1 27 Examples and Kreps Portius Prefs

Advanced Math

Today we continue giving some examples and looking at the tricks that are helpful in solving them.  The first trick that we use is change of variables.  Begin with the equation the most simplified form of the Bellman equation that allows for variation over time:
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which can be rewritten:
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We see that the equation could be quite a bit simpler if we did a change of variables by which we define:


B=1/A

Plugging this in, we get:
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Multily by B(t) to find:
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Move all of the B’s together and multiply by -1:


Ύ
[image: image11.wmf]·

)

(

t

B

= -
[image: image12.wmf]g

-(1-Ύ)[r+
[image: image13.wmf]2

2

2

)

(

gs

m

r

-

]B(t)+ ρB(t)
Dividing through by Ύ and cleaning up the negative signs gives:
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and thus:
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This equation is quite simple to integrate, but there is one more trick to use.  Specifically, we are going to allow ρ, r, and μ to possibly change over time.  This change is going to be denoted with subscript t.  

In order to solve the differential equation explicitly, we are going to need to use Leibniz’ Rule which divides the derivative of an integral into three parts.  Mathematically, Leibniz’ rule is:
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Mathematically, you can see the three parts of the change in the following integral of f(t,θ):






The first bit is the change in the actual area under the curve, the second bit is due to the beginning of the curve moving, and the last bit is due to the end of the time considered moving.

Now, notice that the differential equation is the solution to:
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Thus, the solution to the differential equation is:


B=∫t∞
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Because A is the inverse of B,:


A=
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We have the fullest answer that we could possibly want!

Although we won’t actually solve the full equation, the same trick helps for solving for the value of the console.  When we have the console (P=1/R), you will find that:
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and combine this with R=1/P(t).  Note also that the substitution: 
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.  (where R is the consol rate and r is the short rate.)

Again moving backwards, let’s reconsider the last example that we had from the end of the last lecture:


MaxcE0∫0∞e-ρt
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s.t. dw=[rw+y-c]dt



      dy=σdz

For this equation, there are two state variables.  Thus, in order to fully ‘simplify’ the problem, we will need to find to dimensions of symmetry. The first we covered last time:

Let’s look for the following symmetry:


w→w+θ


c→c+rθ
This leads to:


V(w+θ,t) →e-arθV(w,t)

Thus, θ=-w, and we can therefore find the ‘base’ for the problem:


V(0,t)=e-arwV(w,t)

(note the unfortunate part of this problem is that we must allow for negative consumption implicitly.  However, there are still publications using this form.)

The general method of writing this is:


V(w,y,t)=e-arwV(0,y,t)

Unfortunately, there is still another important state variable there, the y.  To simplify the problem along this dimension, let’s use the symmetry:


Y→Y+θ

c→c+θ

w→w

{Note: the symmetry listed at the end of the last notes was correct, but it would have led to a bit more algebra than the present one.}  

Because we have ‘taken care’ of one of the state variables, w, and it doesn’t change in a manner that effects 0 for this symmetry, we can leave it a 0.  {This will generally be the case: the simplest cases to deal with will leave the variable already simplified unchanged when taking care of another dimension.}

With the symmetry tested, we can look on the effect of the change on value:


V(0,y+θ,t)=e-aθV(0,y,t)

As always, plug in θ=-y,

And we get:


V(0,y,t)=e-ayV(0,0,t)

Plugging this into the Value function, we get the general form:


V(w,y,t)=e-a(rw+y)V(0,0,t)

We now know exactly how V varies with all state variables.  This makes the equation fairly simple to solve (ad will help us solve it.)  

Rather than actually solving it, we just write the Bellman equation.  There are a few new factors in this Bellman equation.  The (slight) added level of sophistication necessary comes from the multiplicity of state variables.  We are just taking the Taylor expansion, so we need to remember the partials with respect to all state variables, Vw, Vy, Vww, Vwy, and Vyy.   In this particular example, these values will all wash out, but we will look a bit at a version where they do not all wash out in a second:


ρV-Vt=maxc{
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Now suppose that the equation were a bit different, but the symmetries still held.  Specifically, suppose that we were trying to solve:


MaxcE0∫0∞e-ρt
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s.t. dw=[rw+y-c]dt+αsdδ


      dy=σdz



       corr(dδ,dZ)=β
(Note that because you have two randomly distributed variables, you need to state the covariance between them.)  Both symmetries we used will still work just fine, but we need to add that α→α.

Now, the partial derivative terms are not 0.  The way to consider the covariance term is to view it as stating that dzdδ=βdt.  First, dw with respect to dt.  As always, dw/dt is an order larger than dw/dδ.  Thus, we get the s2α2/2 (square it to make the correct order—dδ2.  

