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Abstract

The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis,

which scale well with traffic volume and network size. We address the problem of optimal large-

scale monitoring of computer networks under resource constraints. Specifically, we consider the task

of selecting the “best” subset of at most K links to monitor, so as to optimally predict the traffic load at

the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic

predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which

render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that

improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms

exploit the geometry of principal component analysis, which also leads us to new types of theoretical

bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best

of several parallel independent instances often yields the exact optimal solution. Their performance is

illustrated and evaluated on simulated and real-network traces.

I. INTRODUCTION

A. Motivation

ADVANCES in high-throughput technologies have led to unprecedented growth of network traffic

due to a large host of applications such as Web, IP telephony, cloud computing, social network-

ing, audio/video streaming, etc. Network monitoring aims to sample traffic data on short time-scales

and quickly analyze them. A natural application of online monitoring is anomaly detection [1], [2].

This requires periodic traffic flow measurements on a large set of links, a costly and computationally

challenging task. Therefore, since global monitoring of large-scale networks involves large traffic volumes,
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it becomes impractical and often impossible due to resource constraints. For example, limited bandwidth

prevents all data from being sent to a centralized coordinator (e.g., Cisco’s Netflow Collector [3]). Further,

typically only part of the network may be accessible for monitoring at a given time due to engineering

or management constraints. Therefore, it is important to be able to statistically predict the traffic loads

on all links in the network based on information obtained from a limited set of observation sites.

Recently, [4] introduced methodology for global network traffic modeling, which utilizes the routing

and other network-specific structural information derived from sampled NetFlow measurements. Once

calibrated, these models can be fit by monitoring small subsets of links in the network and used to solve

the network kriging problem [5]. This modeling approach allows for fast online prediction of the traffic

volume, by utilizing measurements on a small set of links. Certainly, the accuracy of the prediction

heavily depends on the selection of links to be monitored. One fundamental problem in this context is

how to best allocate the monitors so as to minimize the prediction uncertainty.

In this work, we focus on the optimal monitoring problem for wired IP networks. Given a global traffic

model in terms of the covariance matrix of all links in the network, the goal is to find the optimal set of

K links to monitor so as to optimally predict link utilization on the remaining ones (see Figures 1 and 8).

The underlying network covariance matrix may be obtained through a network-specific traffic model as

in [4] or by other methods, e.g. from extensive off-line analysis of historical traffic data (see Section III).

Here, we shall assume that this covariance is a known and given “input” for our algorithms1.

To informally introduce the problem under study, consider the toy example in Fig. 1, based on the

Internet2 topology [6]. Traffic flows through the highlighted links. Suppose we have the following

5 network flows with the same statistical characteristics, denoted as source–destination (S,D) pairs:

(SALT, NEWY), (SALT, ATLA), (HOUS, NEWY), (HOUS, ATLA) and (KANS, ATLA). Assuming that

prediction uncertainty is quantified by the mean prediction error of the unobserved links (i.e. A-optimality,

see Section III-B), we pose the following question: Suppose one is allowed to monitor only K = 2 links,

which two links should be chosen? One can easily guess that the first member of that set should be

link “c”. This is because link “c” serves the most flows; indeed, link “c” belongs to the optimal set (in

general, more than one might exist). The other link can be either “d” or “e”. Finally, the less obvious

choice {“d”, “e”} is also an optimal solution.

The situation becomes more involved if we assign link preferences. For example, a network operator

could face different scenarios and may assign distinct link weights/priorities (see section VII-E), such as

monitoring links which can be more error prone, or links that are more susceptible to network anomalies,

1We exclude pathological or trivial cases. E.g., in a network where all origin destination flows are served by individual

dedicated links, the dependence between links becomes trivial and the network kriging problem is of no practical interest..
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Fig. 1. Toy example on a subnetwork of the Internet2 topology. For the full-topology, real-world application see Section VII.

or even not wanting to observe inexpensive links, etc. Considering again our toy topology, link “a”

could join the observed set depending on its priority. To complicate matters, note that these decisions

should be made online and fast. In real-world networks of hundreds of links servicing thousands of flows,

where network conditions change frequently, exact algorithms – which amount to complete combinatorial

searches – are prohibitively expensive. Hence, only fast heuristic algorithms are practical; finding such

algorithms consists the main topic of this paper.

B. Contributions

Our focus is the problem of efficiently selecting the subset of network links to monitor which yields

best overall prediction for the remaining ones. Specifically, we aim to minimize a functional of the

prediction error, which represents the uncertainty on the information that is obtained. There are several

popular criteria for measuring the uncertainty, such as entropy (also known as D-optimality, see [7]),

mutual information [8], trace (A-optimality) and spectral norm (E-optimality) of the prediction error

covariance matrix [9]. In this work, we focus on A- and E-optimality.

The combinatorial optimization problem at hand – formally introduced in Section III – belongs to

the family of subset selection problems, which are NP-hard problems in general. For example, min- and

max-entropy (D-optimality) sampling are shown to be NP-hard problems in [7] by reduction from the

well-known NP-hard problems of CLIQUE and STABLE SET [10]. Related problems such as sparse

approximation [11], subset selection for regression [12] and sensor placement using the criterion of

mutual information [8] are also proven to be NP-hard. Therefore, even though the NP-hardness of our

problem remains an open question (as is the column subset selection problem [13], [14], a closely

related one), there is strong evidence that it is NP-hard. In principle, exact solutions can be obtained by

using an integer program formulation. However, the problem becomes prohibitively expensive for even

moderate-size settings. For example, an exhaustive search implementation in CPLEX [15] running on a

medium-sized computer cluster required several hours to complete the solution for a 26 link problem

with a “budget” of K = 12. Other methods, such as the mixed-integer program with constraint generation

proposed in [16], are also computationally expensive and impractical. Branch and bound methods could
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be applied (see [7]), but the huge number of “branching” choices makes the procedure unattractive for

online implementations in large-scale networks. These challenges emphasize the need for fast heuristic

algorithms for solving the optimal prediction problem. The main contributions of our study are:

1) We introduce novel approximation algorithms whose efficiency can allow network operators to

solve the optimal monitoring problem fast and practically online. We juxtapose these algorithms

against naı̈ve greedy implementations and against a selection algorithm proposed in [5]. The evalu-

ation results suggest qualitative and computational advantages of our proposed methods against the

aforementioned algorithms (e.g., see Figures 6 and 7). Further, we show that kriging-based traffic

prediction outperforms estimation methods based on diffusion wavelets [17] (see Figure 8).

2) By exploiting the geometry of the objective functions used, together with connections to principal

component analysis (PCA) we obtain prediction error bounds that do not stipulate submodularity of

the objective functions as in existing work (e.g. see [8]). Furthermore, these bounds help us assess

the quality of our approximate solution with respect to the optimal one, which is often unknown

and practically unobtainable for large networks.

3) Randomized versions of the proposed algorithms can be implemented in a parallel fashion. This

leads to further improvements in practice, often yielding the optimal solution (see Fig. 2(a)).

The paper is organized as follows: in Section II we outline the related work. In Section III we

formally define the network monitoring problem. In Section IV we present the connections with PCA and

derive our PCA-based lower bound on the performance of our algorithms, which in fact applies to any

other algorithm. Section V introduces and analyzes our three approximation algorithms, and concludes

with possible extensions to randomized implementations. Section VI discusses theoretical performance

guarantees for the error reduction achieved at each step. Next, in Section VII, we evaluate our methods in

a variety of network scenarios, including the real-world datasets obtained from the Internet2 network [6]

and the Cooperative Association for Internet Data Analysis (CAIDA) [18]. We also provide insights on

how a network operator can choose the budget K, and how weighted link monitoring can be implemented.

II. LITERATURE SURVEY

Statistical prediction for the sake of network monitoring, named as network kriging, appeared in [5].

The authors developed a framework in which global flow characteristics can be predicted from a small

sample of flow measurements. Their problem seeks the “best” network paths to monitor and they propose

a fast approximation algorithm based on SVD and QR factorizations [19]. Efficient network monitoring of

end-to-end performance metrics also appears in [17]. The presented procedure utilizes diffusion wavelets

to capture spatial and temporal correlations in traffic measurements. To perform this analysis, a path
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selection problem similar to the one in [5] needs to be addressed, and the QR-based method is again

employed. The authors in [20], [21] follow a combined approach in which they first seek the links at

which network monitors should be activated, and then aim to choose an optimal packet sampling scheme

so that the traffic estimation error is minimized. They propose fast algorithms that take advantage of the

fact that the problem at hand can be reduced to a second-order cone programming problem [20], [21].

Optimal sampling schemes for link traffic is also discussed in [22], [9], where a state-space model is

engaged that captures the dynamics of link traffic.

In [8], near-optimal sensor placement for temperature monitoring is examined, which has a similar

formulation to our problem. The authors propose heuristics that outperform the classical implementation

of the greedy algorithm that appears in [23]. However, these methods apply only in special cases such as

when the covariance matrix of the joint Gaussian distribution of the temperatures has “low-bandwidth”2.

The structure of the covariance matrix is also exploited in [12] where the problem of subset selection for

regression is studied. The efficiency of the algorithms algorithms in [12] relies, however, on the special

cases of “low-bandwidth” and “tree covariance” graphs. We note, though, that such special cases do not

commonly arise in real-world network monitoring applications, and thus the efficiency of the algorithms

in [8], [12] is practically unsatisfactory for large-scale communication infrastructures. This is because

the topology and routing of real-life networks often lead to covariance matrices with complex structure.

A network session may flow through a large number of links that can be geographically distributed (see

Fig. 1 for a large-scale network topology). Hence, the inherent statistical independence between distant

locations that may be apparent in sensor networks, giving rise to “low-bandwidth” covariance matrices,

is generally absent in IP wired networks.

Although there has been a vast amount of work on problems of similar flavor (see also [24], [25], [26]),

optimal monitoring in large-scale networks poses new challenges. As mentioned above, there is no natural

sparsity of the covariance structure between the links in the network. At the same time, approaching the

problem from a combinatorial perspective leads to computational challenges similar to existing NP-hard

problems. This motivated us to explore a new approach based on the geometry of PCA.

