1 20 Ito calculus and Boyd’s symmetry theorem

Advanced Math

We begin with the Bellman equation that we derived last lecture:

ΡV(K,x,t)-Vt(K,x,t) =
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Where A(K,x,t) is the mean growth rate of K, the state variable, and Ω(K,x,t) is the variance of K.

In general, the concave u will lead to a concave V and thus V​KK <0.  However, VK is not necessarily positive or negative.  For example, if K is good at first, but then can turn into a bad habit, then it could be negative at times.  This would be graphed by:






Of course, because Ω is a variance, it had better be positive.

Now let’s talk about the ‘Wiener function’, or random walk that we are going  to assign to the state variable (in addition to the control equation.)  The function Z is a random walk if a graph of an actual path that it follows is nowhere differentiable.  When you graph it as follows, you see no smooth spots.




Even when you magnify the graph to look only at the points in the oval, you do not see smoothness.  In fact, you see an even more jagged picture.

Mathematically, a random walk is characterized by by:


Z(t1)-Z(t2)~N(0,t2-t1)

This equation completely describes the motion of the random term and generalizes the unit size (time).  For problems, if we want a larger or smaller drift, we simply multiply the Z by a constant.

We want to know when using random walks to represent random drift is really reasonable.  Suppose that over some interval we really want to be thinking about a binomial or uniform distribution.  By the central limit theorem, once we add a bunch of these in a row, you get a normal distribution.  In fact, when you add a bunch of any distribution over a continuous time, you get—a random walk.  Thus, start with a binomial distribution every second.  Then make it every half-second.  The limit as the interval goes to zero is a random walk.

Using the characteristic above, let’s look at the variance over the following type of times:


t1            t2         t3

The following is true by definition:

Var(Z(t3)-Z(t​1))=Var([Z(t3)-Z(t2)]+ [Z(t2)-Z(t1)])

However, the variance over any two discrete time periods is independent.  Thus:


Var(Z(t3)-Z(t​1))=Var[Z(t3)-Z(t2)]+ Var[Z(t2)-Z(t1)]

In other words, Variance is additive with respect to time.  

For the random walk, mean is zero as defined above.  The mean of the motion of any variable characterized as having some kind of drift term is unaffected by the drift term.  Thus, since there is no uncertainty about the mean, mean is multiplicative  with respect to time.

Let’s give an example that illustrates what this means.  Specifically, we compare the mean and variance with respect to time periods of a year and with respect to a day.  Just to give a reference, suppose that stocks are characterized by:
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which means that 
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Meanwhile, stock returns are approximately:


μZ =
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Let’s see what the standard deviation and variance will be over one day.  Variance is additive over time means that the variance of one day will be 1/365 the variance of one year.  In other words, the standard deviation will be 
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 that of a year.  Approximating, this leads to:
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On the other hand, mean is multiplicative over time.  Thus, the mean of one day is 1/365 the mean of a year.  Thus:


μZ =
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You see that as you shrink time, you shrink the time towards continuous periods, the mean shrinks hugely faster than the variance does.  If you did this again, say, to ten seconds, you would see that variance becomes many magnitudes the size of the variance.  

Now, we put this into calculus terms which we will use for Ito calculus.  Although for discrete time lags, Z will be best approximated with a chi squared distribution rather than a normal function, they are interchangeable as the time lag goes to zero.  In other words, we see that:


ΔZ~N(0,√Δt)

Thus, as dz goes to zero, this becomes:


dZ~ n(0,√dt)

This comes from the fact that E(ΔZ)2=X2(1)Δt

This means that for short time periods, dZ2 is of the same size as dt.   The result is that all dZ2 are of an order of magnitude larger than the dt’s are.  Put another way, dZ is of the same order of magnitude as √dt.

We can put this into the table that Kamien and Schwartz use to find the power of the terms you get when you multiply different combinations of dZ’s and dt’s.
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As you take the limit as t goes to zero, it is the higher ordered terms as a function of t that go to zero fastest.  Thus, at zero, you have:
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When doing calculus with random elements with respect to time, you need to take this into account.  Specifically, you must take the fact that:
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On the other hand, anything of, say:
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The actual methods of taking this into account is called Ito calculus.  For most elements that we are going to deal with, the best method of doing this is squaring the equation that defines the movement in the state variable, and then taking the derivative.

Let’s use an example to try and understand this.  Consider the price of a console when interest rates follow a random walk.  Remember the definition of console:


A console is a non-terminating bond that pays at the rate of  $1/Price.  

Thus, directly by the definition, we have:


P=1/R 

Where R is the interest rate. We want to know what the expected change in price of the console is over time with interest rates changing.