 The same method works for the dy/dz term: from this comes the σ2/2.  Last, we consider the dw/dy term.  This problem is solved by taking a close look at the stochastic optimal control section of the book chapter.  The authors consider the general format:


Maximize y=F(t,x)


s.t. dxi=gi(t,x)dt+∑k=1mσi.k(t,x)dzk for i=1,…,n

In other words, where there are n state variables that follow a random walk, and that each of them is dependent on the actions of several random variables.  (We have been using the term V instead of F.)

In the example we consider, the equivalent of those n equations constraints are the two equations:


dw=[rw+y-c]dt+αsdδ
dy=σdz

Now, back to the book.  For each of the random variables, zk, we need to state a correlation coefficient.  (Often, we will just assume that it is 0.)  However, for now, let’s state that the Wiener processes dzi and dzj have correlation coefficient ρij.  In our example, there are only two variables, and thus we only stated one correlation coefficient: cov(dδ,dZ)=β
Back to the book one more time.  From our equations, we can simply plug in Ito’s theorem:


dy=∑i=1n(∂F/∂xi)dxi+(∂F/∂t)dt+ (½)∑i=1n∑j=1n(∂2F/∂xi∂xj)dxidxj
using the dxi we already found:


 dxi=gi(t,x)dt+∑k=1mσi.k(t,x)dzk for i=1,…,n

and the following multiplication table:


dzidzj=ρijdt


dzidzt=0

Plugging into our sample.  We are looking for dxidxj, or, dwdy.  Multiply dw times dy, and you see:


dwdy =σ[rw+t-c]dtdz+σαsdδdz
As the text tells us, replace dδdz with β, and we have the full Bellman equation:


ρV-Vt=maxc{
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The negative aspect of the utility function is that α→α.  In other words, with this utility function, stock-holding is independent of wealth. This is a result from CARA.

At this point, we look at the one type of symmetry that is particularly useful for all utility functions: changing time.  Write the general maximization problem:


Maxc,tEt∫t∞e-ρ(t’-t)u(c,t)dt’  



s.t. dw=[rw-c+α(μ-r)]dt+ασdZ

Consider the following symmetry:


t→t+θ

C(t)→c(t+θ)


Α(t)→α(t+α)


W(t)→w(t+θ)

As long as σ, μ, and r are independent of t, we get an interesting result.  This is because we also (implicitly) use:
r(t)→r(t+θ) which we don’t know much about.  Only if these variables are time independent do we know that they do not change.

Plugging this in, we see that:


V(w,t+θ)=V(w,t)

In other words, if the characteristic parameters of the equation are not changing—and time is going to ∞, then the value of the problem is a constant.  (The problem with T other than ∞ is the same as with r—you would need to consider what happens at other times.  You increase T by θ and, when it is ∞, nothing changes.)  Plugging in as usual, we see that θ=-t, and thus, V(w,t)=V(w,0)

Now let’s consider ‘speeding up time’ using the special utility function u=
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 again.  (This problem will not be generally solvable for other values.)  The rest of the problem is as in the general case above.  Consider the following symmetry:


W(t)→w(θt).  (Note that this is not a big deal as w(0)→w(o): the starting point doesn’t change


α(t)→α(θt)


Z(t)→Z(θt)↔σ2→θσ2, and thus σ→σ√θ


ρ→θρ


μ→θμ


r→θr


c(t)→θc(θt)

Note that this is not the simplest transformation.  It is relatively straightforward to show that this symmetry leads to a fully feasible set. 

How about the resulting change in the utility function:


V→
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You could come up with what looks like a general symmetry for all utility functions, but then you would also need to change u(•)→θu(•/θ) which doesn’t leave you with much meaning.

Let’s consider:


V→
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In order to truly account what is going on, we need to write V as a function of all of the items we changed for the symemtry:


V(w;θρ,θμ,θr,σ√θ)=θ-ΎV(w,ρ,μ,r,θ)
You can look at this and consider exactly what need to go on when time ‘moves faster’.

Note that this is simply another symmetry of the same equation that we began the class with.  Furthermore, we also know that all symmetries need to hold for all simplified forms of algebra.  Therefore, if you are worried that you have done the algebra incorrectly, it is always useful to find other symmetries, then check that the symmetries hold in the forms after you have mauled them with algebra.  In other words, you could check your algebra in the reduced form of the V equation:


[(1/Ύ)ρ+(1-(1/Ύ))(r+
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Now that we have gone several lectures into looking at symmetry, we consider whether this tool is really beneficial.  The fact that it is used in a lot of published papers is not enough.  Furthermore, in order to fully simplify the problem, we need to have a symmetry for all of the state variables.  This type of mega-symmetry does not exist in a lot of problems.  Even so, there is often at least some symmetry—and we earlier noted that each symmetry gets rid of one degree of difficulty.  Let’s face it, solving two freaky differential equations is much harder than solving one.

