Transversal switching between generic stabilizer codes

Cupjin Huang1 and Michael Newman2

1Department of Electrical Engineering and Computer Science
2Department of Mathematics
University of Michigan, Ann Arbor, MI 48109, USA

Introduction

The recently proposed stabilizer rewiring algorithm2 (SRA) gives a method for constructing a transversal circuit mapping between any pair of stabilizer codes. We propose a randomized variant of the SRA and show that with at most linear overhead, a path of deformations can be found which preserves the code distance throughout the circuit. This allows constructive, distance-preserving code switching between arbitrary stabilizer error-correcting codes.

Main Result

For any two \([n, k, d]\) stabilizer codes \(S_1\) and \(S_2\), the rSRA scheme gives a transversal circuit mapping from \(S_1\) to \(S_2\) where each intermediate code has distance at least \(d\) with probability \(1 - \varepsilon\), using \(m = O(d \log n/d + \log 1/\varepsilon)\) ancilla qubits.

Simplified Algorithm

For simplicity, we consider mapping between codes \(S, S' : \mathcal{N}(S) \cap S' = \emptyset\) and vice versa.

\textbf{Input:} Generating sets \(G, G'\)

\textbf{Output:} \(G \cup A = G_0, G_1, \ldots, G_{n-k} = G' \cup A'\)

\begin{itemize}
 \item Pick ancilla sets \(A \leftrightarrow \{0\}, A' \leftrightarrow \{+\}\) and extend \(G, G'\) to the correct dimension. More ancilla increases the probability of success.
 \item Choose a random basis \(G_C\) for \((G' \cup A')\).
 \item Choose the unique basis \(G_C\) for \((G \cup A)\) whose elements are canonically conjugate to the elements of \(G_C\).
 \item One-by-one, replace the element of \(G_C\) with their canonically conjugate elements in \(G_C\).
\end{itemize}

Transversal Mapping

For generating sets differing by a single \(g, g'\),

\[
\frac{1}{\sqrt{2}}(1 + g'g)|\psi\rangle_G = |\psi\rangle_{G'}.
\]

Furthermore,

\[
\frac{1}{\sqrt{2}}(1 + g'g)|\psi\rangle_G = \frac{1}{\sqrt{2}}(g' + 1)|\psi\rangle_G = \frac{\sqrt{2}}{2}(1 - g')|\psi\rangle_G.
\]

Thus, the transformations in the final step can be applied transversally by measuring \(g'\) and applying \(g\) conditioned on outcome \(-1\).

Example

<table>
<thead>
<tr>
<th>Type</th>
<th>([7, 1, 3])</th>
<th>([5, 1, 3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_A)</td>
<td>ZZXXZI</td>
<td>YXYXYYIYY</td>
</tr>
<tr>
<td>(G_C)</td>
<td>YXYXZYIYX</td>
<td>XXZXXZI</td>
</tr>
<tr>
<td></td>
<td>XSYXZXIYX</td>
<td>XZXZXXI</td>
</tr>
<tr>
<td></td>
<td>ZXXYIYXIYX</td>
<td>ZXXZXXI</td>
</tr>
<tr>
<td></td>
<td>ZZSYZZIII</td>
<td>ZIYIYX</td>
</tr>
</tbody>
</table>

A distance-preserving path converting from Steane’s \([7, 1, 3]\) code to the perfect \([5, 1, 3]\) code, where \(G_A\) is a basis for \((G) \cap (G')\). In this case, the usual basis for the \([5, 1, 3]\) code suffices. The conversion proceeds from top to bottom, and requires no additional ancilla except to normalize the code sizes.

Discussion

- The algorithm can be extended to \(S, S' : \mathcal{N}(S) \cap S' \neq \emptyset\).
- Practically, the number of required ancilla (if any) is much less than the upper-bound. The required number scales roughly with \(\log(|\mathcal{N}(S) \cap S'|)\).
- Can we boost from distance-preserving to fault-tolerance, possibly by adding error-correction to the ancilla?

References

Acknowledgements

The authors would like to thank Fang Zhang, Kevin Sung, Daniel Mindaia, and Yaoyun Shi for useful discussions. This research was supported in part by NSF Award 1717523.