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Problems
1.  Diffidence Theorem.

a.  Use the diffidence theorem to characterize utility functions that have the property that for a fixed w, if a risk lowers E u(w+x), it also lowers E u’’(w+x).   (By a risk lowering something, I mean the change in distribution from a degenerate distribution with all the mass at one point to a spread-out distribution lowering something.)     

b.  What if this is true for all w?  How much more can you learn?  Does it look like the local necessary condition being true for all w enough to guarantee the property?  If you are not sure, spend a few minutes looking for a counterexample, or try to at least show why the question does not have an easy answer.  

2.  Diffidence Theorem applied to the set of FSD changes.  

Take as a known fact that the set of first-order-stochastic-dominating changes can be generated by the simple set of extremals which each shift of probability mass from one point to one other higher point.  Can you see why this is true?  

a.  Use this set of generating extremals to find exactly the set of utility functions each of which prefers all first-order stochastic dominating shifts.  

b. Now consider a specific density f1(x) and shifts from this density to another density that first-order stochastically dominates it.  What is a relevant set of generating extremals now?   Find the set of utility functions each of which prefers all first-order stochastic domating shifts starting from the particular density f1(x). 

c.  Characterize the relationship that must hold between two specific utility functions g1 and g2 if any first-order stochastic dominating shift that raises E g1  also raises E g2.   Be careful NOT to assume that g1 and g2 are monotonically increasing or this is not a very interesting problem.     

3. Diffidence Theorem applied to pdf’s.  

a.  Characterize the relationship that must hold between two probability density functions f 1 and f2 if for all monotonically increasing functions v(x) the expectation of v(x) using density f2 is always positive whenever the expectation of v(x) using f1  is positive.  

4.  Polars. 

The set of mean preserving spreads can be defined as the set of changes in probability densities that is polar to the set of concave (maybe, maybe not monotonically increasing) utility functions.  Take as a known fact that the set of mean-preserving spreads has the simple set of generating extremals that each take the mass from one point and shift that mass to two other points in a way that does not change the mean.  

a.  Find the polar to the set of monotonically increasing utility functions and state a simple set of generating extremals for this polar.

b. The set of changes in distribution polar to the set of monotonically increasing, concave utility functions is called the set of second-order stochastic dominating changes.  Find a simple set of generating extremals for the set of second-order stochastic dominating changes.  Be sure to use what you know about polars. 

5. The effect of a security that didn’t exist coming into existence.

In a two-period model with additively time-separable von Neumann-Morgenstern utility, find the mathematical condition on the second-period utility function needed to guarantee that allowing access to one risky asset in addition to the safe asset will 

a. raise first-period consumption

b. lower first-period consumption.

c. For each of these two properties, determine whether the set of utility functions with this property is a convex set.  
6.  Extremals for the monotone likelihood ratio order.   

Find a set of extremals (basis functions under convex combinations) for the set of risks that are worse than a given risk according to the monotone likelihood ratio order.  Describe these extremals in words.  HINT: Mathematically, being worse by the monotone likelihood ratio order looks a lot like globally greater risk aversion, but with the probability density in place of marginal utility.   

7.  Stochastic order when risk aversion is bounded between two functions.  

Using the method of polars, give a description of the set of risks that would be rejected by anyone with a utility function globally more risk averse than u1 but globally less risk averse than u2.   

8.  A result of Christian Gollier.  

Find how the probability distribution F2 must relate to the change in probability distribution F1 in order to guarantee that anyone with a monotonically increasing, concave utility will choose more of a risky asset with excess return distribution F2 than of a risky asset with excess return distribution F1.  In this problem, where is the principle that economic problems depend on changes in distribution come in? 
9.   Kreps-Porteus Preferences.
Consider the finite-horizon life-cycle consumption-saving-portfolio choice problem with one of the Epstein-Zin-Weil special cases of Kreps-Porteus preferences.  The elasticity of intertemporal substitution is 1 while risk aversion is (<1.    The value function is represented in the form that makes the curvature represent risk aversion. The Bellman equation for the problem is 
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and the fact that 
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has already been built into the Bellman equation. Note that the multiplication sign 
[image: image4.wmf]is not a mistake.  Making whatever additional technical assumptions you need,

a. Show that V is monotonically increasing in 
[image: image5.wmf].

b. Show that V is concave in 
[image: image6.wmf].
10.   Income and Substitution Effects of Interest Rates.

Now consider again a finite-horizon life-cycle consumption saving problem, but with the usual intertemporal expected utility maximization preferences.  In this case, R is a constant and there is no portfolio choice.  The Bellman equation is 


[image: image7.wmf].


[image: image8.wmf] is exogenous.  X is a function that always takes strictly positive values.  R is also strictly positive.  U is monotonically increasing and concave.  
a.  Show that if it is always true that
[image: image9.wmf] then
[image: image10.wmf] always.   (Take 
[image: image11.wmf]as given.  We have not yet done the tools for proving this type of property.)

b. Show that if it is always true that
[image: image12.wmf] then
[image: image13.wmf] always. .   (Take 
[image: image14.wmf] as given.  We have not yet done the tools for proving this type of property.)

c.  Although of course it is both, in interpreting these results, does it make more sense to interpret  
[image: image15.wmf] as the relative risk aversion of the value function or as the reciprocal of the elasticity of intertemporal substitution of the value function?

d.  Find some interesting comparative statics result that flows from the sign of 
[image: image16.wmf].
e.  State what you have learned from the entirety of problem 10 as you might in the abstract of a paper.  
11.  Stochastic Q-Theory.  