III. PROBLEM FORMULATION

A. Large-scale Network Monitoring

Consider a communication network of N nodes and L links. The total number of traffic flows, i.e.

source and destination (S,D) pairs, is denoted by J . Traffic is routed over the network along predefined

2A covariance matrix Σ has bandwidth β when the variables can be ordered in such a way that Σij = 0 when |j − i| > β.
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paths described by a routing matrix R = (r`,j)L×J , with r`,j = 1,when route j uses link ` and 0

otherwise. Let x(t) = (xj(t))
J
j=1 and y(t) = (y`(t))

L
`=1, t = 1, 2, · · · be the vector time series3 of

traffic traversing all J routes and L links, respectively. We shall ignore network delays and adopt the

assumption of instantaneous propagation. This is reasonable when traffic is monitored at a time-scale

coarser than the round-trip time of the network, which is the case in our setting. We thus obtain that the

link and route level traffic are related through the fundamental routing equation4

y(t) = Rx(t). (1)

In [27], we proposed a global mechanistic model for the traffic on an entire network. The traffic

flow along each route was represented as a composition of multiple long-range dependent On/Off traces

describing the behavior of individual users. Such On/Off processes have been popular and successful

models for the pattern of traffic generated by various protocols, services and applications (e.g., peer-to-

peer, file transfers, VoIP, etc.). It is well-known that the composition of multiple independent traces of this

type yields long-range dependent models, that are well-approximated by fractional Gaussian noise (see

e.g. [28]). On the other hand, using NetFlow data, we found that the traffic flows xj(t) across different

routes j are relatively weakly correlated5 (in j). Thus, routing (see Eq. (1)) becomes the primary cause of

statistical dependence between the traffic traces y`(t) across different links ` in the network. In particular,

the greater the number of common flows that pass through two given links, the greater the correlation

between the traffic loads on these links. The dependence of y`(t) across “space” (links) ` and time t can

be quantified and succinctly described in terms of the functional fractional Brownian motion (see [27]).

In [4], we developed further statistical methodology that allows one to estimate (using NetFlow data)

the structure of the means µx = Ex(t), the flow-covariances Σx := E(x(t)−µx)(x(t)−µx)T and their

relationship for all routes in the network. This leads to a practical factor model for the link loads y(t),

which can be estimated online from traffic measurements of just a few links. The estimated model can

in turn be used to perform network prediction, discussed next.

3Here, time is discrete and traffic loads are measured in bytes or packets per unit time, over a time scale greater than the

round-trip time of the network.
4 Note that in backbone IP networks the routing matrix R does not change often. Further, in wired networks, routing matrices

can be readily obtained by periodically using Cisco’s Discovery Protocol (CDP) or by checking the routing tables. See the

Supplemental material for more information.
5Except in periods of congestion where the TCP feedback mechanism induces dependence between the forward and reverse

flows (see [27] and also [22]).
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B. Link Selection for Optimal Prediction

We focus on instantaneous prediction, known as kriging. In this case, one can measure the aggregated

traffic (i.e., traffic of all network flows traversing the given link) on a set of K observed links yo(t) =

(y`(t))`∈O, O ⊆ L := {1, · · · , L} (e.g. see Fig. 8). The goal is then to predict the traffic carried on

the unobserved links yu(t) = (y`(t))`∈U , U := {1, · · · , L} \ O, at the same time t. (For an example of

temporal prediction, see [27]; henceforth, we often omit the argument t.) For link loads being jointly

Gaussian distributed6, the ordinary kriging estimate given by

ŷu = µu + ΣuoΣ
−1
oo (yo − µo), (2)

is the best linear unbiased predictor (BLUP) for yu via yo, where µy =
( µu
µo

)
and Σy = Σuu Σuo

Σou Σoo

 are the partitions of the mean and the covariance of y = y(t) into blocks corresponding

to the unobserved (u) and observed (o) links. The estimation of µy = Rµx and Σy = RΣxR
T are

important open problems, which were partially addressed in [27] and [4] (recall the discussion at the

end of subsection III-A). For the purpose of this work, we shall assume that µy and Σy are known. We

refer the reader to [4], [27] and the Supplemental material of this paper for details on how they can be

obtained. Assuming multivariate normality, we also have7

yu|yo ∼ N (ŷu,Σuu − ΣuoΣ
−1
oo Σou), (3)

where ŷu is given by (2). In this case, the BLUP ŷu ≡ E(yu|yo) is also the mean squared optimal

predictor.

Let the error covariance matrix corresponding to the observed set O be:

Σerr(O) := E[(ŷu − yu)(ŷu − yu)T |yo] = E[(ŷu − yu)(ŷu − yu)T ] = Σuu − ΣuoΣ
−1
oo Σou, (4)

where the second equality follows from (3). The objective functions considered in this study are:

(i) A-optimality:

trace(Σerr(O)) ≡
∑
l∈U

Var(yl|yo) = E‖ŷu − yu‖2, (5)

where ‖ · ‖ stands for the Euclidean norm;

6At each time instance, one can view the traffic volumes of each individual flow as independent r.v. with finite variance, and,

therefore, by the Central Limit Theorem the sum of these individual flows can be approximated as a Gaussian r.v. (see also [4]).
7Henceforth, we shall assume that the matrix A has full row rank. Otherwise, our results can be shown to hold mutatis

mutandis with Σ−1
oo = (AoA

T
o )−1 viewed as the Moore-Penrose generalized inverse.
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(ii) E-optimality:

ρ(Σerr(O)) = ‖Σerr(O)‖2, (6)

where ‖ · ‖2 stands for the spectral matrix norm, i.e., largest eigenvalue of Σerr(O). Then, the optimal

monitoring design problem is given by:

Problem (Optimal Monitoring Design) Find the optimal set O∗ ⊆ L := {1, 2, . . . , L} such that:

Z(O∗) = min
O⊆L, s.t. |O|=K

f(Σerr(O)), (7)

where Z(O) = f(Σerr(O)) is the prediction error when monitoring the set of links O ⊆ L and f(·) is

the optimality criterion (e.g. trace or spectral norm).

The greedy heuristic is a well-known method for finding approximate solutions to (7). Starting from an

empty set O, this heuristic amounts to incrementally adding to O the link that minimizes the prediction

error Z (or equivalently, maximizes the error reduction). Let δj(O) = Z(O)− Z(O
⋃
{j}) be the error

reduction when adding element j to the set O. The formal algorithm is as follows.

Greedy Heuristic (Nemhauser et al. [23] )

1) Let O0 = ∅, N 0 = L and set k = 1.

2) At iteration k, select ik ∈ N k−1 such that

ik ∈ arg max
i∈N k−1

δi(Ok−1) (8)

with ties settled arbitrarily.

3) If δik(Ok−1) ≤ 0 then stop. Otherwise, set Ok = Ok−1
⋃
{ik} and N k = N k−1 \ {ik}.

4) If k = K stop and output OK . Otherwise, set k = k + 1 and go to step 2).

A naı̈ve implementation of the described greedy algorithm for A- and E-optimality criteria has a

complexity of O(K2L3) and O(KL4), respectively. This is because operations such as matrix inversion,

matrix multiplication and the calculation of the trace or spectral norm are involved whenever δi(Ok−1) is

calculated (see (8) and Eqs.(3)-(6)). In our problem, however, there is a natural geometric structure related

to PCA that can be used for developing fast heuristics. The connections to PCA also yield worst-case,

lower bounds on the error in (7), which are of independent interest. These bounds are practical alternatives

of the well-known (1 − 1/e) approximation guarantees of [23] for polynomial-time, greedy heuristics.

Unfortunately, these guarantees hold when the objective function is submodular [23], a property not

satisfied by our objective functions. We present these new results next.
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IV. A PRINCIPAL COMPONENT ANALYSIS PERSPECTIVE

A. A geometric view of optimal prediction

We discuss next how our problem (7) relates to PCA. The covariance matrix Σy could be obtained via

the routing equation (1) and the statistical characteristics of the J flows, i.e. Σy = RΣxR
T or could be

directly available through historical data from past link measurements (for more details on estimating the

covariance see [4]). Without loss of generality, we decompose Σy using singular value decomposition

or Cholesky decomposition, as Σy = AAT for some L× J matrix A. In practice, we often readily have

such a decomposition, with A = RΣ
1/2
x , where R is the routing matrix and Σx is modeled as a diagonal

or banded matrix (see [4] for a discussion on the statistical properties of the flows in the network). The

row-vectors of the matrix A will be denoted as a` ∈ RJ , ` = 1, · · · , L.

For convenience, we let Σerr(O) = E[(y − ỹ)(y − ỹ)T ], with yT = (yTu ,y
T
o ) and ỹT = (ŷTu ,y

T
o ) be

the error covariance matrix including both the observed and unobserved links. Using (4) one can show

that Σerr(O) = Σy−ΣoΣ
−1
oo ΣT

o , where Σo = AATo , Σoo = AoA
T
o , and Ao = (aij)i∈O,j∈J is a submatrix

of A with rows corresponding to the set of observed links O. In practice, Σy is typically non-singular.

One thus obtains:

Σerr(O) = A(IJ −ATo (AoA
T
o )−1Ao)A

T = A(IJ − PO)AT , (9)

where PO := ATo (AoA
T
o )−1Ao. The matrix PO is the projection matrix onto the space WO := Range(ATo )

spanned by the row vectors {ai : ai ∈ RJ , i ∈ O} of Ao. Therefore, (IJ − PO) is the projection matrix

onto the orthogonal complement Range(ATo )⊥.

Appendix A shows that ‖A−APO‖2F = trace(A(IJ−PO)AT ) and ‖A−APO‖22 = ρ(A(IJ−PO)AT ),

where ‖ · ‖F denotes the Frobenius8 norm. These facts together with (9) imply that the problem in (7) is

not different than the combinatorial problem:

O∗ := arg min
O⊆{1,··· ,L},|O|=K

‖A−APO‖2ξ , (10)

where ‖ · ‖ξ is the spectral norm for ξ = 2 and the Frobenius norm for ξ = F .

Problem (10) has a nice geometric interpretation. It seeks the “optimal” subspace WO := Range(ATo )

such that the distance, under the Frobenius9 or spectral norm, of the matrix A to its row-wise projection

APO is minimized.

8By definition ‖B‖F :=
√

trace(BBT ).
9The notion of distance is even more transparent in the Frobenius case – see Relation (30) in Appendix A.
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B. PCA-based lower bounds

Observe that in (10), projection is restricted to subspaces spanned by subsets of K rows of A. Should

one relax this constraint and optimize over arbitrary K-dimensional subspaces of RJ , one would achieve

a lower bound for the objective function. In this case, PCA analysis shows that the optimal space W ∗

is given by PK = VKV
T
K where VK = (v1,v2, . . . ,vK) is the matrix of the K principal eigenvectors

of ATA (see Appendix A). The above PCA-geometric observation gives the following lower bounds for

the prediction error (see [19], [13] and Appendix A for proofs).

