Last topic: Summary; Heuristics and Approximation Algorithms

Topics we studied so far:

- Strength of formulations; improving formulations by adding valid inequalities
- Relaxations and dual problems; obtaining good bounds on the optimal value of an IP
- Cutting plane algorithms (Exact general purpose algorithm based on strengthening LP relaxations; does not produce a feasible solution until termination)
- Branch and bound algorithms (Exact general purpose algorithm using primal and dual bounds to intelligently enumerate feasible solutions; does not produce a feasible solution until one of the subproblems is pruned by optimality)

Solving IPs in real life: Special classes of problems

- Can we devise specialized algorithms for a particular class of problems?
- What if there is a need to get an OK feasible solution quickly?
A heuristic or approximation algorithm may be used when...

- A feasible solution is required rapidly; within a few seconds or minutes
- An instance is so large, it cannot be formulated as an IP or MIP of reasonable size
- In branch-and-bound algorithm, looking to find good/quick primal bounds on subproblems solutions sufficiently quickly

Provide a feasible solution without guarantee on its optimality, or even quality, or algorithm running time.

Well-designed heuristics for particular problem classes have been empirically shown to find good solutions fast.

Examples of heuristic algorithms:

- **Lagrangian** Solve the Lagrangian Relaxation with a good value of u. If the solution $x(u)$ is not feasible, make adjustments while keeping objective function deteriorations small.
- **Greedy** Construct a feasible solution from scratch, choosing at each step the decision bringing the “best” immediate reward.
- **Local Search** Start with a feasible solution x, and compare it with “neighboring” feasible solutions. If a better neighbor y is found, move to y, and repeat the same procedure. If no such neighbor is found, the process stops — a local optimum is found.

In practice, often used in combination: a greedy procedure or other heuristic to construct a feasible solution, followed by a local search to improve it.
Examples of greedy heuristics

Example 1: 0–1 Knapsack

\[
\max \left\{ \sum_{j=1}^{n} c_j x_j : \sum_{j=1}^{n} a_j x_j \leq b, \ x \in B^n \right\}, \ \text{where } a_j, c_j > 0 \ \forall j
\]

Assume the items are ordered so that \(\frac{c_j}{a_j} \geq \frac{c_{j+1}}{a_{j+1}} \), \(j = 1, \ldots, n-1 \)

The algorithm:

- **Initialization**: Start with no items in the knapsack
- **For** \(j = 1, \ldots, n \): if the space remaining in the knapsack is sufficient to accommodate \(j \)th item, include it; otherwise, skip it.

For example, if \(c = (12, 8, 17, 11, 6, 2, 2) \), \(a = (4, 3, 7, 5, 3, 2, 3) \), and \(b = 9 \), the solution obtained by the greedy heuristic is \(x^G = (1, 1, 0, 0, 0, 1, 0) \) with \(z^G = c^T x^G = 22 \) (the optimal solution is \(x_1 = x_4 = 1 \) with \(z = 23 \)).

Example 2: STSP \(G = (V, E), c_{ij} = c_{ji} \)

Greedy algorithm I:

- **Initialization**: Let \(S = \{1\} \), \(N = V \setminus S \), \(v_1 = 1 \)
- **For** \(j = 2, \ldots, |V| \), find \(v_j = \arg\min_{i \in N} c_{v_{j-1}, i} \). Set \(S = S \cup \{v_j\} \), \(N = N \setminus \{v_j\} \)
- Connect \(v_n \) to \(v_1 \). Resulting tour: \(v_1, v_2, \ldots, v_n, v_1 \)

Greedy algorithm II:

- **Initialization**: Let \(S = \emptyset \), \(N = E \). Sort the edges so that \(c_{e_k} \leq c_{e_{k+1}} \) for \(k = 1, \ldots, |E| - 1 \). Set \(j = 0 \).
- **Repeat until** \(S \) is a tour: increment \(j \); If \(S \cup \{e_j\} \) contains no subtours and no nodes of degree more than 2, set \(S = S \cup \{e_j\} \)
Examples of greedy heuristics

Example 3: Minimum Spanning Tree problem Given a connected graph $G = (V, E)$ with c_e, $e \in E$, construct a minimum-cost spanning tree, i.e., subgraph $\tilde{G} = (V, \tilde{E})$ which is connected and contains no cycles.