The change in interest rate is given by:


dR=μRdt+σRdZ

In other words, you do not know how interest rates are going to change from the present, however you do know what the mean and variance in the change will be.

Expected value of the change in interest rate is:


dR=μRdt

This will be the useful part for finding dR in Ito calculus.  We simply plug this in.  Moreover, when finding dR2 (which we will need to), this term drops out because of the dt2 term which will go to zero so quickly.

However, there is also a random element 


dR= σRdZ

This is the element that will be useful when finding the dR2 term.  On the other hand, it will drop out when we plug in for dR as we will essentially have dZdt/dt—which we showed was so large that it goes to zero too quickly to be considered in comparison to the term above.

If you were using calculus of non-stochastic processes, then you could write:
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However, this is wrong!  

Brownian motion adds a degree of complexity to the problem.  Thus, rather than attempting to derive the problem directly, we instead approach it indirectly—using a Taylor expansion.  Take a second order Taylor expansion of the equation that we are interested in (write the corresponding RHS equation taking the first and second derivative wrt R (which contains the random term) and add the appropriate Taylor terms):


dP= 
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We would like to get the R’s out of the equation, but we know that the direct method is not going to work.  We are therefore going to use the stochastic equation to find methods to (hopefully) get the dR’s out of there.

The next step, which will be the general one, is:

1. Write out the fully differentiated form of the stochastic process and fully differentiate it.  The only terms that will be of any use are once that have a dZ term in it—and no dR terms.  (If they have both to the power 1, then the combined power will be too large.)

dR= σRdZ

2. Square the equation defining the stochastic process

3. Fully differentiate this equation

dR2 =σ2R2dZ2
4. Substitute dt for dZ2
dR2 =σ2R2dt
Plug the dR and dR2 that we just solved for into the Taylor series:


dP= 
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The only thing left is to deal with the dZ that remains in the equation.  We would like to get rid of it as well.  

To get rid of the dR term, we use just the simple mean term of the random walk:


dR= μRdt

Plugging this in leads to:


dP= 
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and the answer is done!

The intuition for the result comes from Jensen’s inequality.  The equation P=1/R is the simple, concave function following:




A non-zero movement from any randomly selected point on that curve with mean zero but positive variance is an increase.  The expected decreases in R lead to larger increases in P than the decreases in R decreases P.  Thus, the result is intuitive.

One method for solving differential equations is to simply stare at them and say, I think I know the answer.  Then plug and prove that is the answer.  However, there is a more systematic method of doing it.  As long as the problem that we are trying to solve can be characterized by symmetry that we are going to define, then we can solve for many characteristics of the solution—without knowing it.  

This is similar to doing comparative statics, but is instead finding information about the solution that will (hopefully) be usable in finding the form the solution takes.  While most problems are not symmetric, the increased level of difficulty of such problems leads to very few academic papers.  

The method that helps is ‘Boyd’s theorem’:

Rather than go straight into the proof, we describe it first through an example.  Suppose that some person has a certain amount of wealth that they hold in a combination of bonds (that get return r) and stock.  The return on stock is characterized by a mean of μ, but variance s.t.:


dstock/dt also has the term: ασdZ

In other words, stock return is:



[image: image16.wmf]dZ

return

as

m

+

=


Total wealth is W

The return on bonds is r

α is the amount of stock the person is holding

They want to choose their consumption path, where consumption is c

To simplify the problem, we assume time invariancy, (which will be that the time horizons is infinite.)

Writing this all in leads to:

Maxc,αE0∫0∞ e-ρtU(ct) s.t.


dW=[rW-C+α(μ-r)]dt + ασdZ

where U(c)=
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We will standardize dZ to % per year using the σ term.

The solution will be characterized by:
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↔ V is maximized at time t.

The first step is to write the Bellman equation.  (Boyd’s method will come in just after this.)


ρV(w)= maxc,α [uc+V’(W)[rw-C+α(μ-r)]+V”(w)
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In other words, the general form is:


DW=Adt+√ΩdZ

We could just try and guess the answer.  However, this is hard.  Thus, we are going to use Boyd’s method.  The key to Boyd’s method is symmetry of a particular sort.  We are usually going to want functions that are monotonic or similarly characterized.  The reason is that this will allow us to do what amounts to comparative statics on the control function without knowing it.

For a reminder of the type of characteristics that we look for, remember what monotonicity looks like





In other words, if you double (multiply by 1.5), income, the ratio of consumed goods does not change.  In other words, this type of symmetry allows us to map optima to optima.

Boyd’s theorem does the same thing.  It says that if there is some type of symmetry, then the solution of the optimal control problem will map from optima to optima, according to a rule set by the type of symmetry of the problem.