Theorem 1 (PCA lower bound for trace). Let K be the number of links allowed to be monitored. Let, also,

ATA = V DV T be the singular value decomposition (SVD) of ATA with D = diag(λ1, λ2, ..., λK , ..., λJ),

where λ1 ≥ λ2 ≥ · · ·λK ≥ · · · ≥ λJ ≥ 0. Then, the prediction error trace(Σerr(O)) is bounded as

follows:
J∑

i=K+1

λi = ‖A−APK‖2F ≤ trace(Σerr(O)). (11)

Theorem 2 (PCA lower bound for spectral norm). Similarly, the prediction error ρ(Σerr(O)) for E-

optimality has the following lower bound:

λK+1 = ‖A−APK‖22 ≤ ρ(Σerr(O)). (12)

The geometric structure of the problem also suggests efficient heuristics, discussed in detail in the next

section. For example, we can think of a sequential “greedy” method that picks the space WO that has

smallest “angle” with the space W ∗. Note, though, that the spaces WO in (10) should be spanned by

K vectors ai, i ∈ L (i.e., corresponding to K observed links). Thus, in principle, the PCA-based lower

bounds are strict, yet extremely useful since these bounds also hold for the exact optimal solution O∗.

Therefore, a small relative gap between the error of a heuristic and the PCA lower bound implies a good

approximation to the value Z(O∗) of the optimal solution (for example, see Fig. 4).

V. EFFICIENT ALGORITHMS

The “naı̈ve” implementation of the greedy heuristic is not feasible for large-scale networks. This section

presents fast algorithms that substantially reduce this computational complexity (e.g., see Fig. 5 for the

speedup achieved). Motivated by the discussion at the end of the previous section, one idea is to first

pick a link i1 ∈ L for which the vector ai1 is “closest” to the first PCA component v1. If K = 1, the

procedure ends, and one can show – by (9) and Theorem 3 of the sequel – that this selection is very

close to the optimal choice where the notions of “close” and “optimal” depend on the type of norm or

optimality criterion. If K > 1, we “subtract” the effect of the chosen link i1 by considering only the
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orthogonal projections of the ai’s for the remaining links onto the space span{ai1}⊥. We then construct

a new matrix A with rows given by the above projections and repeat the procedure iteratively K times.

Formally, the matrix A is updated as follows. Assume the iterative procedure selects link ik at step k

to be added to the set of selected links O. We update A with the rule

A(k) = A(k−1)
(
IJ −

a
(k−1)
ik

a
(k−1)T
ik

‖a(k−1)ik
‖2

)
, (13)

with A(0) = A and the row-vectors of A(k−1) being a(k−1)i ∈ RJ , i ∈ {1, 2, . . . , L}. The following

proposition justifies this method, by establishing that the proposed procedure can be used to sequentially

update the prediction error covariance Σerr(O). This sequential projection property is the key behind the

computational efficiency of the proposed heuristics presented in the sequel, since it allows us to avoid

expensive operations such as matrix inversions. Its proof is given in Appendix B.

Proposition 1 (Sequential Computation of Σerr(O)). Let Ok be the set of selected links at the end of

step k, and A(k) the iteratively updated matrix, as shown in Eq. (13). Then,

A(k)A(k)T = Σerr(Ok) where Σerr(Ok) ≡ A(IJ −ATok(AokA
T
ok)−1Aok)AT . (14)

A. Detailed description of algorithms

Our first algorithm, named PCAPH, is well suited for both A- and E-optimality. Essentially we

implement the geometric idea discussed above where, at step k, we select the link ik ∈ L whose

row-vector aik is closest to the principal component of the current version of A. We can choose between

two options for vector proximity; the smallest angle or the longest projection. We decided to work with

the latter. We obtain the principal component using the power method [19]. The steps of the algorithm

are:

Algorithm 1 (PCA Projection Heuristic - PCAPH). Let O0 = ∅ and A(0) = A. Set k = 1.

1) POWER METHOD STEP: Using the power method obtain a fast approximation to the principal

eigenvector v1 of A(k−1)TA(k−1) .

2) SELECTION: At iteration k, choose:

ik ∈ arg max
i∈L\Ok−1

|vT1 a
(k−1)
i |

where a(k−1)i ∈ RJ , i ∈ {1, 2, . . . , L} are the row-vectors of A(k−1). Put ik in the list of links to be

monitored, i.e., Ok := Ok−1
⋃
{ik}.
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3) PROJECTION/ERROR REDUCTION: Update matrix A(k). The rows of the matrix A(k) are the or-

thogonal projections of the rows of A(k−1) onto (span{a(k−1)ik
})⊥. Formally,

A(k) = A(k−1)
(
IJ −

a
(k−1)
ik

a
(k−1)
ik

T

‖a(k−1)ik
‖2

)
. (15)

4) Set k = k + 1. If k < K, go to step 1).

As shown in Section VII, this strategy usually yields a monitoring design with slightly larger prediction

error than the greedy strategy, but is orders of magnitude faster in execution time. Specifically, step

1) requires O(mJL) computations, where m is the number of iterations the power method executes

(m � min{L, J}). We need O(LJ) computations per iteration for the matrix-vector multiplication in

the power method loop. Steps 2) and 3) require O(LJ) operations.

Lemma 1. The complexity of the PCA Projection Heuristic is O(mKLJ).

The next algorithm is named FGE and is tailored for A-optimality. It represents a fast implementation

of the classical greedy algorithm, since it avoids calculating the inverse of the covariance matrix Σoo.

Instead, at each iteration we seek the column vector that maximizes the error reduction. This is equivalent

to finding the vector that maximizes the squares of the projections of the remaining vectors onto itself.

For A-optimality, one can show that the error reduction at each step k, given that links {i1, ..., ik−1}

were already chosen, is equal to:

Rk(i) := R{i1,...,ik−1}(i) =

L∑
j=1

|a(k−1)j

T
a
(k−1)
i |2

‖a(k−1)i ‖2
, (16)

with i ∈ L \ {i1, ..., ik−1}. In words, it equals the sum of the squares of the projections to space

span{a(k−1)i }. This step is accomplished by the first step of the algorithm. The second step, updates the

matrix A(k).

Algorithm 2 (Fast Greedy Exact - FGE). Let O0 = ∅ and A(0) = A. Set k = 1.

1) SELECTION: At iteration k, choose:

ik ∈ arg max
i∈L\Ok−1

L∑
j=1

|a(k−1)j

T
a
(k−1)
i |2

‖a(k−1)i ‖2
(17)

where a(k−1)i ∈ RJ , i ∈ {1, 2, . . . , L} are the row vectors of A(k−1). Set Ok = Ok−1
⋃
{ik}.

2) PROJECTION/ERROR REDUCTION: Do step 3) of Algorithm 1.

3) Set k = k + 1. If k < K, go to step 1).
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Step 1) is a “greedy step” since it picks the link that reduces the error the most. It requires O(JL2)

operations while, step 2) requires O(LJ) operations after suitably rearranging the order of operations.

Lemma 2. The computational complexity of the Fast Greedy Exact algorithm is O(KJL2).

Remark 1. PCAPH relies on the fast performance of the power method, whose convergence speed

depends on the ratio |λ2|/|λ1| of the matrix under study. Thus, one might think that the performance of

PCAPH may deteriorate when that ratio is close to 1. However, it is not affected because: a) We are only

interested in approximating the principal eigenvector so a few iterations of the power method suffice, and

b) other iterative methods could be used instead, such as the Rayleigh quotient iteration [19] that has a

cubic convergence speed when an approximate eigenvector is provided (say, from the power method).

For the E-optimality criterion, we present a very fast implementation of the greedy heuristic, namely

FGR. Relation (9) and Proposition 1 allow us to avoid computationally expensive operations like matrix

inversion and singular value decomposition, which leads to drastic improvements in performance. The

next algorithm was motivated by the following characterization of the largest eigenvalue [19]:

ρ(Σerr(O)) := λ1(Σerr(O)) = max
z∈RL,‖z‖=1

zTΣerr(O)z. (18)

Algorithm 3 (Fast Greedy Randomized - FGR). Let O0 = ∅ and A(0) = A. Set k = 1.

1) INITIALIZATION: Generate m independent, normally distributed random vectors xi ∈ RL, i =

1, 2, . . . ,m from N (0, IL) and set zi := xi/‖xi‖.

2) SAVINGS STEP: At iteration k, k = 1, 2, . . . ,K, calculate:

ci := (zTi A
(k−1)) · (A(k−1)T zi), ∀i = 1, 2, . . . ,m. (19)

3) SELECTION: At iteration k, select:

jk ∈ arg min
j∈L\Ok−1

{
max

i=1,...,m
[ci −

zTi b
(k−1)
j b

(k−1)
j

T
zi

‖a(k−1)j ‖2
]
}
, (20)

where b
(k−1)
j := A(k−1)a

(k−1)
j and a(k−1)j ∈ RJ , j ∈ {1, 2, . . . , L} are the column vectors of

A(k−1)T . This corresponds to finding the link j that minimizes the error ‖A(k−1)(I−a
(k−1)
j a

(k−1)
j

T

‖a(k−1)
j ‖2

)A(k−1)T ‖2.

Set Ok = Ok−1
⋃
{jk}.

4) PROJECTION/ERROR REDUCTION: Update matrix A(k). I.e.,

A(k) = A(k−1)
(
IJ −

a
(k−1)
jk

a
(k−1)
jk

T

‖a(k−1)jk
‖2

)
. (21)

5) Set k = k + 1. If k < K, go to step 2).
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(b) Link selection (for K = 10)

Fig. 2. Ensemble (distributed implementation) of FGR algorithm for Internet2 topology. (Left) Ensemble of FGR yields the

exact optimal solution 88% of the time, whereas the classical greedy 76%. (Right) Link selection frequency. Links that connect

West to East sites (e.g. links 13, 14 and 9, 10 that correspond to KANS–CHIC and SALT–KANS) are selected the most often

by our randomized algorithm. Information from links 5, 6 is redundant, so these links are almost never selected.

In step 1), we randomly sample m unit vectors zi such that zi ∈ RL, i = 1, 2, . . . ,m, ‖zi‖ = 1. We

use these vectors in step 2) and 3) to approximate the maximum in (18) and hence the largest eigenvalue.

