1 13 Optimal Control proofs

Advanced Math

The general method for both dynamic programming and optimal control is very similar to the APS method of solving infinitely repeated games.  The first step is to set up the so that you can very easily take into account both present activity and future activity.  

In dynamic programming and optimal control, that method is to create a λ that takes the net present value of future benefits from an action into account.  The mechanics of this is setting the derivative of the function you are maximizing with respect to the state variable equal to variable.  When you solve this, you will obtain an Euler equation, or its equivalent, that is a differential equation for λ.  The second derivative plays no role in setting this up, and thus there is no SOC on the Euler equation.

Once you have set up λ so that it correctly represents the marginal utility of the state variable (representing the future benefits that will be obtained from it), you are left with a simple maximization problem like any other.  The first step is to set the derivative of the function maximized wrt the control variable equal to 0.  To make sure you are finding a maximum rather than minimum, you check the SOC.

The method used to set up λ gives you another benefit.  By creating λ so that LK=0, you are able to take advantage of the results from the envelope theorem.

Let’s take a couple moments to review what the envelope theorem does for you in the simple maximization case.  Suppose you are trying to find how much the maximum value of some function changes.  You want to know h’(y) 


H(y)=maxx f(x,y)

y is the state variable and x is the control variable.  

The first whack at the problem gives you:
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which is likely to be quite complex.  In particular, the second term could be quite difficult to solve.

However, the envelope theorem gives you more.  It says that the second term is zero by maximization.  Thus, 
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Here is a graphical representation of what is happening.  







The general shape of f(x,y) remains the same for relatively small changes in y.  Thus, the distance between f(x,y) and f(x,y+Δy) is approximately the same for all values of x.  In fact, at the optimal x, and for infinitesimal changes in y, the difference in y is given by:
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The same holds whether there are constraints or not.  If there are constraints, then the derivative of h wrt x may not equal zero, but then maximum is on the constraint.  (Think about the area in the graph left of the dashed line.)

We now end the last lecture by finding the equivalent of the envelope condition for dynamic programming.  From the beginning of the last lecture, we showed that:
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We would like to know what changing the initial capital, K(0) does to the value of our utility.  We set up the problem so that LK=0 which means that that term drops out; any effect from that term is second order in nature.  The second term, the value at T is equal to zero, so change from zero to zero does not effect utility.  The only effect comes from the effect of changing K(0) in the last term.  In fact, the change in utility that results from changing K(0) = λ(0).

Because K is not the control variable, we can even say more—about situations in which, due to errors in the system from whatever source, the optimal decision path is not being followed.  Suppose only that:


TC: λ(T)=0

Choose λ s.t. LK=0

(The step missing for optimal programming is setting Lx=0 to find optimal path.)  Stating that changing K(0) has an effect only through λ(0) is not very meaningful as you don’t necessarily know λ(0).  However, you can say quite a bit about what a marginal change in policy is on npv of utility.  Changing the control rule has an effect (to FOterm approximation)
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We will find that the same type of results hold for the case allowing for random activity as well as for this perfect information case.  Another way of describing the set-up is that, by writing things as a classic Lagrangian, we are able to obtain a large number of elements through simple accounting rather than with full maximization.

When doing research, you will need to solve the Euler, LK=0 S.T. the transversality condition.  This means that you will have to solve for the value of λ at each time in the game using a computer.  (Unfortunately, this means for the game with uncertainty that you need both a discrete number of periods and a discrete number of results of the random process in each period.)  Once you have that, then you can find the true benefit that results from some change in the control rule—even if you are not changing from the optimal!

An example of just such a situation is a macroeconomic study in which there is either monopolistic competition, or in which you allow for unions.  Unions increase the cost of workers, and thus management of unionized firms does not hire all the way down to the social cost of increased labor.  One result is that unionized workers are more productive, both on average and on the margin than other workers.  (Of course, this result seems to come from the higher wages they force, not because of any benefits that employers get from the unions.)  

When the economy is booming, more labor ends up going into unionized firms.  (Production of durable goods increases particularly in boom times, and these tend to be unionized.)  Because of the higher efficiency of marginal unionized workers, you get increased efficiency of the entire economy.  While this is, perhaps, only because, so what?  The economy is becoming more efficient, and that has to be a good thing.

It certainly seems that you should be able to measure how much of a benefit an economy gets from using more unionized workers.  However, by assuming different marginal utility, you are assuming that you are not on an optimum path.  Yet, by using the method that we are developing now, there is no need to fear!  Just plug into the classic Lagrangian and chug away.

Now we move to the initial discussion of optimal control—a discussion allowing for uncertainty.  The basic steps that we will follow is to find the equivalent of the classic Lagrangian, set up a λ that takes the future value of K into account today, and then maximize the function.  The steps are the same as under dynamic programming, but we have to take nature into account.