Before describing the theorem, we need to define a few terms.  Boyd uses the notation that the ‘symmetry’ of the entire problem is given by:


T=TmxTCxTAxTP

Where


Tm is the symmetry with respect to the state variable


Tc is the symmetry wrt the control variables that directly affect the objective function (u)


TA is the symmetry wrt the control variables that do not directly affect the objective function


TP is the symmetry wrt the other parameters.

In the problem we are using to describe the theorem, 


Tm is the symmetry with respect to W


Tc is the symmetry wrt c


TA is the symmetry wrt α

TP is the symmetry wrt things such as T, the end of life..

The result of the theorem is that:


L(TZ)=0 ↔L(Z)=0 where Z is the vector Z=(M,c,a,p)

However, there is more to it.

We begin by defining the budget set.  The budget set, B(M|P), is the set of possible actions the control variable that affects the optimization as a function of the state variable and the P variables.

We now define TM, TC, and TP.  These three items are co-defined in terms of the budget set.  


B(TMMt|TPP)=TCB(Mt,P)

In other words, if a problem is characterized by these three types of symmetry, then you know what happens to the set of possible control variable that directly effect utility from the initial control variables and the other parameters of the problem.  This ‘three type’ symmetry is known as symmetry of the feasibility set.  An equation characterized by symmetry of the feasibility set will be characterized by:


B(TMMt|TPP)=TCB(Mt,P)

Let’s see if this type of symmetry applies to the problem we are using as an example.  To check, look at the equation describing the state change:


dW=[rW-C+α(μ-r)]dt +ασdZ

Let’s double the M terms (W), and show that it is feasible to double the C term.  Why yes, we can do so by doubling both the C and the α term:


d2W= [r2W-2C+2α(μ-r)]dt +2ασdZ

and all of the 2’s cancel.  The problem we are looking at is characterized by symmetry of the feasibility set. 

Other equations will not be symmetric in this manner.  For example, consider x=√y.  Double X and double Y does not lead to the same equation.

The symmetry does not have to be a linear transformation.  Although the following transformation will not work, it will be possible transform things such that it is as if ‘time is getting faster.’  Suppose that r goes to 2r, μ goes to 2μ, and σ goes to √2 σ.  Similarly, let c go to 2c.  If we had a problem that worked, then this transformation would also show that we had symmetry of the feasible set.

We now work on the definition of preference symmetry:


EtV(TcC,t)=ftEt(V(C,t))

In other words, if we multiply all control items that directly affect the measure of welfare by some constant, then the value of the overall project is changed by a clearly characterized function.

Again, let’s search for this characteristic in the problem wer are looking at.  Suppose that C→θC.  Then, U at all points becomes:


U(θC)=
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For any and all c.  Thus, V→θ1-Ύ.

U being the function –1/C would also have preference symmetry.  Unfortunately, because of the expectation operator, it is not so easy to do for other functions: you will often end up with a term that you can not drag outside the expectation operator, and this kills you.

In other words, you are only going to have the characteristic of preference symmetry when V→a(•)+b(••)V where everything inside both the a and b functions can be passed through the expectation operator.

We also show that log utility is characterized by preference symmetry:


Log utility leads to:


E0∫0∞ e-ρt lncdt
Suppose c goes to θc.  Then we get:


E0∫0∞ e-ρt lnθcdt


= E0∫0∞ e-ρt [lnθ+lnc]dt


= E0∫0∞ e-ρt lncdt+∫0∞lnθe-ρtdt


=V+lnθ/ρ
Where we usually use the function V, we use the term J because that is what Boyd uses.

Theorem: Boyd’s theorem
If J is characterized by symmetry of the feasible set and symmetry of preference as follows:


Et(V(TCC,t)=ft(EtV(c,t))

Where ft is an increasing function of Tc, 

Then


J(TmM,t|TPP)=ftJ(m,t|P)

Proof:

J(Tmm,t|TPP)=max{EtV(c,t)|cεB(TMM|TPP}

(For our problem, this is that doubling wealth leads to some member of doubled consumption in the feasible set.  All we use here is symmetry of the feasible set.)


=max{EtV(c,t)|cεTCB(M|P)}

using the other part of symmetry of feasibility.

Do accounting within the maximization operator:


= max{EtV(TCc,t)|cεB(M|P)}

Now use the preference symmetry:


= max{ftEtV(c,t)|cεB(M|P)}

Of course, ft can be simply pulled outside the maximization operator:


= ftmax{EtV(c,t)|cεB(M|P)}


=ftJ(M|P)  



fini

Note that for preference symmetry, we needed what amounts to homotheticity of the utility function.
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