Prim’s algorithm:

- **Initialization:** Start with a graph (V_1, E_1), where $|V_1| = 1$, and $E_1 = \emptyset$.
- For $k = 2, \ldots, |V|$, consider all edges $\{i, j\}$ with $i \in V_k$ and $j \notin V_k$, and choose the one with smallest cost. Let $V_{k+1} = V_k \cup \{j\}$ and $N_{k+1} = N_k \cup \{\{i, j\}\}$.

Theorem Prim’s algorithm finds an optimal solution of the MST problem.

Proof Relies on the cut optimality necessary and sufficient condition of MSTs.

Examples of local search

Local Search Heuristics: Start with a feasible solution x, and compare it with “neighboring” feasible solutions. If a better neighbor y is found, move to y, and repeat the same procedure. If no such neighbor is found, the process stops — a local optimum is found. To define a local search, need a starting solution and a definition of a neighborhood.

Example 1: local search heuristic for cost-minimizing UFL

Observation: if a set of facilities $S \neq \emptyset$ is built, it is easy to find the cheapest feasible assignment of clients to these facilities. The total cost of such solution is $c(S) + \sum_{j \in S} f_j$, where $f_j = \sum_{i=1}^{m} \min_{j \in S} c_{ij}$.

Local search: Start with a set of depots $S \neq \emptyset$. Define a neighborhood of S to be all non-empty sets that can be obtained by either adding or deleting one depot to/from S (note: S has at most n neighbors).
Examples of local search

Example 2: 2OPT heuristic for STSP Given a set of edges S that form a TSP tour, there is no other tour that differs from S by exactly one edge. If two (disjoint) edges are removed from S, there is exactly one other tour that contains the remaining edges. In the 2OPT heuristic for STSP a neighborhood of S consists of all tours that can be obtained removing two (disjoint) edges from S, and replacing them with two other edges. Note: S has n^2 neighbors. Thus, at every iteration, the algorithm may have to compare up to n^2 tours.

Adapting local search for global optimization

Local search algorithms find a solution that is a local optimum, i.e., best in its neighborhood. Globally optimal solutions may not lie in that neighborhood!

The following are search algorithms designed to seek a globally optimal solution:
- Tabu search
- Simulated annealing
- Genetic algorithms
Approximation algorithms

Essentially, heuristics with a provable guarantee on the quality of the obtained solution.

ε-Approximation Algorithm

A heuristic algorithm for a class of problems constitutes an ε-approximation algorithm if for each instance of a problem in this class with optimal value z, the heuristic algorithm returns a feasible solution of value z^H such that

$$z^H \leq (1 + \epsilon)z \text{ for a minimization problem},$$

or

$$z^H \geq (1 - \epsilon)z \text{ for a maximization problem}.$$

Additionally, keep an eye on the running time of the algorithm — make sure it grows at a reasonable rate as larger problems and/or smaller ε values are considered. (E.g., polynomial, not exponential, growth.)

Examples of approximation algorithms: integer knapsack

$$z = \max \left\{ \sum_{j=1}^{n} c_jx_j : \sum_{j=1}^{n} a_jx_j \leq b, \ x \in \mathbb{Z}_+^n \right\}, \text{ where } a_1, \ldots, a_n, b \in \mathbb{Z}_+.$$

Assume that $a_j \leq b \ \forall j$, and $\frac{c_i}{a_1} \geq \frac{c_i}{a_j} \ \forall j$.

The greedy solution x^H has $x^H_1 = \left\lfloor \frac{b}{a_1} \right\rfloor$, with $z^H \geq c_1 \left\lfloor \frac{b}{a_1} \right\rfloor$.

Theorem 12.1

$$\frac{z^H}{z} \geq \frac{1}{2} \quad \text{(An } \varepsilon \text{-approximation with } \varepsilon = \frac{1}{2}).$$

Proof

The solution to LP relaxation $x^{LP}_1 = \frac{b}{a_1}$ and $z^{LP} = \frac{c_1b}{a_1} \geq z$.