In general, it is a good idea to try and deal with the ‘trend’ variables using symmetry (i.e. things that can go towards infinity as, say, wealth goes to infinity.)  Once you have done away with such trend variables, then you can generally use Taylor expansion to deal with the remaining ones (like number of working hours which are limited to 24 at maximum.)  We will see the exact type of trick that we use for such problems beginning in the next lecture.
Let’s look at the following two-state problem that will have to be approached just this way:

C is consumption

N is labor supply


Maxc,NE0∫0∞e-ρt
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s.t. dK=[ZNf(
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       dZ=Zμ+Zσdδ
(Note that we are implicitly assuming independence of the error terms.  Note that there is likely a typo on the second exponent of the maximized function.)

First check for symmetry of the form:


K→θK


c→θc


Z→θz


N→N

You see that it is consistent by plugging into the constraints (including that the d• terms are also changed by the same amount), and everything cancels.  Plugging into the Value function leads to:


V→θ1-βV

We use this to get some more information.  Namely, that


V(θZ,θK)=θ1-βV(Z,K)

Plug in θ=1/Z gives you:


V(1,K/Z)=
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And thus:


V(Z,K)=V(1,K/Z)Z1-β
Let’s consider the economic meaning.  We can not tell the exact form of the change in valuation when technology changes as we have only taken care of one of the dimensions of uncertainty.  However, this is enough to do a partial analysis of technology improvement.  In fact, you can consider any surprise increase in technology as having to elements:

1. Z1-β means that the economy is really a lot better off

2. The V(1,K/Z) shows that in order to really be Z1-β better off, you need to have the same ratio of capital stock increase as you had Z increase.  Thus, it is as if your capital stock is falling behind your technology, and this is a bad thing.

A common pattern will be one or two easy dimensions, with one, final, difficult dimension that you are unable to solve using symmetry.  However, with only one dimension, it is possible to chop it to pieces with a computer.  You can graph it, and consider it stability, etc.

For example, if you remember 602-604, you can graph the following type of equation:


Where the dotted line is the saddle.  

Kreps, Portius Preferences: The relevant articles are the Kimball article and the Puffer and Epstein article.  We introduce Kreps Portius preferences in order primarily to show that the symmetry methods we have been learning about are not limited to the ‘simple’ type of stochastic control problem we have been dealing with.  Yes, even the simple stochastic control problems can get difficult, but we will show that even adding extra sophistication like special preferences does not make thing that much harder.  

An additional reason for introducing these preferences is that they have been used fairly commonly throughout the literature.  The reason that these preferences were created was that essentially all changes to utility functions that affect time preference also affect risk aversion.  However, you often want to study the effect of changing risk aversion without changing the time preferences.  The method of doing this study is to use a special form of preferences—Kreps Portius Preferences.

Some of the characteristics of Von Neuman Morganstern preferences will hold f Kreps Portius preferences, but others will not.  Specifically, timing of when you find out about the result of a stochastic process t ou have no control over will effect preferences.  This is a bad thing.  VNM and Kreps-Porteus preferences only overlap if the result of all gambles is immediately observable.

We are going to solve for these preferences using the limit as distinct time intervals goes to zero.  The psi function is the one that does the job of taking away the risk aversion.  The first psi term makes the person more risk averse (increases the concavity of their preferences).  Then, the expectation of this is taken, and last the psi-inverse term takes effect.  This psi-inverse takes away any changes in time preferences, but leaving the risk aversion.

(note that sub t does not mean partial with respect to t here.)  Kreps-Portius Preferences are the following type of valuation:


V(t)=hU(X(t),t)+e-ρhΨ-1t Et[Ψt(Vt+h)]

Here’s how it works.  You take a more concave value of all of the possible future outcomes.  By Jensen’s theorem, this leads to lower value of the future paths when the expectation is taken over it.

After taking the expectation of the different outcomes (taking into account the added risk aversion), you then undo the increased concavity.  This undoing is done before the future actions are discounted—in other words, the concavity is undone before it can effect time preferences.

Note that the equation above is simply the definition of valuation of a path (not necessarily maximized).

We are going to derive a Bellman equation for these types of preferences.  Note that it is not possible to write these preferences in a simple utility function, which means that we must also modify the process of maximization.  We are going to do the majority of the algebra in the next lecture, but we begin a bit of it.

Begin by moving the Vt term onto the RHS of the equation.


0=(1/h)Maxxt[hUt(Xt)+e-ρhΨ-1t(Et(Ψt(Vt+h)))-Vt]

Now move the 1/h term inside the maximization function. In addition, note that Ψ-1(Ψ(V)=V.  Therefore, we see that:


0=MaxxtUt(Xt)+e-ρhΨ-1t
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Now take the limit as h→0.  We see that we have the fundamental theorem of calculus equation, and (at least for the limit from the right), can be written with the following odd equation:


ρV=MaxxtUt(Xt)+ 
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For intuition, we can see that this is really quite similar to the normal equation.


ρV=maxxU+Et
[image: image44.wmf]dt
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where the second term is the capital gain term.   In other words, the required return is equal to the flow of utils.

For most Kreps-Portius preferences,  Ψ is independent of time.  At the very least, it is everywhere differentiable.
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