Consider the firm investment problem with Bellman equation 
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where 
[image: image18.wmf] is exogenous.  Assume that 
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a.  Define 
[image: image23.wmf], 
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[image: image25.wmf].  Rewrite the Bellman equation in terms of these newly defined objects.  

b.  Find conditions on these new objects to guarantee that an increase in 
[image: image26.wmf] raises optimal 
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[image: image29.wmf].

c.  If it is possible, extend these results to the case in which 
[image: image30.wmf] depends on 
[image: image31.wmf]as well as 
[image: image32.wmf] and 
[image: image33.wmf].   If it is not possible, explain why.  
12.  Hayashi’s Result.  

Given the same Bellman equation, show that if 
[image: image34.wmf]has constant returns to scale in 
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[image: image36.wmf] has constant returns to scale jointly in 
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[image: image39.wmf]has constant returns in 
[image: image40.wmf].   Show that this implies that the marginal value of capital is equal to the value of the firm divided by its capital stock.  

13.  Deriving the the Continuous-Time Stochastic Bellman Equation by  L’Hopital’s Rule.
Consider the Bellman equation  
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a. Rearrange the Bellman equation to put zero on the left, divide by 
[image: image42.wmf] and take the limit as 
[image: image43.wmf] using several applications of L’Hopital’s rule plus algebra to derive the continuous-time version of this Bellman equation.  Look at it carefully to make sure it makes intuitive sense as a Taylor approximation.  Rearrange one final time to put everything that does not depend on 
[image: image44.wmf]on the left, outside of the maximization operator.  

b. (Merton.)  With 
[image: image45.wmf] and 
[image: image46.wmf] both elements of 
[image: image47.wmf], let 
[image: image48.wmf], 
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[image: image50.wmf].    Show what you can learn from a scale symmetry and a time-translation symmetry for both the finite-horizon and infinite-horizon limit of this problem when 
[image: image51.wmf] and 
[image: image52.wmf]are constant.  Take the continuous-time limit of the infinite-horizon problem and solve the Bellman equation.  Interpret the economics of your solution.  

c. What does the rate-of-time symmetry imply for the solution to this infinite-horizon, continuous-time problem?  Verify that your solution in part b satisfies the property you get from applying the rate of time symmetry.  

14.  Things aren’t always easy.  

Consider the property that for all random variables 
[image: image53.wmf], and for a given positive 
[image: image54.wmf],
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Explain why the full set of techniques that worked for Homework 2, problem 1 won’t work for this case.   How far can you get and where does that approach break down?  See how far you can get in characterizing this relationship between 
[image: image56.wmf] and 
[image: image57.wmf]both for fixed w and if it is true for all w.  Can you think of an economic interpretation for this property?  

15.  Publicly Complete Markets and Precautionary Saving, with a Bow Toward Black Scholes.
Consider the following Bellman equation, which models both risky income and a risky asset choice:
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where 
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and
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a. Show that if the labor income 
[image: image62.wmf]is always zero, the continuous-time limit is equivalent to the Merton problem.  

b. Working with the discrete-time problem, use the method of conjugate functions to show that if 
[image: image63.wmf] then 
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c. Argue that 
[image: image65.wmf] even in the continuous-time limit as 
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d. Give an economic interpretation of this result.  
16.  Not the Monotone Likelihood Ratio Order.  
Consider the set of functions f such that 
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a.  Characterize the relationship between distribution functions for the random variables 
[image: image73.wmf] and 
[image: image74.wmf] if for given w all utility functions in this class satisfy
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b.  Characterize this relationship between distribution functions if this is true for the corresponding class of functions around any w.
17.  Habit Formation.

Consider the following optimization problem:
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Everything not subscripted by time is a constant.  Note that the equation for the evolution of H is nonstochastic and can be divided through by dt if it helps.   If subscripts on 
[image: image77.wmf]represent partial derivatives (so 
[image: image78.wmf]), the Bellman equation for this problem is: 
[image: image79.wmf]
a.  Find a time-translation symmetry for this problem and use it to simplify the expression of the value function.  

b.  Find two different capitalization symmetries for this problem and use them to simplify the expression of the value function.   (Careful: one of them is a little tricky.) 

c.  Find a scale symmetry for this problem and use it to simplify the expression of the value function further.  

d. Use everything you know from parts a., b., c., to solve the Bellman equation.

e.  Find a rate-of-time symmetry for this problem and verify that your solution in part d. has the property predicted by the rate-of-time symmetry.  

NOTE:  You do NOT need explicitly or implicitly prove the symmetry theorem in this problem.  Assume the symmetry theorem is true (which it is) and apply it.   This makes the answers short.   
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