Note: $\frac{b}{a_1} \leq 2\left\lfloor \frac{b}{a_1} \right\rfloor$ (since $\left\lfloor \frac{b}{a_1} \right\rfloor \geq 1$), so

$$\frac{z^H}{z} \geq \frac{z^H}{z^{LP}} \geq \frac{c_1 \left\lfloor \frac{b}{a_1} \right\rfloor}{c_1 \frac{b}{a_1}} \geq \frac{\left\lfloor \frac{b}{a_1} \right\rfloor}{2\left\lfloor \frac{b}{a_1} \right\rfloor} = \frac{1}{2}.$$
Examples of approximation algorithms: STSP with $\Delta \leq$

Consider an instance of STSP on a complete graph with
$0 \leq c_{ij} \leq c_{ik} + c_{jk} \ \forall i, j, k$

Tree Heuristic:
- Find a minimum spanning tree (let its length be $z_T \leq z$)
- Construct a “walk” that starts at node 1, visits all nodes and return to node 1 using only edges of the tree. The length of the walk is $2z_T$, since every edge is traversed twice.
- Convert the walk into a tour by skipping intermediate nodes that have already been visited. Due to triangle inequality, the length does not increase.

$z^H \leq 2z_T \leq 2z$.

An ϵ-approximation with $\epsilon = 1$.
Can be improved to $\epsilon = 1/2$ by finding a minimum perfect matching on the nodes that have odd degree in the tree and using its arcs in the tour.

Examples of approximation algorithms: $0 - 1$ knapsack

$$z = \max \left\{ \sum_{j=1}^{n} c_jx_j : \sum_{j=1}^{n} a_jx_j \leq b, \ x \in B^n \right\}$$

Can solve in time proportional to n^2c_{max}. (With Dynamic Programming — if time remains.)

Idea behind an ϵ-approximation: if $c_1 = 105, \ c_2 = 37, \ c_3 = 85$, the solution is not much different than the solution to the problem with $\bar{c}_1 = 100, \ \bar{c}_2 = 30, \ \bar{c}_3 = 80$; the latter is equivalent to $\hat{c}_1 = 10, \ \hat{c}_2 = 3, \ \hat{c}_3 = 8$.

- Let $c_j, \ j = 1 \ldots, n$ are original coefficients,
- replace the t least significant digits with 0’s to obtain $\bar{c}_j, \ j = 1, \ldots, n$,
- $\hat{c}_j = \bar{c}_j/10^t, \ j = 1, \ldots, n$. Note: $c_j - 10^t \leq \bar{c}_j \leq c_j$.
- Solve the problem with coef.’s $\hat{c}_j, \ j = 1, \ldots, n$
Quality of approximation for 0–1 knapsack

Let $S \left(S' \right)$ be the optimal solution to the original (modified) instance. Then

$$\sum_{j \in S} c_j \geq \sum_{j \in S'} c_j \geq \sum_{j \in S} \bar{c}_j \geq \sum_{j \in S} (c_j - 10^t) \geq \sum_{j \in S} c_j - n10^t$$

$$z - z^H = \frac{\sum_{j \in S} c_j - \sum_{j \in S'} c_j}{\sum_{j \in S} c_j} \leq \frac{n10^t}{c_{\max}}.$$

So, to obtain an ε-approximation in polynomial (in n) time:

If $c_{\max} < n/\varepsilon$, solve the original problem. Time: $n^2 c_{\max} \leq n^3/\varepsilon$

If $c_{\max} \geq n/\varepsilon$, find nonnegative integer t:

$$\frac{\varepsilon}{10} \leq \frac{n10^t}{c_{\max}} \leq \varepsilon,$$

and apply the algorithm to \hat{c}_j, $j = 1, \ldots, n$.

Note: $\hat{c}_{\max} = 10^{-t} \bar{c}_{\max} \leq 10^{-t} c_{\max} < 10n/\varepsilon$, so time is:

$$n^2 \hat{c}_{\max} \leq 10n^3/\varepsilon.$$

Dynamic Programming

Background: the **shortest path problem**

- Consider a directed graph $D = (V, A)$ with nonnegative arc costs, c_e for $e \in A$.

- Given a starting node s, the goal is to find a shortest (directed) path from s to every other node in the graph.

Dynamic programming: a sequential approach

- Think of the problem as a sequence of decisions
- A **stage** refers to the number of decisions already made
- A **state** contains information about decisions already made
- An arc in the network represents making the next decision
- Cost of the arc represents the incremental cost of the decision.
Observations about the shortest path problem

Observation 1
If the shortest path from s to t passes through node p, the subpaths from (s, p) and (p, t) are the shortest paths between the respective points.