The play of nature can be thought of using an event tree similar to those used in game theory:









However, nature is playing at every node, and you don’t know which direction she is going to choose. 

The first step is to set up the problem in the same manner we did dynamic programming problems.  The first step is to write down the problem we are solving.  We think of the value function as in dynamic programming, but we take uncertainty into account:


V0=E0
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Is the function we will maximize.  We maximize this function subject to the constraint:


dK=g(K,x,t)dt+ σ(K,x,t)dz, 

K(0)=K0
We write this function recursively as:


1.  V(t,K)=hU(K,x,t) + e-ρhEtV(t+h,Kt+h)

The h is some discrete period of time.  We are going to solve the problem for discrete time periods, and then solve for the continuous results by taking the limit as h goes to zero.

Once again, the general method is essentially the same as for dynamic programming.  We are going to define a function with a λ, and then we are going to design λ so that it has the characteristics necessary for us to take advantage of the envelope theorem.

The only difference here is that λt will be defined for the stochastic process.  Rather than choose the simple λt function, we choose a slightly more sophisticated one.   Despite this added play of nature, the general method of choosing λ such that:


λ(T)=0 and


λ takes into account value of all benefits of the state variable that accrue beyond that point in time.

Looking back at the event tree, we choose λ such that λ(T) is true for all possible ends of the game, and then solve backwards for its values throughout the earlier parts in the game.

We are going to assume that K follows some diffusion process; i.e. it follows the planned path, with some random deviations—in the derivative.  Thus, changes in K will be smooth.

We now use the fact that we create a λ with the properties we want to derive a version of the classic Lagrangian.  Note that we do not do any more optimization steps until after we have done the classic Lagrangian.  Thus, as described earlier, it is clear that equation is not based on the optimal path.

(Note on notation: all functions are written as X(a,b) while partial derivatives of functions are written Xa even when a is time.  Variables are often written at to denote their value at a point in time, as is the expectation operator.  This is to allow Xt to be differentiated from X(t,.)

We created λ so that λ=VK.  We use this fact to define a new term, S(t,K(t))

Define S(t,K(t) as follows:

2. S(t)=V(t,Kt)-λt Kt
Because λ=VK, this means that we define S a:


S(t)=V(t,Kt)-KtVK
One intuition for S(t) is that it can be thought of as a ‘surplus’.  Some of the value of V(t) comes from the present utility obtained, while the rest comes from future utility.   You can get some inkling of the meaning of S from the following graph:








Note that S does not change with K as the intercept of the tangency line does not change for small changes in K.  It is that fact that is true for both the certainty and uncertainty case.  This link is not often used in the literature, but can come in quite handy for many problems.  Now we do just a bit more algebra to come up with the classic Lagrangian.

Remember that:


4.  V(t,K)=hU(K,x,t) + e-ρhEtV(t+h,Kt+h)

And we have that 


5.  V(t+h,Kt+h) =S(t+h)+λt+hKt+h

Substituting these into the definition of St leads to:


6.  S(t)=hU(Kt,xt,t)+e-ρhEt(S(t+h) + λt+hKt+h ) –λtKt

(Note that many economists that deal in discrete time rather than continuous time use δ rather than e-ρh.)

Now we split the terms and add and subtract a e-ρhλtKt to get:

7. S(t)= hU(Kt,xt,t)+e-ρhEt(St+h) + e-ρh  [Et (λt+hKt+h) –λtKt] – (1-e-ρh)λtKt

Which is reordered to be:


8. S(t)= hU(Kt,xt,t) – (1-e-ρh)λtKt +e-ρhEt(St+h) + e-ρh  [Et (λt+hKt+h) –λtKt] 

From this we move ever closer to the classic Lagrangian.  Next, reorder equation 6 to get:


8. S(t)=hU(Kt,xt,t) –λtKt +e-ρhEt(S(t+h) + λt+hKt+h)

L(t), of course, will play the role of the classic Lagrangian.  One way we can define it as:

9.  hL(K,x,t)=S(t)-e-ρhEt(St+h) 

Much of the next sets of substitution will be to get L into a usable form.

We do some substitution and find:


10. hL(K,x,t;λ)= hU(Kt,xt,t) – (1-e-ρh)λtKt +e-ρh[Et (λt+hKt+h) –λtKt]

Note that the definition of covariance is:


11. Cov(λt+h,Kt+h)= Et (λt+hKt+h)- Et (λt+h–λt)Et(Kt+h-Kt)

This definition allows us to change equation 10 into:


12.  hL(K,x,t;λ)= hU(Kt,xt,t) – (1-e-ρh)λtKt +e-ρh[Et(λt+h)Et(Kt+h-Kt)+KtEt(λt+h-λt)+Cov(λt+h,Kt+h)]

The covariance term can play an important role.  For example, in the CAPM, λ is the marginal utility of consumption.  Because returns are higher when marginal returns are lower, the value is lower than if they were not related.