In step 3), we choose the vector (link) that minimizes the error expressed through the largest eigenvalue.

Finally, in step 4), we update matrix A for use in the next iteration. Step 2) requires10 O(mLJ) operations

and step 3) O(mL2J).

Lemma 3. The computational complexity of the Fast Greedy Randomized algorithm is O(mKL2J).

The following proposition establishes a theoretical bound on the quality of approximating λ̃1, the

largest eigenvalue of a matrix Σ. The proof is given in the Appendix. It requires some prior information

for the eigenvalues of Σ. Such information might be gathered by computing the eigenvalues once, before

the algorithm starts. That is, we may compute the eigenvalues only for the initial matrix A(0)A(0)T . Note

that approximation of the largest eigenvalue is needed whenever the Selection step of Algorithm 3 is

executed.

Proposition 2. Let λ1 be the true eigenvalue, and λ̃1 the approximated one using the heuristic described in

Algorithm 3. Let also m be the number of random vectors zi ∈ RL used in the heuristic. The eigenvalues

of matrix Σ are λ1 ≥ λ2 ≥ . . . λL, and c1 ≥ c2 ≥ . . . cL with ci = λi/λ1 the normalized values thereof.

For any positive scalar ε > 0, there exists an index t such that ci > 1 − ε, ∀i ≤ t and ci ≤ 1 − ε

10 Note that step 2) can be avoided, if we save the ci, i = 1, ...,m from the previous iteration. Indeed, at iteration k+ 1, we

have A(k) = A(k−1)
(
IJ −

a
(k−1)
jk

a
(k−1)
jk

T

‖a(k−1)
jk

‖2

)
. Therefore, for step 2) at iteration k+1, we have c(k+1)

i = (zTi A
(k)) · (A(k)T zi) =

c
(k)
i −

zTi b
(k)
jk

b
(k)
jk

T
zi

‖a(k)
jk
‖2

, where b
(k)
jk

= A(k)a
(k)
jk

. This improvement leads to extra O(mLJ) savings per iteration.



15
otherwise. Then,

P
( λ̃1
λ1

> 1− ε
)
≥ 1−

[
Ft,L−t

(L− t
t

1− ε
ct − (1− ε)

)]m
, (22)

where Fν1,ν2(·) is the cumulative distribution function for the F -distribution with parameters ν1 and ν2.

Applying Proposition 2 on the Internet2 network (see Section VII) that has L = 26 links we obtain

the following insights: the probability of having a better than 63% precision (≈ 1 − 1/e) for λ1 is

0.94 when we choose m = 500, 000. A precision of 80% can be achieved with probability 0.95 when

m = 109. However, in practice m could be orders of magnitude smaller. As shown in Section VII

(see Fig. 5(b)) we get low prediction error with just m = 100. We obtain even further improvements

when employing parallelization and the methods of ensembling discussed in the section that follows

(see Tables I and II). The reason of dissimilarity between Proposition 2 and practical values for m

is this. Our proposition is about approximating the spectral norm needed in step 3) of the algorithm;

nevertheless, a crude approximation of that value is sufficient as long as the order by which links enter

the selection set coincides with the order that an algorithm with sufficiently large m would generate. A

theoretical justification of this argument is an open problem, but numerical justification is provided via

the aforementioned tables and figures and additional results in Section VII.

B. Ensemble methods for randomized algorithms

Algorithm FGR can be characterized as a randomized algorithm. It uses m random vectors to approx-

imate λ1, needed to accomplish the Selection step. PCAPH may also be implemented in a randomized

fashion; since it involves the power method for approximating v1, one can utilize a random vector for

the method’s initial value. This randomization gives rise to the idea of ensembling.

The main idea of the ensemble method is to pick a small m – which makes the algorithm much

faster – and run several, say r, independent instances of the algorithm, in parallel. We then select the

solution set that yields the minimum prediction error among the ensemble. Note that unlike the greedy

approach, the resulting solution sets OK are no longer nested, i.e. some links may be excluded from OK

and replaced with others as K grows. This helps avoiding one of the artificial constraints that greedy

procedures impose on the solution sets.
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Our experiments with the topology11 of Fig. 1, indicate that for large enough r, ensemble methods can

often come close and, in fact, yield the optimal solution of Problem (7). E.g.,, Fig. 2(a) shows the results

of a distributed implementation of FGR with r = 512 and m = 20. Comparing with a single execution

of the classical greedy (or even FGR with r = 1, m � 20), we note that the exact optimal solution is

obtained 88% of the time. The solution can be obtained in minutes, rather than hours, needed for the

integer programming formulation that yields the exact solution. Fig. 2(b) shows the selection frequency

of each link when FGR is employed with r = 1024,m = 10. It can be seen that links bridging East with

West locations of the topology have the highest probability of being included in the optimal solution.

Furthermore, as verified in Table I and Table II, randomization allows the network designer to adhere

to smaller values for m when the option of parallel or distributed implementation of the algorithm is

available. The two tables show the error of the FGR algorithm (for a link budget K = 14) for the Internet2

network (Table I) and a considerably larger network of L = 195 links and J = 500 flows (Table II).

Several versions of FGR were run in Matlab on an 8-core computer, for different combinations of m and

amount of parallelization r. Should enough resources be available, little time is needed for computing

a monitoring set with less prediction error than the “naı̈ve” implementation of the greedy heuristic. For

example, for m = 64 and r = 256 we get a relative error of 4.8%, whereas greedy gives 8.5%.

Our numerical results suggest that, given a specific “resource/computation budget” (i.e., the product of

m and r), a sound balance between m and r should be one that keeps the ratio m/r at around 32/128

or 128/32. Of course, if more resources are available and the amount of parallelization can be increased,

both the efficiency and the accuracy of our randomized algorithm can be dramatically increased (see the

rightmost column in the two tables). In general, the “optimal” ratio between m and r depends on the

routing matrix A and the topology of the network (that translate to the “spectrum” of the matrix ATA,

see also subsection VII-A). It is wise, though, not to increase r excessively and decrease m to very low

values, or vice versa.

VI. PERFORMANCE GUARANTEES FOR ERROR REDUCTION

This section introduces performance guarantees for the error reduction (see Eq. (16)) that can be

achieved by algorithms PCAPH and FGE under the A-optimality criterion. Similar error bounds, though

11The ID’s of the 26 links of the Internet2 network are: 1 (2): Los Angeles → Seattle, 3 (4): Seattle → Salt Lake City, 5 (6):

Los Angeles → Salt Lake City, 7 (8): Los Angeles → Houston, 9 (10): Salt Lake City → Kansas City, 11 (12): Kansas City

→ Houston, 13 (14): Kansas City → Chicago, 15 (16): Houston → Atlanta, 17 (18): Chicago → Atlanta, 19 (20): Chicago →

New York, 21 (22): Chicago → Washington, 23 (24): Atlanta → Washington, 25 (26): Washington → New York. Odd Link

ID’s correspond to the uplink direction and the even to downlink; i.e. Link 7 is the Los Angeles to Houston link and Link 8 is

the Houston to Los Angeles link.



17TABLE I

ENSEMBLING FOR VARIOUS VALUES OF m AND r ON INTERNET2 NETWORK FOR K = 14. WE RAN 50 REPLICATIONS FOR

EACH (m, r) PAIR TO OBTAIN THE RELATIVE MEAN ERROR (RME) W.R.T THE EXACT SOLUTION, AND 95% CONFIDENCE

INTERVALS. CLASSICAL GREEDY’S RME IS 8.5%. THE EXPERIMENTS WERE RUN IN MATLAB ON AN 8-CORE COMPUTER.

(m,r) (32000,1) (1024,4) (512,8) (256,16) (128,32) (64,64) (32,128) (16,256) (8,512) (4,1024) (64,256)

95% CI (ub) 10.6 8.6 8.5 8.1 8.0 7.8 7.8 7.8 8.1 7.8 5.1

RME (%) 10.2 8.4 8.5 8.0 7.8 7.6 7.6 7.6 8.0 7.6 4.8

95% CI (lb) 9.8 8.3 8.5 7.8 7.6 7.4 7.4 7.4 7.8 7.4 4.4

TABLE II

ENSEMBLING FOR VARIOUS VALUES OF m AND r ON A NETWORK WITH L = 195 LINKS AND J = 500 FLOWS FOR K = 14.

FOR EACH (m, r) WE ILLUSTRATE THE ABSOLUTE PREDICTION ERROR, AND 95% CONFIDENCE INTERVALS. CLASSICAL

GREEDY’S PREDICTION ERROR IS 30.58; FOR m = 26, r = 256 WE ACHIEVE A FURTHER ERROR REDUCTION CLOSE TO 5%.

(m,r) (100,1) (1024,4) (512,8) (256,16) (128,32) (64,64) (32,128) (4,1024) (64,256)

95% CI (ub) 37.39 31.90 30.68 29.92 29.75 29.85 29.75 31.26 29.63

Error (%) 32.18 31.17 30.29 29.78 29.69 29.70 29.68 30.72 29.57

95% CI (lb) 26.97 30.44 29.90 29.64 29.63 29.55 29.61 30.17 29.52

very loose, are provided in [5]. Note that the (1 − 1/e) bounds for greedy algorithms developed by

Nemhauser/Wolsey [16] cannot be claimed, since the submodularity property does not hold for our

objective functions. For proofs see Appendix C.

Theorem 3. Suppose that at iteration k the observed set Ok = {i1, ..., ik}, and the resulting matrix is

A(k). Let also a(k)i be a candidate vector for selection by the algorithm on step k + 1. Then, the error

reduction (see Eq. (16)) at step k + 1 is bounded below as follows:

L∑
j=1

|a(k)j
T
a
(k)
i |2

‖a(k)i ‖2
≥ (γ(k))2λ

(k)
1 − 2γ(k)

√
1− (γ(k))2

√
λ
(k)
1

√√√√ L∑
j=1

λ
(k)
j , (23)

where λ
(k)
j is the jth largest eigenvalue of A(k)TA(k) (i.e., after we have updated our matrix at the

previous step k, see (13)), and γ(k) is the cosine (i.e., see Supplementary section) between the principal

eigenvector v
(k)
1 of A(k)TA(k) and the selected vector a(k)i , i.e.