Observation 2
Let $d(v)$ denote the shortest path from s to v. Then
$$d(v) = \min_{i \in V - \{v\}} \{ d(i) + c_{iv} \}$$

Observation 3
Given an acyclic graph, the nodes can be ordered so that $i < j$ for every arc $(i, j) \in A$. The shortest path from node 1 to all other nodes can be found by applying the above recursion for $v = 2, \ldots, |N|$.

Example: TSP viewed as a shortest path problem

Start at node 1, and at each step, or *stage*, choose which node to go to next.
To make the decision at each stage, need to know the set of states S already visited, and the current location k. (S, k) is a *state*. Starting node: $(\{1\}, 1)$.
Let $C(S, k)$ be the *minimum* cost of all paths from 1 to k that visit all nodes in S exactly once.
Note: state (S, k) can be reached from any state $(S \setminus \{k\}, m)$, with $m \in S \setminus \{k\}$ at the cost of c_{mk}. Therefore:

$$C(S, k) = \min_{m \in S \setminus \{k\}} (C(S \setminus \{k\}, m) + c_{mk}), \, k \in S, \text{ and } C(\{1\}, 1) = 0.$$

The cost of the optimal tour is $\min_k (C(\{1, \ldots, n\}, k) + c_{k1})$.
Solving TSP as a dynamic program

Recall:

\[C(S, k) = \min_{m \in S \setminus \{k\}} (C(S \setminus \{k\}, m) + c_{mk}), \ k \in S, \text{ and } C(\{1\}, 1) = 0. \]

- Number of states: \(2^n\) choices for \(S\), \(O(n)\) choices for \(k\). The total number of states is \(O(n2^n)\).
- Computational effort: each time \(C(S, k)\) is computed using the above equations, \(O(n)\) arithmetic operations are needed. Hence, a total of \(O(n^22^n)\) operations are required — exponential, but better than enumerating all \(n!\) tours! (Realistically, can handle at most 20 nodes.)

Constructing Dynamic Programming Algorithms

1. View the choice of a feasible solution as a sequence of decisions occurring in `stages`, and so that the total cost is the sum of the costs of individual decisions.
2. Define the `state` as a summary of all relevant past decisions.
3. Determine which `state transitions` are possible. Let the `costs of each state transition` be the cost of the corresponding decision.
4. Write a `recursion on the optimal cost` from the origin state to a destination state.
Example: 0 – 1 Knapsack as a dynamic program

\[
\max \left\{ \sum_{j=1}^{n} c_j x_j : \sum_{j=1}^{n} a_j x_j \leq b, \ x \in B^n \right\}, \text{ where } a, c \in \mathbb{Z}_+^n, \ b \in \mathbb{Z}_+.
\]

Stages: at stage \(i = 1, \ldots, n \), decide whether to take item \(i \).

State: at stage \(i \), the state is \((i, u)\) — value accumulated selecting from the first \(i \) items. Let \(W(i, u) \) be the least possible weight that has to be accumulated in order to reach state \((i, u)\).

State transitions: from the state \((i, u)\), can transition either to state \((i + 1, u)\), or \((i + 1, u + c_{i+1})\).

Cost recursion: let \(W(i, u) = \infty \) if it is impossible to accumulate \(u \) with items 1 through \(i \). Also, \(W(0, 0) = 0 \) and \(W(0, u) = \infty \) for \(u \neq 0 \). Then

\[
W(i, u) = \min\{W(i - 1, u), W(i - 1, u - c_i) + a_i\}, \ i = 1, \ldots, n.
\]

Finding the optimal solution:

- Let \(c_{\text{max}} = \max_{i=1,\ldots,n} c_i \). Note that if \(u > nc_{\text{max}} \), no state of the form \((i, u)\) is reachable. Hence, at every stage there are at most \(nc_{\text{max}} \) states. (This is due to integrality of the \(c_j \)'s.)
- Initially, we are in state \((0, 0)\)
- For \(i = 1, \ldots, n \), compute \(W(i, u) \) for all \(u \leq nc_{\text{max}} \) using the recursion — total computational time is \(O(n^2 c_{\text{max}}) \).
- The optimal solution is \(u^* = \max\{u : W(n, u) \leq b\} \)

Another approach: define \(C(i, w) \) as the maximum value that can be obtained using the first \(i \) items and accumulating a total weight of \(w \).

\[
C(i, w) = \max\{C(i - 1, w), C(i - 1, w - w_i) + c_i\}.
\]

Running time: \(O(nb) \).