during this short interval—which is higher.  Thus, the proposed optimal is not the optimal.  Graphically, we have the following:





   Alternative




Proposed maximum



    t0      t0+ε
   T

Note that this does not deal with items like the possibility that the limit of λ from the left and the right are different.  (λ+ and λ-).  However, we ignore that for this outline; this was just to show the details that are missing.

Now let’s see exactly what LK=0 means.  From the definition, L is:


L(K,x,t;λ)=U(K,x,t)+λ(t)A(K,x,t)+
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Using LK as a FOC means:
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[ U(K,x,t)+λ(t)A(K,x,t)+
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The derivative is quite simple:


UK+λAK+
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But this is the Euler equation!!  Using the definition of the Hamiltionian, H≡ U(K,x,t)+λ(t)A(K,x,t),

We get HK= UK+λAK, and thus, the Euler equation is:
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Note that no SOC is necessary here.  That was only necessary for the sufficient condition, not the necessary one.  

3. Euler Equation part 2: Lx must also be equal to zero.  The same steps as in the last condition leads to:

Hx=Ux+λAx =0

4. SOC: Lxx=Hxx≤0.

As a summary, here are the conditions that characterized the maximum as necessary conditions:

1. Transversality Condition: NPV of λ(T)=0

2. Optimality Condition: (Euler equation): 
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3. Euler equation: Hx=Ux+λAx =0

4. SOC: Lxx=Hxx≤0.

X1 definition that:


	L(K,x,t;λ)=U(K,x,t)+λ(t)A(K,x,t)+� EMBED Equation.3  ���(t)K-ρλK X1
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