γ(k) =
|v(k)

1

T
a
(k)
i |

‖a(k)i ‖
. (24)

Theorem 4. Suppose that the conditions of Theorem 3 hold. Then, at iteration k+ 1, the error reduction

is bounded from above as follows:
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L∑
j=1

|a(k)j
T
a
(k)
i |2

‖a(k)i ‖2
≤ λ(k)2 + (γ(k))2λ

(k)
1 + 2γ(k)

√
1− (γ(k))2

√
λ
(k)
1

√√√√ L∑
j=1

λ
(k)
j , (25)

where λ
(k)
j is the jth largest eigenvalue of A(k)TA(k) (i.e., after we have updated our matrix at the

previous step k, see (13)), and γ(k) is as defined in Eq. (24).

A demonstration of these Theorems for FGE is provided in the Supplemental material.

Remark 2 (Interpretation of Theorems 3 and 4). Say that the algorithm selects the link that corresponds

to vector a(k)i which is at the same direction as v(k)
1 . Then, γ(k) = 1 and our bounds suggest a significant

reduction, with value between λ(k)1 and λ(k)1 + λ
(k)
2 . On the other hand, if the algorithm selects a vector

with γ(k) = 0, then the best reduction we should expect to achieve is λ(k)2 . This is because we are

essentially selecting from vectors that are perpendicular to v
(k)
1 , and the “favorable choice” would be

some vector that is co-directional with the second principal axis v
(k)
2 . For all other values of γ(k), the

error reduction is in between the values given by the theorems, taking into account, of course, that it

should be non-negative and not greater than the error reduction given by the PCA bound of Theorem 1.

Remark 3 (E-optimality bounds). The E-optimality error reduction bound is given in Theorem 2 which

claims that at iteration k+ 1 we can expect a reduction at most equal to λ(k)1 (see proof in Appendix A).

In addition, we have the trivial lower bound that error reduction should be non-negative. At this moment,

existence of tighter bounds remains an open problem.

VII. PERFORMANCE EVALUATION

This section evaluates our algorithms. We start with a short discussion for the choice of budget K,

and then proceed with various comparisons of the proposed algorithms, for different network sizes and

topologies, against alternative methods including the ones studied in [5], [17].

A. Choosing the “budget” K

Thus far, we have assumed that the number of links to be monitored, namely the “budget” K, is known

to the network operator. However, in practice, this is an unknown parameter dependent on the monetary

budget available. We now address the question of choosing an adequate value for K, so that the network

operator can spend the least amount of money while monitoring the network with sufficient accuracy.

The answer comes from PCA via the spectral decomposition of the matrix ATA. One wants to choose

K according to the “spectrum” of the data. Specifically, K should be such that (see Section 6.1 [29] for
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Fig. 3. Kriging on Internet2. The weighted-error case. (Data for 03/17/09.) Note the steep error drop (≈ 100%) between the

two predictions around the 10th hour.
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Fig. 4. Evaluation of fast algorithms on Internet2 topology, and comparison with the exact optimal solution. Further, the PCA

lower bound is depicted, together with the loose (1-1/e) bound proposed by Nemhauser/Wolsey [16]. Note however that the

bound of [16] cannot be claimed, due to absence of submodularity.

more details and other criteria):
K∑
i=1

λi ≥ 0.80× trace(ATA), (26)

where (λ1 ≥ · · · ≥ λp), p = min{L, J}, are the eigenvalues of the matrix ATA.

Fig. 3(a) shows the “spectra” of three signals, based on the Internet2 traffic data obtain on March

17, 2009. We plot the case of uniform priority, the case where links 24 and 25 are assigned weights

wl = 10, and the case where wl = 20 for l = 24, 25. (More details on weighted link monitoring

follow on subsection VII-E.) Note that as the importance of links increases the “energy” of the signal is

concentrated on fewer singular values. This is intuitively appealing since it suggests that the prediction

error will be reduced the most if we can afford a budget K that is at least as large as the number of the

high importance links.

B. Heuristic Vs. Exact algorithms

We use a real-world network, namely Internet2, to evaluate our fast algorithms against the exact solution

obtained via an exhaustive search. We also calculate and demonstrate the PCA lower bound. Internet2
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Fig. 5. Prediction error on a network with L = 195 links, J = 500 flows. Note the dramatic decrease in computation time

between the naı̈ve greedy and the proposed algorithms.

(formerly Abilene) involves L = 26 links, N = 9 nodes and J = 72 routes (see [27], [6]). For simplicity,

we assume that the flow-covariance matrix is Σx = IJ . In Fig. 4(a) we examine the trace criterion

and in Fig. 4(b) the spectral norm one12. In both cases, the exhaustive search required several hours

to converge to a solution (the implementation was done in Matlab using CPLEX). On the contrary, the

heuristics (PCAPH and greedy algorithms) terminate in a few seconds and yield a solution very close

to the optimal one. We also demonstrate the PCA lower bound of Theorems 1 and 2 accompanied by

the 1 − 1/e bound proposed in [16] for minimization of submodular functions. Even though the latter

cannot be claimed for our algorithms due to lack of submodularity, we note that our PCA-based bound

is much tighter. In the sequel, we will make use of our PCA lower bounds to evaluate the quality of

approximation in scenarios where the exact solution is not available.

C. Comparison of Algorithms

We next juxtapose the computational performance of the proposed algorithms against the classical

greedy heuristic and the algorithm proposed in [5]. The comparisons against the naı̈ve greedy are

performed on a simulated network of N = 100 nodes. The topology is generated using preferential

attachment, as described in [30]. In particular, we created a routing matrix R of L = 195 links and

J = 500 flows (the methodology is explained below). For this case, we assume independent flows with

unit variance, i.e. Σx = IJ and, thus, A = R (see section IV-A). Fig. 5(a) illustrates the results for

A-optimality. The proposed algorithms are notably faster than the naı̈ve implementation of the greedy

algorithm. Specifically, PCAPH is 10× and FGE 2× faster than classical greedy. The PCAPH algorithm

significantly outperforms all other algorithms at the expense of having a slightly larger prediction error.

Fig. 5(b) depicts the case of E-optimality. Again, our algorithm performs significantly faster (20× faster)

than the naı̈ve implementation of the greedy heuristic. We used m = 100 random vectors for the FGR

12These numerical results are also tabulated in the Supplementary information section.
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algorithm. In both figures, we use the PCA lower bound to qualitatively assess the solutions of the

algorithms, since obtaining the exact solution is not computationally feasible.

We then compare PCAPH (with m = 5) against the algorithm proposed in [5] for network kriging

of end-to-end network properties. The algorithm makes heuristic use of QR-factorization with column

pivoting (henceforth, named “QR”) and is an adaptation of the method proposed in [19] for subset

selection. The QR algorithm is also adapted in [17]. For a budget of K links and an input matrix

A, with L rows and J columns, QR has a complexity of O(L2J) + O(K2L). The first term involves

the computation of SVD of A, and the second corresponds to the QR factorization step. Clearly, its

complexity is similar to the one of PCAPH (see Lemma 1), and thus we evaluate the two methods on the

A- and E-optimality criteria. The comparisons are based on real-world data obtained from CAIDA [18].

Comparisons of QR with FGE and FGR are given in the Supplemental material.

The results on prediction accuracy are illustrated in Fig. 6. The figure shows 18 different scenarios based

on a real-world network topology obtained from CAIDA [18]. Using these dada, we constructed a different

input matrix A for each scenario, as follows. We first “pruned” the large network topology given in [18]

to smallest topologies of the N = 50 (Figs. 6(a) and 6(b)), N = 75 (Figs. 6(c) and 6(d)) and N = 100

(Figs. 6(e) and 6(f)) highest-degree nodes. Then, for all node pairs (each source-destination pair (S,D)

corresponds to a flow) of these topologies, we calculate the shortest path using Dijkstra’s algorithm. This

step provides the routing matrix R for the three “pruned” networks. Finally, we simulate the covariance

matrix Σx of the flows as described next. Each subfigure of Fig. 6 corresponds to 3 different flow

covariance matrices: (i) in each leftmost subplot we assume independent flows, i.e., Σx = IJ , (ii) in each

middle subplot we have flows with variance simulated from the Pareto distribution with parameter α, and

we also assume a correlation ρ1 between a forward flow and its reverse, and (iii) each rightmost subplot

corresponds to a flow covariance matrix constructed as in (ii) and additionally we assume a correlation

ρ2 � ρ1 between the remaining flows13. With these 3 different structures for Σx the comparisons of

PCAPH against QR on the input matrix A = RΣ
1/2
x involve cases with decreasing matrix sparsity. The

specific simulation parameters (α, ρ1, ρ2) can be found in the Supplemental file.

We utilize a randomized version of PCAPH (i.e., randomization on the initial vector of the power

method) and run it independently for n = 50 times. Fig. 6 shows the mean performance of PCAPH.

More details including tables of 95% confidence intervals are given in the Supplemental material. Clearly,

the approximation quality of PCAPH is superior than the one of QR. In all plots of Fig. 6, executed for

budgets K = 1, . . . , 100, the prediction error that PCAPH yields is much smaller than QR’s error, except

13Structures (ii)-(iii) are not unreasonable cases in real-world, since in periods of congestion TCP introduces higher dependence

between the forward flow and its reverse, and weaker dependence between all other network flows (see [31], [27], [22]).
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for some small K’s for which the algorithms are comparable. The intuition is that at the beginning, both

algorithms tend to choose the same links. Essentially, for small K’s there are only few “good options”,

and hence the algorithms choose similar links (the ones offering the largest error reduction). Additionally,

for small K’s, the low relative error suggests that the PCA lower bound is close to the exact solution.

This means that there is not much room for differences in the error between the two methods. However,

as K increases and especially as the matrix A becomes less sparse, the advantages of PCAPH are evident.

The dominance of PCAPH over QR becomes even more pronounced when PCAPH with ensembling

(with r = 50) is used, as Fig. 7(a) depicts. For Fig. 7(a) we calculate the ratio relative error of QR (w.r.t.

PCA lower bound) over relative error of PCAPH (w.r.t. PCA lower bound) and plot the histogram of

these quantities obtained for K = 1, . . . , 100. PCAPH is much better (can be up to 1.6 times better for

some cases of A-optimality, and up to 60 times better for some cases of E-optimality) or at least as good

as QR in the majority of the cases examined (it is inferior only in 3 out of total 400 cases, see second

from the left plot). The parameters for the scenarios used can be found in the Supplemental material.