The first step in solving a problem will be to take LK in order to set the λ’s correctly.  Once we do that, however, we have several options.  The first option is to use L (either in this form or the ones we solve for between now and step 17) to find the economic value of changing policies from one path to another—even if it is not from the optimal.  Most economists assume that optimal control is only useful from the optimal path, but we never used any optimality conditions to derive this classic Lagrangian.  Thus, the classic Lagrangian is simply an accounting identity.  What’s more, by including all future benefits folded back into the equation representing the present, accounting is very simple (assuming you can do the computation to find the values of the λ’s.)

While the Hamiltonian is an attempt to do the same thing as the classic Lagrangian, it does not do as good a job of it.  This is because it only takes into account the X terms, and does not take into account the direct benefits from holding K in the future.

The more common use is to find the optimal control policy.  For solving the continuous time version of the problem, we divide through by h:


13.  L(K,x,t;λ)= U(Kt,xt,t) – [(1-e-ρh)/h] λtKt +

e-ρh [Etλt+h {Et(Kt+h-Kt)/h}+KtEt(λt+h-λt)/h+{Cov(λt+h,Kt+h)/h}

We don’t really want to deal with this much of a mess, so we shorten the form of the equation using:



A(K,x,t)=
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Ж(K,x,t)=
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Of course, in order to make heads or tails of this, we will need the size of the covariance to be of order h.  (Thus the standard deviation to be of order square root of h.)  This will be necessary to have correct set-up of the problem.  Anyway, plugging these in leads to:


14.  L(K,x,t;λ)= U(Kt,xt,t) – [(1-e-ρh)/h] λtKt +e-ρh [λtA(K,x,t) +KtEt(λt+h-λt)/h+ж(K,x,t)]
Now we can take the derivative WRT x and K to get:

15. Lx=Ux(K,x,t)+ e-ρh [Etλt+hAx(K,x,t)+жx(K,x,t)]

Equation 15 will gives us the optimal control policy.  Note that it will be necessary to check the SOC, Lxx≤0.


16.  LK=UK(K,x,t)-
[image: image9.wmf]h

e

h

r

-

-

1

λt+e-ρh{Etλt+hAK(K,x,t)+
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Equation 16 is the Euler equation, and, in conjunction with the transversality condition, allows us to derive correct values for λ.

The above equation is the solution of the discrete time version.  In order to find the continuous time approximation, we take the limit as h goes to 0.  For part of this, we need to use L’hopital’s rule which leads to 
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17.  L(K,x,t;λ)= U(Kt,xt,t) – ρ λtKt + λtA(K,x,t) +KtEt
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18.  Lx=Ux(K,x,t)+ EtλtAx(K,x,t)+жx(K,x,t)


19.  LK=UK(K,x,t)-ρλt+ λtAK(K,x,t)+
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(Note that some of the λ should really be λ+(t), but if λ does not jump, then they will be the same thing.)

LK is solved for the Euler equation that is written in one of two forms:
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Note how similar this is to the Euler equation for the certainty case:
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Now we begin again at equation 1:


1.  V(K,t)=
[image: image17.wmf]x
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[hU(K,x,t) + e-ρhEtVt+h]

And approximate using a second order Taylor expansion series.  This will help derive another set of useful equations.  (Note that we need the second order to take the random motion into account.  You need one order in the Taylor expansion for each order on which there is a random element, plus one.):


 20.  V(K,t)≈ 
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Some economists use this equation to approximate the values using a computer estimation.  This equation is the discrete time version of the Bellman equation.  Note the notation: Vt in the above equation refers to the partial derivative of V wrt t, not V at time t.

All we do to finish the continuous time Bellman equation is some minor manipulation:


21. V(K,t)≈ e-ρhEt V(Kt,t)+ Vt(K,x,t)+
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A bit of simple manipulation and dividing through by h leads to:


22.  
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Define:

Ω(K,x,t)=(Et(Kt+h-Kt)2)/h 
Continue to use:


A(K,x,t)=
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and you get the Bellman equation (after taking the limit as h goes to 0):


ρV-Vt=
[image: image25.wmf])

,

(

2

)

,

(

)

,

,

(

)

,

(

)

,

,

(

{

max

t

K

V

t

K

t

x

K

A

t

K

V

t

x

K

U

KK

t

K

x

W

+

+


Note that K is the variable in which the randomness comes into play, and that the variance of these random effects have size depending on interval.  Thus, neither Ω nor A go to zero as h goes to 0.
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