To illustrate the computational performance of the two algorithms we utilized the CAIDA-based

scenario of N = 100 nodes. The results are shown in Figure 7(b). As expected from the theoretical

bounds on their computational complexity, the two algorithms are scalable to large networks, and have

comparable performance. Figure 7(b) shows, however, that PCAPH is better for values of K less than

L/m. In practice, this means that PCAPH will computationally outperform QR since L � K and this

threshold will practically never be exceeded.

D. Network Kriging in practice

We illustrate next the importance of optimal selection applied in the context of network prediction.

We used the real-world data collected from the Internet2 network (see [27], [6]) on March 17, 2009.

We utilized the PCAPH algorithm to calculate the optimal set of links to be monitored. The estimation

procedure for µu and Σy is discussed in the Supplemental material. Fig. 8(a) depicts the true traffic

on the CHIC (Chicago) to WASH (Seattle) link and the predicted traffic when the optimal set of links

is used. This set includes links KANS→CHIC, CHIC→KANS, LOSA→HOUS, HOUS→LOSA and

SALT→KANS (see Fig. 1). As one would expect, an optimal global view is attained by monitoring

links that connect network sites between West and East (see also [22]). Fig. 8(b) shows the empirical

relative mean squared error (ReMSE) for the whole network on the day of interest. We compare the

quality of prediction when monitoring: a) a non-optimally chosen set, b) the optimal set used throughout

the day, and c) the optimal set, periodically recalculated every 8 hours. The last method accounts the

newest history available, dynamically re-estimates matrix Σy and calculates the new optimal set. ReMSE
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(c) A-optimality (L = 404, J = 2360)
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(e) A-optimality (L = 752, J = 5266)
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Fig. 6. PCAPH (solid-black) versus QR (dotted-red): Comparisons on approximation quality. Figures show the prediction error

(%) relative to PCA lower bound.
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versus QR on the CAIDA scenario of L = 752, J = 5266.

is defined as, ReMSE(t) = (
∑

l∈U (ŷl(t) − yl(t))2)/
∑

l∈U yl(t)
2). The ReMSE time average is 0.09,

0.07 and 0.056, respectively. This clearly shows the advantages of employing fast algorithms that can be

dynamically used for optimal link monitoring.

Figure 8 also compares kriging-based prediction against diffusion wavelets methods studied in [17].

Using the Internet2 dataset, we tried the algorithms of Coates et al. [17] for several values of time

diffusion τ . Our kriging estimator exhibits a much lower estimation error than the nonlinear estimator

of [17] in terms of the ReMSE criterion. The superiority of kriging is not surprising. As Eq. (2) shows,

under the Gaussian assumption the “best” predictor (i.e., the conditional expectation) is a linear function
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Fig. 8. Link volume estimation on Internet2. (Data for 03/17/09.) Optimal kriging substantially outperforms estimation methods

based on diffusion wavelets [17].

of observations. On the other hand, the diffusion wavelet estimator of [17] is nonlinear. Further, the

diffusion wavelet method, contrary to kriging, stipulates no knowledge for traffic mean and covariance.

As explained in the Supplemental material, acquiring such knowledge is not unrealistic; we obtain µu

and Σy through a short “training” period. Alternatively, should this training procedure is not amenable at

all links, one can still get accurate standard kriging [4], [27] predictions by employing a model for the

mean and covariance. As shown in [4], [27], this is plausible via auxiliary information from NetFlow. In

such cases, standard kriging’s error is expected to lie in-between ordinary kriging’s error (Figure 8) and

the one attained by the wavelet method.

E. Weighted Link Monitoring

Our methods can be easily adjusted to handle cases where the relative importance of the links is

not uniform. Such weighted design is particularly useful when network conditions drastically change

in a dynamic manner. Recall that in the trace criterion case we have: trace(E[(ŷ − y)(ŷ − y)T ]) =

E(trace[(ŷ − y)(ŷ − y)T ]) = E[‖ŷ − y‖2] = E[(ŷ − y)T (ŷ − y)]. The weighted monitoring design

problem aims to minimize

E[(ŷ − y)TG(ŷ − y)] =

L∑
`=1

w`E(ŷ` − y`)2, (27)

where G := diag(w1, . . . , wL) is the matrix assigning the link weights. After some algebra we get:

E[(ŷ − y)TG(ŷ − y)] = E[(G1/2ŷ −G1/2y)T (G1/2ŷ −G1/2y)] = E[(ŷG − yG)T (ŷG − yG)], (28)

where ŷG := G1/2ŷ and yG := G1/2y. This shows that the trace-optimal solution ŷG with the new

“routing” matrix AG := G1/2A optimizes (28). We can readily apply our fast algorithms to obtain ŷG.

The optimal predictor for the weighted trace criterion in (27) is then obtained by ŷ = G−1/2ŷG.

Fig. 3(b) shows the (weighted) prediction error (i.e., a weighted ReMSE) for the scenario where the

importance of monitoring links WASH → NEWY and WASH → ATLA elevates. We can model this by

assigning unit weights to all other links, and a weight of ten to the important ones. Based on Eq. (26)

and the spectrum shown in Fig. 3(a) we select a budget of K = 7. The solution given by PCAPH (which
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actually coincides with the exact optimal solution) includes the high importance links, plus links LOSA –

HOUS (both directions), KANS – CHIC (both directions) and SALT → KANS. Fig. 3(b) clearly shows

that the traffic prediction based on this set of links is way more accurate than the one based on a randomly

chosen set (that includes the important links too).

VIII. DISCUSSION

Large-scale optimal monitoring is an important, yet computationally challenging problem, suitable for

applications like anomaly detection in communication networks. The aim is to select the “best” links to

monitor, so as to optimally predict the traffic volume at the remaining ones. Our notion of optimality is

quantified in terms of the statistical error of network kriging predictors in the context of global network

traffic models. We work with A- and E- optimality for the following reasons. A-optimality has a natural

interpretation as the mean squared prediction error (see Eq. (5)). Moreover, A-optimality allows a weighted

design, such as the one presented in Section VII-E. E-optimality, captures the “worst case” scenario,

since it amounts to minimizing the maximum prediction error among all possible unit-norm weighted

linear combinations of links. In particular, the E-optimality objective dominates the worst prediction error

among all possible unobserved links. In addition to obtaining appealing intuitive understandings for A-

and E-optimality criteria, these criteria were amenable to fast implementations, which can be applied

to large-scale, dynamically evolving networks in real time. Randomized instances of the algorithms

can even yield the optimal solution in a fraction of the time needed to obtain exact solutions using

integer programming techniques. Moreover, the novel PCA-based error bounds we propose for A- and

E-optimality are practical, network-specific bounds that help us assess the quality of approximation.

The proposed selection algorithms are well suited for kriging applications beyond traffic monitoring,

such as end-to-end network delay prediction [5], [17]. Efficient algorithms for alternative criteria such as

C-, D-optimality or mutual information, under the context of network kriging, are open research problems.
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APPENDIX A

PCA-BASED RESULTS

Let Σy = AAT be the covariance matrix of the vector of all links y. SVD of A yields A = UD1/2V T ,

with D1/2 := diag(σ1, . . . , σp), p = min{L, J}, where σi’s are the singular values of A. Thus, (λ1 ≥

· · · ≥ λp) ≡ (σ21 ≥ · · · ≥ σ2p) are the eigenvalues of the J ×J matrix Ω ≡ ATA. Recall that the columns

of AT are denoted by a` ∈ RJ , ` = 1, · · · , L. Then, we have:
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Theorem 5 (Trace). Let PW denote the projection matrix onto a sub-space W ⊆ RJ . Then,

min
W⊆RJ , dim(W )=K

L∑
`=1

‖a` − PWa`‖2 =

p∑
j=K+1

λj ,

where the lower bound is achieved for the sub-space W ∗ = span(v1, · · · ,vK) of the eigenvectors

corresponding to the largest K eigenvalues of Ω.

Theorem 6 (Spectral norm). Let the SVD of matrix A be as above. Then,

min
rank(B)=K

‖A−B‖2 = ‖A−APK‖2 (29)

where PK is the projection matrix PK = VKV
T
K . The columns of matrix VK are the top K right singular

vectors of A, i.e.14, PK = V diag(1TK ,0
T
L−K)V T .

The proof of the former theorem appears in [4] (Proposition 1) and [32] (p. 785, Theorem A.2). For

the proof of the latter, see Theorem 2.5.3 in [19]. We use these two theorems to prove Theorems 1 and 2.

Proof of Theorem 1: We will use Theorem 5. Recall that Σerr(O) = A(I − PO)AT , where PO :=

ATo (AoA
T
o )−1Ao. The projection matrix (I − PO) is symmetric and indempotent (i.e., (I − PO) =

(I − PO)2), so we have Σerr = [(I − PO)AT ]T [(I − PO)AT ], and therefore

trace(Σerr(O)) =

L∑
`=1

‖(I − PO)a`‖2 =

L∑
`=1

dist(a`,WO)2 (30)

where WO := span(a`, ` ∈ O) is the sub-space spanned by the vectors a` corresponding to the observed

links. The vector (I−PO)a` is the “perpendicular” dropped from point a` to the hyperplane Range(ATo ).

Hence ‖(I − PO)a`‖ is the distance from a` to Range(ATo ) = span(a`, ` ∈ O), where ATo = (a`)`∈O.

Using Theorem 5 we see that the sum of (30) is minimized when the projection matrix PO equals

PK = VKV
T
K . Hence, trace(Σerr(O)) = trace[A(I − PO)AT ] ≥ ‖A−APK‖2F =

∑p
i=K+1 λi.

Proof of Theorem 2: Using Theorem 6, we need to show that: ρ(Σerr(O)) = ρ[A(I − PO)AT ] ≥

‖A − APK‖22 = λK+1. We first calculate the lower bound when PK = VKV
T
K . We use the SVD of A,

A = UD1/2V T and the projection matrix I − PK = V diag(0TK ,1
T
L−K)V T . Thus, we have A−APK =

UD1/2V TV diag(0TK ,1
T
L−K)V T = UD1/2diag(0TK ,1

T
L−K)V T = Udiag(0TK , σK+1, . . . , σL)V T . By the

definition of spectral norm: ‖A−APK‖22 = ρ
(
(Udiag(0TK , σK+1, . . . , σL)V T )T × Udiag(0TK , σK+1, . . . , σL)V T

)
=

ρ
(
V diag(0TK , λK+1, . . . , λL)V T

)
= λK+1. Consequently, using also Theorem 6 we obtain: ρ(Σerr(O)) =

ρ[A(I − PO)AT ] = ρ[(A−APO)(A−APO)T ] = ‖A−APO‖22 ≥ ‖A−APK‖22 = λK+1.

14We symbolize the vector of ones of dimension k as 1k and the vector of zeros as 0k.
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APPENDIX B

PROPOSITION PROOFS

Proof of Proposition 1: The proof resembles the Gram–Schmidt orthogonalization procedure. We

will show by induction that

A(k)A(k)T = A(I −ATo (AoA
T
o )−1Ao)A

T . (31)

For notational simplicity, let O := Ok, i.e., we drop the subscript k of the matrix Aok . It is easy to

see that the sequential updates of the matrices A(k) in (13) can be represented in matrix form as follows:

A(k) = AP1P2 · · ·Pk, (32)

where P1 = I − ai1
aT

i1

‖ai1‖2
, · · · , Pk = I − a

(k−1)
ik

a
(k−1)
ik

T

‖a(k−1)
ik

‖2
. Here a(k)i ∈ RJ denote the rows of the matrix

A(k), where by convention A(0) = A. Observe that Pk is the orthogonal projection matrix onto the space

(span{a(k−1)ik
})⊥, i.e. the orthogonal complement of the one-dimensional space spanned by a(k−1)ik

. Here

a
(k−1)
ik

corresponds to the link ik added to the set O on step k. This shows that on the k−th step all

the rows of the matrix A(k) are orthogonal to span{ai1 , · · · ,aik} ≡ span{a(0)i1 , · · · ,a
(k−1)
ik

}. The last

subspace is generated by the vectors corresponding to the links {i1, · · · , ik} added on the first k steps.

Now, to complete the proof, it is enough to show that

P1P2 · · ·Pk = Pspan(ai1
,··· ,aik

)⊥ . (33)

Indeed, we have that P(span{ai1
,··· ,aik

})⊥ = I−ATo (AoA
T
o )−1Ao, where ATo = (ai1 , · · · ,aik). Therefore,

by (32) and (33), one obtains (31), which yields (14). We now prove (33) by induction.

Induction Basis: Relation (33) trivially holds for k = 1.

Induction Hypothesis: Suppose that (33) holds.

Induction Step: We will show that (33) holds with k replaced by k + 1.

Note that by the induction hypothesis a(k)ik+1
is the orthogonal projection of aik+1

onto (span{ai1 , · · · ,aik})⊥.

Therefore, span{ai1 , · · · ,aik ,aik+1
} = span{ai1 , · · · ,aik} ⊕ span{a(k)ik+1

}, where ⊕ denotes sum of

orthogonal subspaces of RJ . This shows that Pspan{ai1
,··· ,aik

,aik+1
} = Pspan{ai1

,··· ,aik
} + Pspan{a(k)

ik+1
}.

Since PW⊥ = I − PW , we obtain

P(span{ai1 ,··· ,aik
,aik+1

})⊥ = I − Pspan{ai1
,··· ,aik

} − Pspan{a(k)
ik+1
}. (34)

Note, however, that since a(k)ik+1
⊥ span{ai1 , · · · ,aik}, we have Pspan{ai1 ,··· ,aik

}Pspan{a(k)
ik+1
} = 0, and the

right-hand side of (34) equals (I − Pspan{ai1 ,··· ,aik
})(I − Pspan{a(k)

ik+1

) = Pspan{ai1 ,··· ,aik
}⊥Pspan{a(k)

ik+1
}⊥ .

This, in view of the induction hypothesis and (34), implies that P(span{ai1 ,··· ,aik
,aik+1

})⊥ = P1 · · ·PkPk+1,

which completes the proof of the induction step.
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Proof of Proposition 2: By definition, λ̃1 is the following random variable:

λ̃1 := max{ x
T
1

‖x1‖
Σ
x1

‖x1‖
, . . . ,

xTm
‖xm‖

Σ
xm
‖xm‖

}, (35)

with xi ∈ RL, i = 1, ...,m are independent random vectors from the multivariate normal distribution

N (0, IL). Let the SVD of Σ be Σ = UDUT , with the columns of U being the singular vectors of Σ

and D = diag(λ1, ..., λL). We multiply each vector xi with the orthogonal matrix P , with P = UT to

get wi = Pxi. Since this operation preserves inner products, angles and distances, the vectors wi are

also iid from the N (0, IL) distribution. Hence, λ̃1 = maxi{ xT
i

‖xi‖UDU
T xi

‖xi‖} = maxi{ wT
i

‖wi‖D
wi

‖wi‖} =

maxi{
∑L

j=1 λjw2
i (j)

‖wi‖2 } = λ1 maxi{
∑L

j=1 cjw
2
i (j)

‖wi‖2 }.

Given ε > 0, the precision of approximation is: P(λ̃1 > λ1(1 − ε)) = P(maxi ξi > 1 − ε), with the

random variables ξi =
∑L

j=1 cjw
2
i (j)/‖wi‖2, i = 1, . . . ,m being independent and identically distributed.

Proceeding, we have P(maxi ξi > 1 − ε) = 1 − P(maxi ξi ≤ 1 − ε) = 1 − [P(ξ1 ≤ 1 − ε)]m, with ξ1

chosen without loss of generality. Explicitly writing ξ1 we obtain, P(ξ1 ≤ 1− ε) = P
(∑L

j=1 cjw
2
1(j) ≤

(1− ε)
∑L

j=1w
2
1(j)

)
= P

(∑t
j=1[cj − (1− ε)]w2

1(j) ≤
∑L

j=t+1[(1− ε)− cj ]w2
1(j)

)
≤ P

(∑t
j=1[cj −

(1−ε)]w2
1(j) ≤

∑L
j=t+1(1−ε)w2

1(j)
)
≤ P

(
[ct− (1−ε)]

∑t
j=1w

2
1(j) ≤ (1−ε)

∑L
j=t+1w

2
1(j)

)
, where

we used the fact that ci > 1−ε for all i ≤ t, and ci ≤ 1−ε otherwise, to obtain the last two inequalities.

The random variables
∑t

j=1w
2
1(j) have chi-square density with t-degrees of freedom (see [33], Section

II.3). Similarly, he random variables
∑L

j=t+1w
2
1(j) have chi-square density with (L − t)-degrees of

freedom. Using the fact (see [33], Section II.3) that the random variable F = (X/ν1)/(Y/ν2) – with

X,Y being chi-squared distributed with ν1 and ν2 degrees of freedom respectively – has the F-density

with parameters ν1 and ν2, the result follows.

APPENDIX C

ERROR REDUCTION BOUNDS

Proof of Theorem 3: For ease of notation, we drop the superscript k. For the same reason, we intro-

duce the operator 〈e1, e2〉 to represent the inner product between two vectors. Let xj := |〈aj ,ai〉|/‖ai‖

be the length of the projection of any vector aj to the selected vector ai. Also, let yj := |〈aj ,v(k)
1 〉| be

the projection length on v
(k)
1 . Note that ai/‖ai‖ = 〈ai/‖ai‖,v(k)

1 〉v
(k)
1 +a⊥i = γv

(k)
1 +a⊥i . Proceeding,

we have x2j = |〈aj , γv(k)
1 + a⊥i 〉|2 = |γ〈aj ,v(k)

1 〉 + 〈aj ,a⊥i 〉|2 ≥ |γ|〈aj ,v
(k)
1 〉| − |〈aj ,a⊥i 〉||2 ≥

γ2〈aj ,v(k)
1 〉

2
− 2γ|〈aj ,v(k)

1 〉||〈aj ,a⊥i 〉| = γ2y2j − 2γyj |〈aj ,a⊥i 〉|, after substitution of the projection

length yj on the first principal axis. Observe that due to orthogonality, we have γ2 + ‖a⊥i ‖2 = 1. Using

the Cauchy – Bunyakovsky – Schwarz inequality we then bound the term |〈aj ,a⊥i 〉| as |〈aj ,a⊥i 〉| ≤

‖aj‖‖a⊥i ‖ = ‖aj‖
√

1− γ2. Therefore, x2j ≥ γ2y2j − 2γyj‖aj‖
√

1− γ2. Now we sum over all j ∈ L to



29
get the error reduction for all links. We thus get,

L∑
j=1

x2j ≥ γ2
L∑
j=1

y2j − 2γ
√

1− γ2
L∑
j=1

yj‖aj‖ = γ2λ
(k)
1 − 2γ

√
1− γ2

L∑
j=1

yj‖aj‖, (36)

where in the last equation we used Theorem 1 for K = 1 on matrix A(k); thus, the PCA error

reduction equals the largest eigenvalue, λ(k)1 . We now isolate the term
∑L

j=1 yj‖aj‖ and using again

the Cauchy – Bunyakovsky – Schwarz bound we get
∑L

j=1 yj‖aj‖ ≤
√∑L

j=1(yj)
2
√∑L

j=1 ‖aj‖2 =√
λ
(k)
1

√
trace(A(k)TA(k)) =

√
λ
(k)
1

√∑L
j=1 λ

(k)
j . The result follows.

Proof of Theorem 4: Again, when there is no ambiguity we drop the superscript k. Let xj :=

|〈aj ,ai〉|/‖ai‖ be the length of the projection of any vector aj to the selected by the algorithm vector

ai. Also, let yj := |〈aj ,v(k)
1 〉| be the projection length on v

(k)
1 .

As before ai/‖ai‖ = γv
(k)
1 + a⊥i . Proceeding, we have x2j = |〈aj , γv(k)

1 + a⊥i 〉|2 = |γ〈aj ,v(k)
1 〉 +

〈aj ,a⊥i 〉|2 = γ2〈aj ,v(k)
1 〉

2
+ 2γ〈aj ,v(k)

1 〉〈aj ,a⊥i 〉 + 〈aj ,a⊥i 〉2 = γ2y2j + 2γyj 〈aj ,a⊥i 〉︸ ︷︷ ︸+〈aj ,a⊥i 〉2 ≤

γ2y2j + 2γ yj‖aj‖︸ ︷︷ ︸√1− γ2 + 〈aj ,a⊥i 〉2 ≤ γ2y2j + 2γ

√
λ
(k)
1

√∑L
j=1 λ

(k)
j

√
1− γ2 + 〈aj ,a⊥i 〉2, with

the Cauchy – Bunyakovsky – Schwarz inequality used on the specified terms. Note that for φ > 0,

aj = φv
(k)
1 + a⊥j , i.e. a⊥j ⊥ v

(k)
1 . Then, 〈φv(k)

1 + a⊥j ,a
⊥
i 〉 = 〈a⊥j ,a⊥i 〉 because a⊥i ⊥ v

(k)
1 as well.

Moreover, notice that |〈a⊥j ,a⊥i 〉| ≤ |〈a⊥j ,a⊥i 〉|/‖a⊥i ‖ because ‖a⊥i ‖ =
√

1− γ2 ≤ 1 (by construction

of ‖a⊥i ‖). These steps suggest that:

L∑
j=1

〈a⊥j ,
a⊥i
‖a⊥i ‖

〉2 ≤
L∑
j=1

〈a⊥j ,v
(k)
2 〉

2 = λ
(k)
2 . (37)

This result follows from PCA. It basically says that the sum of the squares of the projection lengths of

any vector a⊥j on a⊥i is bounded by the sum of the squares of the projections on the second principal

axis, v(k)
2 . In other words, v(k)

2 gives the maximum projection with respect to any other vector from

Null(v
(k)
1

T
). Summing both sides of inequality x2j ≤ γ2y2j + 2γ

√
λ
(k)
1

√∑L
j=1 λ

(k)
j

√
1− γ2 + 〈aj ,a⊥i 〉2

over all j = 1, ..., L, and using (37), concludes the proof.

REFERENCES

[1] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” SIGCOMM Comput. Commun. Rev.,

vol. 34, pp. 219–230, August 2004.

[2] I. C. Paschalidis and G. Smaragdakis, “Spatio-temporal network anomaly detection by assessing deviations of empirical

measures,” IEEE/ACM Trans. Netw., vol. 17, pp. 685–697, June 2009.

[3] Cisco Systems, “Cisco IOS Netflow,” www.cisco.com/en/US/products/ps6601/products ios protocol group home.html.

[4] S. Vaughan, J. and Stoev and G. Michailidis, “Network-wide statistical modeling and prediction of computer traffic,”

2010, to appear in Technometrics. [Online]. Available: http://arxiv.org/pdf/1005.4641.pdf

www.cisco.com/en/US/products/ps6601/products_ios_protocol _group_home.html
http://arxiv.org/pdf/1005.4641.pdf


30
[5] D. Chua, E. Kolaczyk, and M. Crovella, “Network kriging,” Selected Areas in Communications, IEEE Journal on, vol. 24,

no. 12, pp. 2263 –2272, dec. 2006.

[6] Internet2, “Internet2.” [Online]. Available: http://www.internet2.edu/observatory/

[7] C.-W. Ko, J. Lee, and M. Queyranne, “An Exact Algorithm for Maximum Entropy Sampling,” OPERATIONS RESEARCH,

vol. 43, no. 4, pp. 684–691, Jul. 1995. [Online]. Available: http://dx.doi.org/10.1287/opre.43.4.684

[8] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms

and empirical studies,” J. Mach. Learn. Res., pp. 235–284, June 2008.

[9] H. Singhal and G. Michailidis, “Optimal experiment design in a filtering context with application to sampled network

data,” Ann. Appl. Stat., vol. 4, no. 1, pp. 78–93, 2010.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness. New York,

NY, USA: W. H. Freeman & Co., 1990.

[11] A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss, “Approximation of functions over redundant dictionaries using

coherence,” in Proc. of 14th annual ACM-SIAM symp. on Discrete algorithms, ser. SODA ’03, 2003, pp. 243–252.

[12] A. Das and D. Kempe, “Algorithms for subset selection in linear regression,” in Proceedings of the 40th annual ACM

symposium on Theory of computing, 2008, pp. 45–54.

[13] C. Boutsidis, M. W. Mahoney, and P. Drineas, “Unsupervised feature selection for principal components analysis,” in

Proceeding of the 14th ACM SIGKDD, 2008, pp. 61–69.

[14] ——, “An improved approximation algorithm for the column subset selection problem,” in Proceedings of the twentieth

Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’09, Philadelphia, PA, USA, 2009, pp. 968–977.

[15] CPLEX, “Ibm ilog cplex optimizer,” http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

[16] G. Nemhauser and L. Wolsey, “Maximizing submodular set functions: Formulations and analysis of algorithms,” in Annals

of Discrete Mathematics, 1981, vol. 59, pp. 279 – 301.

[17] M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring for IP and all-optical networks,” in Proc. 7th

ACM SIGCOMM. ACM, 2007, pp. 241–252. [Online]. Available: http://doi.acm.org/10.1145/1298306.1298340

[18] CAIDA, “CAIDA’s Internet Topology Data Kit #0304. Cooperative Association for Internet Data Analysis, University of

California, San Diego (UCSD), 2003,” http://www.caida.org/tools/measurement/skitter/router topology/.

[19] G. H. Golub and C. F. van Van Loan, Matrix Computations, 3rd ed. The Johns Hopkins University Press, Oct. 1996.

[20] G. Sagnol, S. Gaubert, and M. Bouhtou, “Optimal monitoring in large networks by successive c-optimal designs,” in

Teletraffic Congress (ITC), 2010 22nd International, sept. 2010, pp. 1 –8.

[21] G. Sagnol, “Computing optimal designs of multiresponse experiments reduces to second-order cone programming,”

Journal of Statistical Planning and Inference, vol. 141, no. 5, pp. 1684 – 1708, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0378375810005318

[22] H. Singhal and G. Michailidis, “Optimal sampling in state space models with applications to network monitoring,” in

Proceedings of the 2008 ACM SIGMETRICS, 2008, pp. 145–156.

[23] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions-

I,” Mathematical Programming, vol. 14, pp. 265–294, 1978.

[24] D. Bajovic, B. Sinopoli, and J. Xavier, “Sensor selection for event detection in wireless sensor networks,” Signal Processing,

IEEE Transactions on, vol. 59, no. 10, pp. 4938 –4953, oct. 2011.

[25] E. Tsakonas, J. Jalden, and B. Ottersten, “Semidefinite relaxations of robust binary least squares under ellipsoidal uncertainty

sets,” Signal Processing, IEEE Transactions on, vol. 59, no. 11, pp. 5169 –5180, nov. 2011.

[26] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation: part i: Greedy pursuit,”

Signal Process., vol. 86, pp. 572–588, March 2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=1140723.1140735

http://www.internet2.edu/observatory/
http://dx.doi.org/10.1287/opre.43.4.684
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://doi.acm.org/10.1145/1298306.1298340
http://www.caida.org/tools/measurement/skitter/router_topology/
http://www.sciencedirect.com/science/article/pii/S0378375810005318
http://dl.acm.org/citation.cfm?id=1140723.1140735


31
[27] S. Stoev, G. Michailidis, and J. Vaughan, “On global modeling of backbone network traffic,” in INFOCOM, 2010

Proceedings IEEE, march 2010, pp. 1 –5.

[28] K. Park and W. Willinger, Eds., Self-Similar Network Traffic and Performance Evaluation. J. Wiley & Sons, Inc., 2000.

[29] I. Jolliffe, Principal Component Analysis (2nd ed.). New York: Springer-Verlag, 2002.

[30] A. Barabasi and R. Albert, “Emergence of Scaling in Random Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[31] H. Singhal and G. Michailidis, “Identifiability of flow distributions from link measurements with applications to computer

networks,” Inverse Problems, vol. 23, no. 5, p. 1821, 2007.

[32] A. Marshall, I. Olkin, and B. Arnold, Inequalities: Theory of Majorization and Its Applications (2nd ed). Springer, 2010.

[33] W. Feller, An Introduction to Probability Theory and its Applications (2nd ed.). New York: John Wiley and Sons, 1971.

PLACE

PHOTO

HERE

Michael G. Kallitsis received the Diploma degree in electrical and computer engineering from the

National Technical University of Athens, Greece, in 2005 and the Ph.D. degree in electrical and computer

engineering from North Carolina State University, Raleigh in 2010. He was a Postdoctoral Fellow in the

Department of Statistics at University of Michigan, Ann Arbor from 2010 to 2012.

Currently, Dr Kallitsis is a member of the research group within Merit Network Inc., Ann Arbor. His

research interests include algorithms for monitoring and analysis of large-scale data, queueing theory and

performance evaluation of communication networks, stochastic optimization and control of communication systems, stochastic

modeling of systems, distributed algorithms, mathematical economics and game theory.

PLACE

PHOTO

HERE

Stilian A. Stoev received his masters degree in mathematics from the Sofia University St Kliment Ohridski,

Bulgaria in 1998 under the supervision of Prof Dimitar Vandev. He received his PhD degree in mathematics

and statistics from Boston University in 2005 under the supervision of Prof Murad S. Taqqu. In the same

year, Dr Stoev joined the statistics department at the University of Michigan, Ann Arbor where he has

been working since and currently holds the position of an Associate Professor.

Dr Stoev is working in applied probability and statistics with emphasis on stochastic processes with

dependence and heavy tails. His current interests include multivariate extreme value theory, sum and max-stable processes,

prediction of extremes, as well as global modeling, analysis, and prediction for computer network traffic.



32

PLACE

PHOTO

HERE

George Michailidis received the Ph.D. degree in mathematics from the University of California, Los

Angeles, in 1996.

He was a Postdoctoral Fellow in the Department of Operations Research at Stanford University from

1996 to 1998. He joined the University of Michigan, Ann Arbor, in 1998, where he is currently a

Professor of Statistics, Electrical Engineering, and Computer Science. His research interests are in the

areas of stochastic network modeling and performance evaluation, queuing analysis and congestion control,

statistical modeling and analysis of Internet traffic, network tomography, and analysis of high dimensional data with network

structure.


	Introduction
	Motivation
	Contributions

	Literature Survey
	Problem Formulation
	Large-scale Network Monitoring
	Link Selection for Optimal Prediction

	A Principal Component Analysis Perspective
	A geometric view of optimal prediction
	PCA-based lower bounds

	Efficient Algorithms
	Detailed description of algorithms
	Ensemble methods for randomized algorithms

	Performance Guarantees for Error Reduction
	Performance Evaluation
	Choosing the ``budget" K
	Heuristic Vs. Exact algorithms
	Comparison of Algorithms
	Network Kriging in practice
	Weighted Link Monitoring

	Discussion
	Acknowledgements
	Appendix A: PCA-based Results
	Appendix B: Proposition Proofs
	Appendix C: Error Reduction Bounds
	References
	Biographies
	Michael G. Kallitsis
	Stilian A. Stoev
	George Michailidis


